970 lines
23 KiB
C
970 lines
23 KiB
C
/*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
/** \file blender/blenlib/intern/polyfill2d.c
|
|
* \ingroup bli
|
|
*
|
|
* An ear clipping algorithm to triangulate single boundary polygons.
|
|
*
|
|
* Details:
|
|
*
|
|
* - The algorithm guarantees all triangles are assigned (number of coords - 2)
|
|
* and that triangles will have non-overlapping indices (even for degenerate geometry).
|
|
* - Self-intersections are considered degenerate (resulting triangles will overlap).
|
|
* - While multiple polygons aren't supported, holes can still be defined using *key-holes*
|
|
* (where the polygon doubles back on its self with *exactly* matching coordinates).
|
|
*
|
|
* \note
|
|
*
|
|
* Changes made for Blender.
|
|
*
|
|
* - loop the array to clip last verts first (less array resizing)
|
|
*
|
|
* - advance the ear to clip each iteration
|
|
* to avoid fan-filling convex shapes (USE_CLIP_EVEN).
|
|
*
|
|
* - avoid intersection tests when there are no convex points (USE_CONVEX_SKIP).
|
|
*
|
|
* \note
|
|
*
|
|
* No globals - keep threadsafe.
|
|
*/
|
|
|
|
#include "BLI_utildefines.h"
|
|
#include "BLI_math.h"
|
|
|
|
#include "BLI_memarena.h"
|
|
#include "BLI_alloca.h"
|
|
|
|
#include "BLI_polyfill2d.h" /* own include */
|
|
|
|
#include "BLI_strict_flags.h"
|
|
|
|
/* avoid fan-fill topology */
|
|
#define USE_CLIP_EVEN
|
|
#define USE_CONVEX_SKIP
|
|
/* sweep back-and-forth about convex ears (avoids lop-sided fans) */
|
|
#define USE_CLIP_SWEEP
|
|
// #define USE_CONVEX_SKIP_TEST
|
|
|
|
#ifdef USE_CONVEX_SKIP
|
|
# define USE_KDTREE
|
|
#endif
|
|
|
|
/* disable in production, it can fail on near zero area ngons */
|
|
// #define USE_STRICT_ASSERT
|
|
|
|
// #define DEBUG_TIME
|
|
#ifdef DEBUG_TIME
|
|
# include "PIL_time_utildefines.h"
|
|
#endif
|
|
|
|
|
|
typedef signed char eSign;
|
|
|
|
#ifdef USE_KDTREE
|
|
/**
|
|
* Spatial optimization for point-in-triangle intersection checks.
|
|
* The simple version of this algorithm is ``O(n^2)`` complexity
|
|
* (every point needing to check the triangle defined by every other point),
|
|
* Using a binary-tree reduces the complexity to ``O(n log n)``
|
|
* plus some overhead of creating the tree.
|
|
*
|
|
* This is a single purpose KDTree based on BLI_kdtree with some modifications
|
|
* to better suit polyfill2d.
|
|
*
|
|
*
|
|
* - #KDTreeNode2D is kept small (only 16 bytes),
|
|
* by not storing coords in the nodes and using index values rather then pointers
|
|
* to reference neg/pos values.
|
|
*
|
|
* - #kdtree2d_isect_tri is the only function currently used.
|
|
* This simply intersects a triangle with the kdtree points.
|
|
*
|
|
* - the KDTree is only built & used when the polygon is concave.
|
|
*/
|
|
|
|
typedef bool axis_t;
|
|
|
|
/* use for sorting */
|
|
typedef struct KDTreeNode2D_head {
|
|
uint neg, pos;
|
|
uint index;
|
|
} KDTreeNode2D_head;
|
|
|
|
typedef struct KDTreeNode2D {
|
|
uint neg, pos;
|
|
uint index;
|
|
axis_t axis; /* range is only (0-1) */
|
|
ushort flag;
|
|
uint parent;
|
|
} KDTreeNode2D;
|
|
|
|
struct KDTree2D {
|
|
KDTreeNode2D *nodes;
|
|
const float (*coords)[2];
|
|
uint root;
|
|
uint totnode;
|
|
uint *nodes_map; /* index -> node lookup */
|
|
};
|
|
|
|
struct KDRange2D {
|
|
float min, max;
|
|
};
|
|
#endif /* USE_KDTREE */
|
|
|
|
enum {
|
|
CONCAVE = -1,
|
|
TANGENTIAL = 0,
|
|
CONVEX = 1,
|
|
};
|
|
|
|
typedef struct PolyFill {
|
|
struct PolyIndex *indices; /* vertex aligned */
|
|
|
|
const float (*coords)[2];
|
|
uint coords_tot;
|
|
#ifdef USE_CONVEX_SKIP
|
|
uint coords_tot_concave;
|
|
#endif
|
|
|
|
/* A polygon with n vertices has a triangulation of n-2 triangles. */
|
|
uint (*tris)[3];
|
|
uint tris_tot;
|
|
|
|
#ifdef USE_KDTREE
|
|
struct KDTree2D kdtree;
|
|
#endif
|
|
} PolyFill;
|
|
|
|
|
|
/* circular linklist */
|
|
typedef struct PolyIndex {
|
|
struct PolyIndex *next, *prev;
|
|
uint index;
|
|
eSign sign;
|
|
} PolyIndex;
|
|
|
|
|
|
/* based on libgdx 2013-11-28, apache 2.0 licensed */
|
|
|
|
static void pf_coord_sign_calc(PolyFill *pf, PolyIndex *pi);
|
|
|
|
static PolyIndex *pf_ear_tip_find(
|
|
PolyFill *pf
|
|
#ifdef USE_CLIP_EVEN
|
|
, PolyIndex *pi_ear_init
|
|
#endif
|
|
#ifdef USE_CLIP_SWEEP
|
|
, bool reverse
|
|
#endif
|
|
);
|
|
|
|
static bool pf_ear_tip_check(PolyFill *pf, PolyIndex *pi_ear_tip);
|
|
static void pf_ear_tip_cut(PolyFill *pf, PolyIndex *pi_ear_tip);
|
|
|
|
|
|
BLI_INLINE eSign signum_enum(float a)
|
|
{
|
|
if (UNLIKELY(a == 0.0f))
|
|
return 0;
|
|
else if (a > 0.0f)
|
|
return 1;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* alternative version of #area_tri_signed_v2
|
|
* needed because of float precision issues
|
|
*
|
|
* \note removes / 2 since its not needed since we only need the sign.
|
|
*/
|
|
BLI_INLINE float area_tri_signed_v2_alt_2x(const float v1[2], const float v2[2], const float v3[2])
|
|
{
|
|
return ((v1[0] * (v2[1] - v3[1])) +
|
|
(v2[0] * (v3[1] - v1[1])) +
|
|
(v3[0] * (v1[1] - v2[1])));
|
|
}
|
|
|
|
|
|
static eSign span_tri_v2_sign(const float v1[2], const float v2[2], const float v3[2])
|
|
{
|
|
return signum_enum(area_tri_signed_v2_alt_2x(v3, v2, v1));
|
|
}
|
|
|
|
|
|
#ifdef USE_KDTREE
|
|
#define KDNODE_UNSET ((uint)-1)
|
|
|
|
enum {
|
|
KDNODE_FLAG_REMOVED = (1 << 0),
|
|
};
|
|
|
|
static void kdtree2d_new(
|
|
struct KDTree2D *tree,
|
|
uint tot,
|
|
const float (*coords)[2])
|
|
{
|
|
/* set by caller */
|
|
// tree->nodes = nodes;
|
|
tree->coords = coords;
|
|
tree->root = KDNODE_UNSET;
|
|
tree->totnode = tot;
|
|
}
|
|
|
|
/**
|
|
* no need for kdtree2d_insert, since we know the coords array.
|
|
*/
|
|
static void kdtree2d_init(
|
|
struct KDTree2D *tree,
|
|
const uint coords_tot,
|
|
const PolyIndex *indices)
|
|
{
|
|
KDTreeNode2D *node;
|
|
uint i;
|
|
|
|
for (i = 0, node = tree->nodes; i < coords_tot; i++) {
|
|
if (indices[i].sign != CONVEX) {
|
|
node->neg = node->pos = KDNODE_UNSET;
|
|
node->index = indices[i].index;
|
|
node->axis = 0;
|
|
node->flag = 0;
|
|
node++;
|
|
}
|
|
}
|
|
|
|
BLI_assert(tree->totnode == (uint)(node - tree->nodes));
|
|
}
|
|
|
|
static uint kdtree2d_balance_recursive(
|
|
KDTreeNode2D *nodes, uint totnode, axis_t axis,
|
|
const float (*coords)[2], const uint ofs)
|
|
{
|
|
KDTreeNode2D *node;
|
|
uint neg, pos, median, i, j;
|
|
|
|
if (totnode <= 0) {
|
|
return KDNODE_UNSET;
|
|
}
|
|
else if (totnode == 1) {
|
|
return 0 + ofs;
|
|
}
|
|
|
|
/* quicksort style sorting around median */
|
|
neg = 0;
|
|
pos = totnode - 1;
|
|
median = totnode / 2;
|
|
|
|
while (pos > neg) {
|
|
const float co = coords[nodes[pos].index][axis];
|
|
i = neg - 1;
|
|
j = pos;
|
|
|
|
while (1) {
|
|
while (coords[nodes[++i].index][axis] < co) ;
|
|
while (coords[nodes[--j].index][axis] > co && j > neg) ;
|
|
|
|
if (i >= j) {
|
|
break;
|
|
}
|
|
SWAP(KDTreeNode2D_head, *(KDTreeNode2D_head *)&nodes[i], *(KDTreeNode2D_head *)&nodes[j]);
|
|
}
|
|
|
|
SWAP(KDTreeNode2D_head, *(KDTreeNode2D_head *)&nodes[i], *(KDTreeNode2D_head *)&nodes[pos]);
|
|
if (i >= median) {
|
|
pos = i - 1;
|
|
}
|
|
if (i <= median) {
|
|
neg = i + 1;
|
|
}
|
|
}
|
|
|
|
/* set node and sort subnodes */
|
|
node = &nodes[median];
|
|
node->axis = axis;
|
|
axis = !axis;
|
|
node->neg = kdtree2d_balance_recursive(nodes, median, axis, coords, ofs);
|
|
node->pos = kdtree2d_balance_recursive(&nodes[median + 1], (totnode - (median + 1)), axis, coords, (median + 1) + ofs);
|
|
|
|
return median + ofs;
|
|
}
|
|
|
|
static void kdtree2d_balance(
|
|
struct KDTree2D *tree)
|
|
{
|
|
tree->root = kdtree2d_balance_recursive(tree->nodes, tree->totnode, 0, tree->coords, 0);
|
|
}
|
|
|
|
|
|
static void kdtree2d_init_mapping(
|
|
struct KDTree2D *tree)
|
|
{
|
|
uint i;
|
|
KDTreeNode2D *node;
|
|
|
|
for (i = 0, node = tree->nodes; i < tree->totnode; i++, node++) {
|
|
if (node->neg != KDNODE_UNSET) {
|
|
tree->nodes[node->neg].parent = i;
|
|
}
|
|
if (node->pos != KDNODE_UNSET) {
|
|
tree->nodes[node->pos].parent = i;
|
|
}
|
|
|
|
/* build map */
|
|
BLI_assert(tree->nodes_map[node->index] == KDNODE_UNSET);
|
|
tree->nodes_map[node->index] = i;
|
|
}
|
|
|
|
tree->nodes[tree->root].parent = KDNODE_UNSET;
|
|
}
|
|
|
|
static void kdtree2d_node_remove(
|
|
struct KDTree2D *tree,
|
|
uint index)
|
|
{
|
|
uint node_index = tree->nodes_map[index];
|
|
KDTreeNode2D *node;
|
|
|
|
if (node_index == KDNODE_UNSET) {
|
|
return;
|
|
}
|
|
else {
|
|
tree->nodes_map[index] = KDNODE_UNSET;
|
|
}
|
|
|
|
node = &tree->nodes[node_index];
|
|
tree->totnode -= 1;
|
|
|
|
BLI_assert((node->flag & KDNODE_FLAG_REMOVED) == 0);
|
|
node->flag |= KDNODE_FLAG_REMOVED;
|
|
|
|
while ((node->neg == KDNODE_UNSET) &&
|
|
(node->pos == KDNODE_UNSET) &&
|
|
(node->parent != KDNODE_UNSET))
|
|
{
|
|
KDTreeNode2D *node_parent = &tree->nodes[node->parent];
|
|
|
|
BLI_assert((uint)(node - tree->nodes) == node_index);
|
|
if (node_parent->neg == node_index) {
|
|
node_parent->neg = KDNODE_UNSET;
|
|
}
|
|
else {
|
|
BLI_assert(node_parent->pos == node_index);
|
|
node_parent->pos = KDNODE_UNSET;
|
|
}
|
|
|
|
if (node_parent->flag & KDNODE_FLAG_REMOVED) {
|
|
node_index = node->parent;
|
|
node = node_parent;
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool kdtree2d_isect_tri_recursive(
|
|
const struct KDTree2D *tree,
|
|
const uint tri_index[3],
|
|
const float *tri_coords[3],
|
|
const float tri_center[2],
|
|
const struct KDRange2D bounds[2],
|
|
const KDTreeNode2D *node)
|
|
{
|
|
const float *co = tree->coords[node->index];
|
|
|
|
/* bounds then triangle intersect */
|
|
if ((node->flag & KDNODE_FLAG_REMOVED) == 0) {
|
|
/* bounding box test first */
|
|
if ((co[0] >= bounds[0].min) &&
|
|
(co[0] <= bounds[0].max) &&
|
|
(co[1] >= bounds[1].min) &&
|
|
(co[1] <= bounds[1].max))
|
|
{
|
|
if ((span_tri_v2_sign(tri_coords[0], tri_coords[1], co) != CONCAVE) &&
|
|
(span_tri_v2_sign(tri_coords[1], tri_coords[2], co) != CONCAVE) &&
|
|
(span_tri_v2_sign(tri_coords[2], tri_coords[0], co) != CONCAVE))
|
|
{
|
|
if (!ELEM(node->index, tri_index[0], tri_index[1], tri_index[2])) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#define KDTREE2D_ISECT_TRI_RECURSE_NEG \
|
|
(((node->neg != KDNODE_UNSET) && (co[node->axis] >= bounds[node->axis].min)) && \
|
|
(kdtree2d_isect_tri_recursive(tree, tri_index, tri_coords, tri_center, bounds, \
|
|
&tree->nodes[node->neg])))
|
|
#define KDTREE2D_ISECT_TRI_RECURSE_POS \
|
|
(((node->pos != KDNODE_UNSET) && (co[node->axis] <= bounds[node->axis].max)) && \
|
|
(kdtree2d_isect_tri_recursive(tree, tri_index, tri_coords, tri_center, bounds, \
|
|
&tree->nodes[node->pos])))
|
|
|
|
if (tri_center[node->axis] > co[node->axis]) {
|
|
if (KDTREE2D_ISECT_TRI_RECURSE_POS) {
|
|
return true;
|
|
}
|
|
if (KDTREE2D_ISECT_TRI_RECURSE_NEG) {
|
|
return true;
|
|
}
|
|
}
|
|
else {
|
|
if (KDTREE2D_ISECT_TRI_RECURSE_NEG) {
|
|
return true;
|
|
}
|
|
if (KDTREE2D_ISECT_TRI_RECURSE_POS) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
#undef KDTREE2D_ISECT_TRI_RECURSE_NEG
|
|
#undef KDTREE2D_ISECT_TRI_RECURSE_POS
|
|
|
|
BLI_assert(node->index != KDNODE_UNSET);
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool kdtree2d_isect_tri(
|
|
struct KDTree2D *tree,
|
|
const uint ind[3])
|
|
{
|
|
const float *vs[3];
|
|
uint i;
|
|
struct KDRange2D bounds[2] = {
|
|
{FLT_MAX, -FLT_MAX},
|
|
{FLT_MAX, -FLT_MAX},
|
|
};
|
|
float tri_center[2] = {0.0f, 0.0f};
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
vs[i] = tree->coords[ind[i]];
|
|
|
|
add_v2_v2(tri_center, vs[i]);
|
|
|
|
CLAMP_MAX(bounds[0].min, vs[i][0]);
|
|
CLAMP_MIN(bounds[0].max, vs[i][0]);
|
|
CLAMP_MAX(bounds[1].min, vs[i][1]);
|
|
CLAMP_MIN(bounds[1].max, vs[i][1]);
|
|
}
|
|
|
|
mul_v2_fl(tri_center, 1.0f / 3.0f);
|
|
|
|
return kdtree2d_isect_tri_recursive(tree, ind, vs, tri_center, bounds, &tree->nodes[tree->root]);
|
|
}
|
|
|
|
#endif /* USE_KDTREE */
|
|
|
|
|
|
static uint *pf_tri_add(PolyFill *pf)
|
|
{
|
|
return pf->tris[pf->tris_tot++];
|
|
}
|
|
|
|
static void pf_coord_remove(PolyFill *pf, PolyIndex *pi)
|
|
{
|
|
#ifdef USE_KDTREE
|
|
/* avoid double lookups, since convex coords are ignored when testing intersections */
|
|
if (pf->kdtree.totnode) {
|
|
kdtree2d_node_remove(&pf->kdtree, pi->index);
|
|
}
|
|
#endif
|
|
|
|
pi->next->prev = pi->prev;
|
|
pi->prev->next = pi->next;
|
|
|
|
if (UNLIKELY(pf->indices == pi)) {
|
|
pf->indices = pi->next;
|
|
}
|
|
#ifdef DEBUG
|
|
pi->index = (uint)-1;
|
|
pi->next = pi->prev = NULL;
|
|
#endif
|
|
|
|
pf->coords_tot -= 1;
|
|
}
|
|
|
|
static void pf_triangulate(PolyFill *pf)
|
|
{
|
|
/* localize */
|
|
PolyIndex *pi_ear;
|
|
|
|
#ifdef USE_CLIP_EVEN
|
|
PolyIndex *pi_ear_init = pf->indices;
|
|
#endif
|
|
#ifdef USE_CLIP_SWEEP
|
|
bool reverse = false;
|
|
#endif
|
|
|
|
while (pf->coords_tot > 3) {
|
|
PolyIndex *pi_prev, *pi_next;
|
|
eSign sign_orig_prev, sign_orig_next;
|
|
|
|
pi_ear = pf_ear_tip_find(
|
|
pf
|
|
#ifdef USE_CLIP_EVEN
|
|
, pi_ear_init
|
|
#endif
|
|
#ifdef USE_CLIP_SWEEP
|
|
, reverse
|
|
#endif
|
|
);
|
|
|
|
#ifdef USE_CONVEX_SKIP
|
|
if (pi_ear->sign != CONVEX) {
|
|
pf->coords_tot_concave -= 1;
|
|
}
|
|
#endif
|
|
|
|
pi_prev = pi_ear->prev;
|
|
pi_next = pi_ear->next;
|
|
|
|
pf_ear_tip_cut(pf, pi_ear);
|
|
|
|
/* The type of the two vertices adjacent to the clipped vertex may have changed. */
|
|
sign_orig_prev = pi_prev->sign;
|
|
sign_orig_next = pi_next->sign;
|
|
|
|
/* check if any verts became convex the (else if)
|
|
* case is highly unlikely but may happen with degenerate polygons */
|
|
if (sign_orig_prev != CONVEX) {
|
|
pf_coord_sign_calc(pf, pi_prev);
|
|
#ifdef USE_CONVEX_SKIP
|
|
if (pi_prev->sign == CONVEX) {
|
|
pf->coords_tot_concave -= 1;
|
|
#ifdef USE_KDTREE
|
|
kdtree2d_node_remove(&pf->kdtree, pi_prev->index);
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
if (sign_orig_next != CONVEX) {
|
|
pf_coord_sign_calc(pf, pi_next);
|
|
#ifdef USE_CONVEX_SKIP
|
|
if (pi_next->sign == CONVEX) {
|
|
pf->coords_tot_concave -= 1;
|
|
#ifdef USE_KDTREE
|
|
kdtree2d_node_remove(&pf->kdtree, pi_next->index);
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef USE_CLIP_EVEN
|
|
#ifdef USE_CLIP_SWEEP
|
|
pi_ear_init = reverse ? pi_prev->prev : pi_next->next;
|
|
#else
|
|
pi_ear_init = pi_next->next;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef USE_CLIP_EVEN
|
|
#ifdef USE_CLIP_SWEEP
|
|
if (pi_ear_init->sign != CONVEX) {
|
|
/* take the extra step since this ear isn't a good candidate */
|
|
pi_ear_init = reverse ? pi_ear_init->prev : pi_ear_init->next;
|
|
reverse = !reverse;
|
|
}
|
|
#endif
|
|
#else
|
|
if ((reverse ? pi_prev->prev : pi_next->next)->sign != CONVEX) {
|
|
reverse = !reverse;
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
if (pf->coords_tot == 3) {
|
|
uint *tri = pf_tri_add(pf);
|
|
pi_ear = pf->indices;
|
|
tri[0] = pi_ear->index; pi_ear = pi_ear->next;
|
|
tri[1] = pi_ear->index; pi_ear = pi_ear->next;
|
|
tri[2] = pi_ear->index;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \return CONCAVE, TANGENTIAL or CONVEX
|
|
*/
|
|
static void pf_coord_sign_calc(PolyFill *pf, PolyIndex *pi)
|
|
{
|
|
/* localize */
|
|
const float (*coords)[2] = pf->coords;
|
|
|
|
pi->sign = span_tri_v2_sign(
|
|
coords[pi->prev->index],
|
|
coords[pi->index],
|
|
coords[pi->next->index]);
|
|
}
|
|
|
|
static PolyIndex *pf_ear_tip_find(
|
|
PolyFill *pf
|
|
#ifdef USE_CLIP_EVEN
|
|
, PolyIndex *pi_ear_init
|
|
#endif
|
|
#ifdef USE_CLIP_SWEEP
|
|
, bool reverse
|
|
#endif
|
|
)
|
|
{
|
|
/* localize */
|
|
const uint coords_tot = pf->coords_tot;
|
|
PolyIndex *pi_ear;
|
|
|
|
uint i;
|
|
|
|
#ifdef USE_CLIP_EVEN
|
|
pi_ear = pi_ear_init;
|
|
#else
|
|
pi_ear = pf->indices;
|
|
#endif
|
|
|
|
i = coords_tot;
|
|
while (i--) {
|
|
if (pf_ear_tip_check(pf, pi_ear)) {
|
|
return pi_ear;
|
|
}
|
|
#ifdef USE_CLIP_SWEEP
|
|
pi_ear = reverse ? pi_ear->prev : pi_ear->next;
|
|
#else
|
|
pi_ear = pi_ear->next;
|
|
#endif
|
|
}
|
|
|
|
/* Desperate mode: if no vertex is an ear tip, we are dealing with a degenerate polygon (e.g. nearly collinear).
|
|
* Note that the input was not necessarily degenerate, but we could have made it so by clipping some valid ears.
|
|
*
|
|
* Idea taken from Martin Held, "FIST: Fast industrial-strength triangulation of polygons", Algorithmica (1998),
|
|
* http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.291
|
|
*
|
|
* Return a convex or tangential vertex if one exists.
|
|
*/
|
|
|
|
#ifdef USE_CLIP_EVEN
|
|
pi_ear = pi_ear_init;
|
|
#else
|
|
pi_ear = pf->indices;
|
|
#endif
|
|
|
|
i = coords_tot;
|
|
while (i--) {
|
|
if (pi_ear->sign != CONCAVE) {
|
|
return pi_ear;
|
|
}
|
|
pi_ear = pi_ear->next;
|
|
}
|
|
|
|
/* If all vertices are concave, just return the last one. */
|
|
return pi_ear;
|
|
}
|
|
|
|
static bool pf_ear_tip_check(PolyFill *pf, PolyIndex *pi_ear_tip)
|
|
{
|
|
#ifndef USE_KDTREE
|
|
/* localize */
|
|
const float (*coords)[2] = pf->coords;
|
|
PolyIndex *pi_curr;
|
|
|
|
const float *v1, *v2, *v3;
|
|
#endif
|
|
|
|
#if defined(USE_CONVEX_SKIP) && !defined(USE_KDTREE)
|
|
uint coords_tot_concave_checked = 0;
|
|
#endif
|
|
|
|
|
|
#ifdef USE_CONVEX_SKIP
|
|
|
|
#ifdef USE_CONVEX_SKIP_TEST
|
|
/* check if counting is wrong */
|
|
{
|
|
uint coords_tot_concave_test = 0;
|
|
PolyIndex *pi_iter = pi_ear_tip;
|
|
do {
|
|
if (pi_iter->sign != CONVEX) {
|
|
coords_tot_concave_test += 1;
|
|
}
|
|
} while ((pi_iter = pi_iter->next) != pi_ear_tip);
|
|
BLI_assert(coords_tot_concave_test == pf->coords_tot_concave);
|
|
}
|
|
#endif
|
|
|
|
/* fast-path for circles */
|
|
if (pf->coords_tot_concave == 0) {
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
if (UNLIKELY(pi_ear_tip->sign == CONCAVE)) {
|
|
return false;
|
|
}
|
|
|
|
#ifdef USE_KDTREE
|
|
{
|
|
const uint ind[3] = {
|
|
pi_ear_tip->index,
|
|
pi_ear_tip->next->index,
|
|
pi_ear_tip->prev->index};
|
|
|
|
if (kdtree2d_isect_tri(&pf->kdtree, ind)) {
|
|
return false;
|
|
}
|
|
}
|
|
#else
|
|
|
|
v1 = coords[pi_ear_tip->prev->index];
|
|
v2 = coords[pi_ear_tip->index];
|
|
v3 = coords[pi_ear_tip->next->index];
|
|
|
|
/* Check if any point is inside the triangle formed by previous, current and next vertices.
|
|
* Only consider vertices that are not part of this triangle, or else we'll always find one inside. */
|
|
|
|
for (pi_curr = pi_ear_tip->next->next; pi_curr != pi_ear_tip->prev; pi_curr = pi_curr->next) {
|
|
/* Concave vertices can obviously be inside the candidate ear, but so can tangential vertices
|
|
* if they coincide with one of the triangle's vertices. */
|
|
if (pi_curr->sign != CONVEX) {
|
|
const float *v = coords[pi_curr->index];
|
|
/* Because the polygon has clockwise winding order,
|
|
* the area sign will be positive if the point is strictly inside.
|
|
* It will be 0 on the edge, which we want to include as well. */
|
|
|
|
/* note: check (v3, v1) first since it fails _far_ more often then the other 2 checks (those fail equally).
|
|
* It's logical - the chance is low that points exist on the same side as the ear we're clipping off. */
|
|
if ((span_tri_v2_sign(v3, v1, v) != CONCAVE) &&
|
|
(span_tri_v2_sign(v1, v2, v) != CONCAVE) &&
|
|
(span_tri_v2_sign(v2, v3, v) != CONCAVE))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
#ifdef USE_CONVEX_SKIP
|
|
coords_tot_concave_checked += 1;
|
|
if (coords_tot_concave_checked == pf->coords_tot_concave) {
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
#endif /* USE_KDTREE */
|
|
|
|
return true;
|
|
}
|
|
|
|
static void pf_ear_tip_cut(PolyFill *pf, PolyIndex *pi_ear_tip)
|
|
{
|
|
uint *tri = pf_tri_add(pf);
|
|
|
|
tri[0] = pi_ear_tip->prev->index;
|
|
tri[1] = pi_ear_tip->index;
|
|
tri[2] = pi_ear_tip->next->index;
|
|
|
|
pf_coord_remove(pf, pi_ear_tip);
|
|
}
|
|
|
|
/**
|
|
* Initializes the #PolyFill structure before tessellating with #polyfill_calc.
|
|
*/
|
|
static void polyfill_prepare(
|
|
PolyFill *pf,
|
|
const float (*coords)[2],
|
|
const uint coords_tot,
|
|
int coords_sign,
|
|
uint (*r_tris)[3],
|
|
PolyIndex *r_indices)
|
|
{
|
|
/* localize */
|
|
PolyIndex *indices = r_indices;
|
|
|
|
uint i;
|
|
|
|
/* assign all polyfill members here */
|
|
pf->indices = r_indices;
|
|
pf->coords = coords;
|
|
pf->coords_tot = coords_tot;
|
|
#ifdef USE_CONVEX_SKIP
|
|
pf->coords_tot_concave = 0;
|
|
#endif
|
|
pf->tris = r_tris;
|
|
pf->tris_tot = 0;
|
|
|
|
if (coords_sign == 0) {
|
|
coords_sign = (cross_poly_v2(coords, coords_tot) >= 0.0f) ? 1 : -1;
|
|
}
|
|
else {
|
|
/* check we're passing in correcty args */
|
|
#ifdef USE_STRICT_ASSERT
|
|
#ifndef NDEBUG
|
|
if (coords_sign == 1) {
|
|
BLI_assert(cross_poly_v2(coords, coords_tot) >= 0.0f);
|
|
}
|
|
else {
|
|
BLI_assert(cross_poly_v2(coords, coords_tot) <= 0.0f);
|
|
}
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
if (coords_sign == 1) {
|
|
for (i = 0; i < coords_tot; i++) {
|
|
indices[i].next = &indices[i + 1];
|
|
indices[i].prev = &indices[i - 1];
|
|
indices[i].index = i;
|
|
}
|
|
}
|
|
else {
|
|
/* reversed */
|
|
uint n = coords_tot - 1;
|
|
for (i = 0; i < coords_tot; i++) {
|
|
indices[i].next = &indices[i + 1];
|
|
indices[i].prev = &indices[i - 1];
|
|
indices[i].index = (n - i);
|
|
}
|
|
}
|
|
indices[0].prev = &indices[coords_tot - 1];
|
|
indices[coords_tot - 1].next = &indices[0];
|
|
|
|
for (i = 0; i < coords_tot; i++) {
|
|
PolyIndex *pi = &indices[i];
|
|
pf_coord_sign_calc(pf, pi);
|
|
#ifdef USE_CONVEX_SKIP
|
|
if (pi->sign != CONVEX) {
|
|
pf->coords_tot_concave += 1;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void polyfill_calc(
|
|
PolyFill *pf)
|
|
{
|
|
#ifdef USE_KDTREE
|
|
#ifdef USE_CONVEX_SKIP
|
|
if (pf->coords_tot_concave)
|
|
#endif
|
|
{
|
|
kdtree2d_new(&pf->kdtree, pf->coords_tot_concave, pf->coords);
|
|
kdtree2d_init(&pf->kdtree, pf->coords_tot, pf->indices);
|
|
kdtree2d_balance(&pf->kdtree);
|
|
kdtree2d_init_mapping(&pf->kdtree);
|
|
}
|
|
#endif
|
|
|
|
pf_triangulate(pf);
|
|
}
|
|
|
|
/**
|
|
* A version of #BLI_polyfill_calc that uses a memory arena to avoid re-allocations.
|
|
*/
|
|
void BLI_polyfill_calc_arena(
|
|
const float (*coords)[2],
|
|
const uint coords_tot,
|
|
const int coords_sign,
|
|
uint (*r_tris)[3],
|
|
|
|
struct MemArena *arena)
|
|
{
|
|
PolyFill pf;
|
|
PolyIndex *indices = BLI_memarena_alloc(arena, sizeof(*indices) * coords_tot);
|
|
|
|
#ifdef DEBUG_TIME
|
|
TIMEIT_START(polyfill2d);
|
|
#endif
|
|
|
|
polyfill_prepare(
|
|
&pf,
|
|
coords, coords_tot, coords_sign,
|
|
r_tris,
|
|
/* cache */
|
|
indices);
|
|
|
|
#ifdef USE_KDTREE
|
|
if (pf.coords_tot_concave) {
|
|
pf.kdtree.nodes = BLI_memarena_alloc(arena, sizeof(*pf.kdtree.nodes) * pf.coords_tot_concave);
|
|
pf.kdtree.nodes_map = memset(BLI_memarena_alloc(arena, sizeof(*pf.kdtree.nodes_map) * coords_tot),
|
|
0xff, sizeof(*pf.kdtree.nodes_map) * coords_tot);
|
|
}
|
|
else {
|
|
pf.kdtree.totnode = 0;
|
|
}
|
|
#endif
|
|
|
|
polyfill_calc(&pf);
|
|
|
|
/* indices are no longer needed,
|
|
* caller can clear arena */
|
|
|
|
#ifdef DEBUG_TIME
|
|
TIMEIT_END(polyfill2d);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Triangulates the given (convex or concave) simple polygon to a list of triangle vertices.
|
|
*
|
|
* \param coords: 2D coordinates describing vertices of the polygon,
|
|
* in either clockwise or counterclockwise order.
|
|
* \param coords_tot: Total points in the array.
|
|
* \param coords_sign: Pass this when we know the sign in advance to avoid extra calculations.
|
|
*
|
|
* \param r_tris: This array is filled in with triangle indices in clockwise order.
|
|
* The length of the array must be ``coords_tot - 2``.
|
|
* Indices are guaranteed to be assigned to unique triangles, with valid indices,
|
|
* even in the case of degenerate input (self intersecting polygons, zero area ears... etc).
|
|
*/
|
|
void BLI_polyfill_calc(
|
|
const float (*coords)[2],
|
|
const uint coords_tot,
|
|
const int coords_sign,
|
|
uint (*r_tris)[3])
|
|
{
|
|
PolyFill pf;
|
|
PolyIndex *indices = BLI_array_alloca(indices, coords_tot);
|
|
|
|
#ifdef DEBUG_TIME
|
|
TIMEIT_START(polyfill2d);
|
|
#endif
|
|
|
|
polyfill_prepare(
|
|
&pf,
|
|
coords, coords_tot, coords_sign,
|
|
r_tris,
|
|
/* cache */
|
|
indices);
|
|
|
|
#ifdef USE_KDTREE
|
|
if (pf.coords_tot_concave) {
|
|
pf.kdtree.nodes = BLI_array_alloca(pf.kdtree.nodes, pf.coords_tot_concave);
|
|
pf.kdtree.nodes_map = memset(BLI_array_alloca(pf.kdtree.nodes_map, coords_tot),
|
|
0xff, sizeof(*pf.kdtree.nodes_map) * coords_tot);
|
|
}
|
|
else {
|
|
pf.kdtree.totnode = 0;
|
|
}
|
|
#endif
|
|
|
|
polyfill_calc(&pf);
|
|
|
|
#ifdef DEBUG_TIME
|
|
TIMEIT_END(polyfill2d);
|
|
#endif
|
|
}
|