183 lines
4.9 KiB
C
183 lines
4.9 KiB
C
/*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2015 by Blender Foundation.
|
|
* All rights reserved.
|
|
*
|
|
* The Original Code is: all of this file.
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
* */
|
|
|
|
/** \file blender/blenlib/intern/math_solvers.c
|
|
* \ingroup bli
|
|
*/
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "BLI_math.h"
|
|
#include "BLI_utildefines.h"
|
|
|
|
#include "BLI_strict_flags.h"
|
|
|
|
#include "eigen_capi.h"
|
|
|
|
/********************************** Eigen Solvers *********************************/
|
|
|
|
/**
|
|
* \brief Compute the eigen values and/or vectors of given 3D symmetric (aka adjoint) matrix.
|
|
*
|
|
* \param m3 the 3D symmetric matrix.
|
|
* \return r_eigen_values the computed eigen values (NULL if not needed).
|
|
* \return r_eigen_vectors the computed eigen vectors (NULL if not needed).
|
|
*/
|
|
bool BLI_eigen_solve_selfadjoint_m3(const float m3[3][3], float r_eigen_values[3], float r_eigen_vectors[3][3])
|
|
{
|
|
#ifndef NDEBUG
|
|
/* We must assert given matrix is self-adjoint (i.e. symmetric) */
|
|
if ((m3[0][1] != m3[1][0]) ||
|
|
(m3[0][2] != m3[2][0]) ||
|
|
(m3[1][2] != m3[2][1]))
|
|
{
|
|
BLI_assert(0);
|
|
}
|
|
#endif
|
|
|
|
return EIG_self_adjoint_eigen_solve(3, (const float *)m3, r_eigen_values, (float *)r_eigen_vectors);
|
|
}
|
|
|
|
/**
|
|
* \brief Compute the SVD (Singular Values Decomposition) of given 3D matrix (m3 = USV*).
|
|
*
|
|
* \param m3 the matrix to decompose.
|
|
* \return r_U the computed left singular vector of \a m3 (NULL if not needed).
|
|
* \return r_S the computed singular values of \a m3 (NULL if not needed).
|
|
* \return r_V the computed right singular vector of \a m3 (NULL if not needed).
|
|
*/
|
|
void BLI_svd_m3(const float m3[3][3], float r_U[3][3], float r_S[3], float r_V[3][3])
|
|
{
|
|
EIG_svd_square_matrix(3, (const float *)m3, (float *)r_U, (float *)r_S, (float *)r_V);
|
|
}
|
|
|
|
/***************************** Simple Solvers ************************************/
|
|
|
|
/**
|
|
* \brief Solve a tridiagonal system of equations:
|
|
*
|
|
* a[i] * r_x[i-1] + b[i] * r_x[i] + c[i] * r_x[i+1] = d[i]
|
|
*
|
|
* Ignores a[0] and c[count-1]. Uses the Thomas algorithm, e.g. see wiki.
|
|
*
|
|
* \param r_x output vector, may be shared with any of the input ones
|
|
* \return true if success
|
|
*/
|
|
bool BLI_tridiagonal_solve(const float *a, const float *b, const float *c, const float *d, float *r_x, const int count)
|
|
{
|
|
if (count < 1)
|
|
return false;
|
|
|
|
size_t bytes = sizeof(double) * (unsigned)count;
|
|
double *c1 = (double *)MEM_mallocN(bytes * 2, "tridiagonal_c1d1");
|
|
double *d1 = c1 + count;
|
|
|
|
if (!c1)
|
|
return false;
|
|
|
|
int i;
|
|
double c_prev, d_prev, x_prev;
|
|
|
|
/* forward pass */
|
|
|
|
c1[0] = c_prev = ((double)c[0]) / b[0];
|
|
d1[0] = d_prev = ((double)d[0]) / b[0];
|
|
|
|
for (i = 1; i < count; i++) {
|
|
double denum = b[i] - a[i] * c_prev;
|
|
|
|
c1[i] = c_prev = c[i] / denum;
|
|
d1[i] = d_prev = (d[i] - a[i] * d_prev) / denum;
|
|
}
|
|
|
|
/* back pass */
|
|
|
|
x_prev = d_prev;
|
|
r_x[--i] = ((float)x_prev);
|
|
|
|
while (--i >= 0) {
|
|
x_prev = d1[i] - c1[i] * x_prev;
|
|
r_x[i] = ((float)x_prev);
|
|
}
|
|
|
|
MEM_freeN(c1);
|
|
|
|
return isfinite(x_prev);
|
|
}
|
|
|
|
/**
|
|
* \brief Solve a possibly cyclic tridiagonal system using the Sherman-Morrison formula.
|
|
*
|
|
* \param r_x output vector, may be shared with any of the input ones
|
|
* \return true if success
|
|
*/
|
|
bool BLI_tridiagonal_solve_cyclic(const float *a, const float *b, const float *c, const float *d, float *r_x, const int count)
|
|
{
|
|
if (count < 1)
|
|
return false;
|
|
|
|
float a0 = a[0], cN = c[count - 1];
|
|
|
|
/* if not really cyclic, fall back to the simple solver */
|
|
if (a0 == 0.0f && cN == 0.0f) {
|
|
return BLI_tridiagonal_solve(a, b, c, d, r_x, count);
|
|
}
|
|
|
|
size_t bytes = sizeof(float) * (unsigned)count;
|
|
float *tmp = (float *)MEM_mallocN(bytes * 2, "tridiagonal_ex");
|
|
float *b2 = tmp + count;
|
|
|
|
if (!tmp)
|
|
return false;
|
|
|
|
/* prepare the noncyclic system; relies on tridiagonal_solve ignoring values */
|
|
memcpy(b2, b, bytes);
|
|
b2[0] -= a0;
|
|
b2[count - 1] -= cN;
|
|
|
|
memset(tmp, 0, bytes);
|
|
tmp[0] = a0;
|
|
tmp[count - 1] = cN;
|
|
|
|
/* solve for partial solution and adjustment vector */
|
|
bool success =
|
|
BLI_tridiagonal_solve(a, b2, c, tmp, tmp, count) &&
|
|
BLI_tridiagonal_solve(a, b2, c, d, r_x, count);
|
|
|
|
/* apply adjustment */
|
|
if (success) {
|
|
float coeff = (r_x[0] + r_x[count - 1]) / (1.0f + tmp[0] + tmp[count - 1]);
|
|
|
|
for (int i = 0; i < count; i++) {
|
|
r_x[i] -= coeff * tmp[i];
|
|
}
|
|
}
|
|
|
|
MEM_freeN(tmp);
|
|
|
|
return success;
|
|
}
|
|
|