If it is to prevent division by zero just check if the `factor` is zero (instead of using an epsilon).
		
			
				
	
	
		
			1218 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1218 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License
 | 
						|
 * as published by the Free Software Foundation; either version 2
 | 
						|
 * of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software Foundation,
 | 
						|
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | 
						|
 *
 | 
						|
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 | 
						|
 * All rights reserved.
 | 
						|
 */
 | 
						|
 | 
						|
/** \file
 | 
						|
 * \ingroup edtransform
 | 
						|
 */
 | 
						|
 | 
						|
#include <stdlib.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <string.h>
 | 
						|
#include <math.h>
 | 
						|
 | 
						|
#include "DNA_object_types.h"
 | 
						|
#include "DNA_scene_types.h"
 | 
						|
#include "DNA_screen_types.h"
 | 
						|
#include "DNA_space_types.h"
 | 
						|
#include "DNA_view3d_types.h"
 | 
						|
 | 
						|
#include "BIF_glutil.h"
 | 
						|
 | 
						|
#include "GPU_immediate.h"
 | 
						|
#include "GPU_matrix.h"
 | 
						|
#include "GPU_state.h"
 | 
						|
 | 
						|
#include "BLI_math.h"
 | 
						|
#include "BLI_utildefines.h"
 | 
						|
#include "BLI_string.h"
 | 
						|
#include "BLI_rect.h"
 | 
						|
 | 
						|
#include "BKE_context.h"
 | 
						|
 | 
						|
#include "ED_image.h"
 | 
						|
#include "ED_view3d.h"
 | 
						|
 | 
						|
#include "BLT_translation.h"
 | 
						|
 | 
						|
#include "UI_resources.h"
 | 
						|
 | 
						|
#include "transform.h"
 | 
						|
 | 
						|
static void drawObjectConstraint(TransInfo *t);
 | 
						|
 | 
						|
/* ************************** CONSTRAINTS ************************* */
 | 
						|
static void constraintValuesFinal(TransInfo *t, float vec[3])
 | 
						|
{
 | 
						|
  int mode = t->con.mode;
 | 
						|
  if (mode & CON_APPLY) {
 | 
						|
    float nval = (t->flag & T_NULL_ONE) ? 1.0f : 0.0f;
 | 
						|
 | 
						|
    if ((mode & CON_AXIS0) == 0) {
 | 
						|
      vec[0] = nval;
 | 
						|
    }
 | 
						|
    if ((mode & CON_AXIS1) == 0) {
 | 
						|
      vec[1] = nval;
 | 
						|
    }
 | 
						|
    if ((mode & CON_AXIS2) == 0) {
 | 
						|
      vec[2] = nval;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void constraintNumInput(TransInfo *t, float vec[3])
 | 
						|
{
 | 
						|
  int mode = t->con.mode;
 | 
						|
  if (mode & CON_APPLY) {
 | 
						|
    float nval = (t->flag & T_NULL_ONE) ? 1.0f : 0.0f;
 | 
						|
 | 
						|
    const int dims = getConstraintSpaceDimension(t);
 | 
						|
    if (dims == 2) {
 | 
						|
      int axis = mode & (CON_AXIS0 | CON_AXIS1 | CON_AXIS2);
 | 
						|
      if (axis == (CON_AXIS0 | CON_AXIS1)) {
 | 
						|
        /* vec[0] = vec[0]; */ /* same */
 | 
						|
        /* vec[1] = vec[1]; */ /* same */
 | 
						|
        vec[2] = nval;
 | 
						|
      }
 | 
						|
      else if (axis == (CON_AXIS1 | CON_AXIS2)) {
 | 
						|
        vec[2] = vec[1];
 | 
						|
        vec[1] = vec[0];
 | 
						|
        vec[0] = nval;
 | 
						|
      }
 | 
						|
      else if (axis == (CON_AXIS0 | CON_AXIS2)) {
 | 
						|
        /* vec[0] = vec[0]; */ /* same */
 | 
						|
        vec[2] = vec[1];
 | 
						|
        vec[1] = nval;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else if (dims == 1) {
 | 
						|
      if (mode & CON_AXIS0) {
 | 
						|
        /* vec[0] = vec[0]; */ /* same */
 | 
						|
        vec[1] = nval;
 | 
						|
        vec[2] = nval;
 | 
						|
      }
 | 
						|
      else if (mode & CON_AXIS1) {
 | 
						|
        vec[1] = vec[0];
 | 
						|
        vec[0] = nval;
 | 
						|
        vec[2] = nval;
 | 
						|
      }
 | 
						|
      else if (mode & CON_AXIS2) {
 | 
						|
        vec[2] = vec[0];
 | 
						|
        vec[0] = nval;
 | 
						|
        vec[1] = nval;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void postConstraintChecks(TransInfo *t, float vec[3], float pvec[3])
 | 
						|
{
 | 
						|
  int i = 0;
 | 
						|
 | 
						|
  mul_m3_v3(t->con.imtx, vec);
 | 
						|
 | 
						|
  snapGridIncrement(t, vec);
 | 
						|
 | 
						|
  if (t->flag & T_NULL_ONE) {
 | 
						|
    if (!(t->con.mode & CON_AXIS0)) {
 | 
						|
      vec[0] = 1.0f;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!(t->con.mode & CON_AXIS1)) {
 | 
						|
      vec[1] = 1.0f;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!(t->con.mode & CON_AXIS2)) {
 | 
						|
      vec[2] = 1.0f;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (applyNumInput(&t->num, vec)) {
 | 
						|
    constraintNumInput(t, vec);
 | 
						|
    removeAspectRatio(t, vec);
 | 
						|
  }
 | 
						|
 | 
						|
  /* If `t->values` is operator param, use that directly but not if snapping is forced */
 | 
						|
  if (t->flag & T_INPUT_IS_VALUES_FINAL && (t->tsnap.status & SNAP_FORCED) == 0) {
 | 
						|
    copy_v3_v3(vec, t->values);
 | 
						|
    constraintValuesFinal(t, vec);
 | 
						|
    /* inverse transformation at the end */
 | 
						|
  }
 | 
						|
 | 
						|
  if (t->con.mode & CON_AXIS0) {
 | 
						|
    pvec[i++] = vec[0];
 | 
						|
  }
 | 
						|
  if (t->con.mode & CON_AXIS1) {
 | 
						|
    pvec[i++] = vec[1];
 | 
						|
  }
 | 
						|
  if (t->con.mode & CON_AXIS2) {
 | 
						|
    pvec[i++] = vec[2];
 | 
						|
  }
 | 
						|
 | 
						|
  mul_m3_v3(t->con.mtx, vec);
 | 
						|
}
 | 
						|
 | 
						|
static void viewAxisCorrectCenter(const TransInfo *t, float t_con_center[3])
 | 
						|
{
 | 
						|
  if (t->spacetype == SPACE_VIEW3D) {
 | 
						|
    // View3D *v3d = t->sa->spacedata.first;
 | 
						|
    const float min_dist = 1.0f; /* v3d->clip_start; */
 | 
						|
    float dir[3];
 | 
						|
    float l;
 | 
						|
 | 
						|
    sub_v3_v3v3(dir, t_con_center, t->viewinv[3]);
 | 
						|
    if (dot_v3v3(dir, t->viewinv[2]) < 0.0f) {
 | 
						|
      negate_v3(dir);
 | 
						|
    }
 | 
						|
    project_v3_v3v3(dir, dir, t->viewinv[2]);
 | 
						|
 | 
						|
    l = len_v3(dir);
 | 
						|
 | 
						|
    if (l < min_dist) {
 | 
						|
      float diff[3];
 | 
						|
      normalize_v3_v3_length(diff, t->viewinv[2], min_dist - l);
 | 
						|
      sub_v3_v3(t_con_center, diff);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Axis calculation taking the view into account, correcting view-aligned axis.
 | 
						|
 */
 | 
						|
static void axisProjection(const TransInfo *t,
 | 
						|
                           const float axis[3],
 | 
						|
                           const float in[3],
 | 
						|
                           float out[3])
 | 
						|
{
 | 
						|
  float norm[3], vec[3], factor, angle;
 | 
						|
  float t_con_center[3];
 | 
						|
 | 
						|
  if (is_zero_v3(in)) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  copy_v3_v3(t_con_center, t->center_global);
 | 
						|
 | 
						|
  /* checks for center being too close to the view center */
 | 
						|
  viewAxisCorrectCenter(t, t_con_center);
 | 
						|
 | 
						|
  angle = fabsf(angle_v3v3(axis, t->viewinv[2]));
 | 
						|
  if (angle > (float)M_PI_2) {
 | 
						|
    angle = (float)M_PI - angle;
 | 
						|
  }
 | 
						|
 | 
						|
  /* For when view is parallel to constraint... will cause NaNs otherwise
 | 
						|
   * So we take vertical motion in 3D space and apply it to the
 | 
						|
   * constraint axis. Nice for camera grab + MMB */
 | 
						|
  if (angle < DEG2RADF(5.0f)) {
 | 
						|
    project_v3_v3v3(vec, in, t->viewinv[1]);
 | 
						|
    factor = dot_v3v3(t->viewinv[1], vec) * 2.0f;
 | 
						|
    /* Since camera distance is quite relative, use quadratic relationship.
 | 
						|
     * holding shift can compensate. */
 | 
						|
    if (factor < 0.0f) {
 | 
						|
      factor *= -factor;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      factor *= factor;
 | 
						|
    }
 | 
						|
 | 
						|
    /* -factor makes move down going backwards */
 | 
						|
    normalize_v3_v3_length(out, axis, -factor);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    float v[3];
 | 
						|
    float norm_center[3];
 | 
						|
    float plane[3];
 | 
						|
 | 
						|
    getViewVector(t, t_con_center, norm_center);
 | 
						|
    cross_v3_v3v3(plane, norm_center, axis);
 | 
						|
 | 
						|
    project_v3_v3v3(vec, in, plane);
 | 
						|
    sub_v3_v3v3(vec, in, vec);
 | 
						|
 | 
						|
    add_v3_v3v3(v, vec, t_con_center);
 | 
						|
    getViewVector(t, v, norm);
 | 
						|
 | 
						|
    /* give arbitrary large value if projection is impossible */
 | 
						|
    factor = dot_v3v3(axis, norm);
 | 
						|
    if (1.0f - fabsf(factor) < 0.0002f) {
 | 
						|
      copy_v3_v3(out, axis);
 | 
						|
      if (factor > 0) {
 | 
						|
        mul_v3_fl(out, 1000000000.0f);
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        mul_v3_fl(out, -1000000000.0f);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      /* Use ray-ray intersection instead of line-line because this gave
 | 
						|
       * precision issues adding small values to large numbers. */
 | 
						|
      float mul;
 | 
						|
      if (isect_ray_ray_v3(t_con_center, axis, v, norm, &mul, NULL)) {
 | 
						|
        mul_v3_v3fl(out, axis, mul);
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        /* In practice this should never fail. */
 | 
						|
        BLI_assert(0);
 | 
						|
      }
 | 
						|
 | 
						|
      /* possible some values become nan when
 | 
						|
       * viewpoint and object are both zero */
 | 
						|
      if (!isfinite(out[0])) {
 | 
						|
        out[0] = 0.0f;
 | 
						|
      }
 | 
						|
      if (!isfinite(out[1])) {
 | 
						|
        out[1] = 0.0f;
 | 
						|
      }
 | 
						|
      if (!isfinite(out[2])) {
 | 
						|
        out[2] = 0.0f;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Return true if the 2x axis are both aligned when projected into the view.
 | 
						|
 * In this case, we can't usefully project the cursor onto the plane.
 | 
						|
 */
 | 
						|
static bool isPlaneProjectionViewAligned(const TransInfo *t)
 | 
						|
{
 | 
						|
  const float eps = 0.001f;
 | 
						|
  const float *constraint_vector[2];
 | 
						|
  int n = 0;
 | 
						|
  for (int i = 0; i < 3; i++) {
 | 
						|
    if (t->con.mode & (CON_AXIS0 << i)) {
 | 
						|
      constraint_vector[n++] = t->con.mtx[i];
 | 
						|
      if (n == 2) {
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  BLI_assert(n == 2);
 | 
						|
 | 
						|
  float view_to_plane[3], plane_normal[3];
 | 
						|
 | 
						|
  getViewVector(t, t->center_global, view_to_plane);
 | 
						|
 | 
						|
  cross_v3_v3v3(plane_normal, constraint_vector[0], constraint_vector[1]);
 | 
						|
  normalize_v3(plane_normal);
 | 
						|
 | 
						|
  float factor = dot_v3v3(plane_normal, view_to_plane);
 | 
						|
  return fabsf(factor) < eps;
 | 
						|
}
 | 
						|
 | 
						|
static void planeProjection(const TransInfo *t, const float in[3], float out[3])
 | 
						|
{
 | 
						|
  float vec[3], factor, norm[3];
 | 
						|
 | 
						|
  add_v3_v3v3(vec, in, t->center_global);
 | 
						|
  getViewVector(t, vec, norm);
 | 
						|
 | 
						|
  sub_v3_v3v3(vec, out, in);
 | 
						|
 | 
						|
  factor = dot_v3v3(vec, norm);
 | 
						|
  if (factor == 0.0f) {
 | 
						|
    return; /* prevent divide by zero */
 | 
						|
  }
 | 
						|
  factor = dot_v3v3(vec, vec) / factor;
 | 
						|
 | 
						|
  copy_v3_v3(vec, norm);
 | 
						|
  mul_v3_fl(vec, factor);
 | 
						|
 | 
						|
  add_v3_v3v3(out, in, vec);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Generic callback for constant spatial constraints applied to linear motion
 | 
						|
 *
 | 
						|
 * The IN vector in projected into the constrained space and then further
 | 
						|
 * projected along the view vector.
 | 
						|
 * (in perspective mode, the view vector is relative to the position on screen)
 | 
						|
 */
 | 
						|
 | 
						|
static void applyAxisConstraintVec(TransInfo *t,
 | 
						|
                                   TransDataContainer *UNUSED(tc),
 | 
						|
                                   TransData *td,
 | 
						|
                                   const float in[3],
 | 
						|
                                   float out[3],
 | 
						|
                                   float pvec[3])
 | 
						|
{
 | 
						|
  copy_v3_v3(out, in);
 | 
						|
  if (!td && t->con.mode & CON_APPLY) {
 | 
						|
    mul_m3_v3(t->con.pmtx, out);
 | 
						|
 | 
						|
    // With snap, a projection is alright, no need to correct for view alignment
 | 
						|
    if (!validSnap(t)) {
 | 
						|
      const int dims = getConstraintSpaceDimension(t);
 | 
						|
      if (dims == 2) {
 | 
						|
        if (!is_zero_v3(out)) {
 | 
						|
          if (!isPlaneProjectionViewAligned(t)) {
 | 
						|
            planeProjection(t, in, out);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      else if (dims == 1) {
 | 
						|
        float c[3];
 | 
						|
 | 
						|
        if (t->con.mode & CON_AXIS0) {
 | 
						|
          copy_v3_v3(c, t->con.mtx[0]);
 | 
						|
        }
 | 
						|
        else if (t->con.mode & CON_AXIS1) {
 | 
						|
          copy_v3_v3(c, t->con.mtx[1]);
 | 
						|
        }
 | 
						|
        else if (t->con.mode & CON_AXIS2) {
 | 
						|
          copy_v3_v3(c, t->con.mtx[2]);
 | 
						|
        }
 | 
						|
        axisProjection(t, c, in, out);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    postConstraintChecks(t, out, pvec);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Generic callback for object based spatial constraints applied to linear motion
 | 
						|
 *
 | 
						|
 * At first, the following is applied to the first data in the array
 | 
						|
 * The IN vector in projected into the constrained space and then further
 | 
						|
 * projected along the view vector.
 | 
						|
 * (in perspective mode, the view vector is relative to the position on screen)
 | 
						|
 *
 | 
						|
 * Further down, that vector is mapped to each data's space.
 | 
						|
 */
 | 
						|
 | 
						|
static void applyObjectConstraintVec(TransInfo *t,
 | 
						|
                                     TransDataContainer *tc,
 | 
						|
                                     TransData *td,
 | 
						|
                                     const float in[3],
 | 
						|
                                     float out[3],
 | 
						|
                                     float pvec[3])
 | 
						|
{
 | 
						|
  copy_v3_v3(out, in);
 | 
						|
  if (t->con.mode & CON_APPLY) {
 | 
						|
    if (!td) {
 | 
						|
      mul_m3_v3(t->con.pmtx, out);
 | 
						|
 | 
						|
      const int dims = getConstraintSpaceDimension(t);
 | 
						|
      if (dims == 2) {
 | 
						|
        if (!is_zero_v3(out)) {
 | 
						|
          if (!isPlaneProjectionViewAligned(t)) {
 | 
						|
            planeProjection(t, in, out);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      else if (dims == 1) {
 | 
						|
        float c[3];
 | 
						|
 | 
						|
        if (t->con.mode & CON_AXIS0) {
 | 
						|
          copy_v3_v3(c, t->con.mtx[0]);
 | 
						|
        }
 | 
						|
        else if (t->con.mode & CON_AXIS1) {
 | 
						|
          copy_v3_v3(c, t->con.mtx[1]);
 | 
						|
        }
 | 
						|
        else if (t->con.mode & CON_AXIS2) {
 | 
						|
          copy_v3_v3(c, t->con.mtx[2]);
 | 
						|
        }
 | 
						|
        axisProjection(t, c, in, out);
 | 
						|
      }
 | 
						|
      postConstraintChecks(t, out, pvec);
 | 
						|
      copy_v3_v3(out, pvec);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      int i = 0;
 | 
						|
 | 
						|
      out[0] = out[1] = out[2] = 0.0f;
 | 
						|
      if (t->con.mode & CON_AXIS0) {
 | 
						|
        out[0] = in[i++];
 | 
						|
      }
 | 
						|
      if (t->con.mode & CON_AXIS1) {
 | 
						|
        out[1] = in[i++];
 | 
						|
      }
 | 
						|
      if (t->con.mode & CON_AXIS2) {
 | 
						|
        out[2] = in[i++];
 | 
						|
      }
 | 
						|
 | 
						|
      mul_m3_v3(td->axismtx, out);
 | 
						|
      if (t->flag & T_EDIT) {
 | 
						|
        mul_m3_v3(tc->mat3_unit, out);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Generic callback for constant spatial constraints applied to resize motion
 | 
						|
 */
 | 
						|
 | 
						|
static void applyAxisConstraintSize(TransInfo *t,
 | 
						|
                                    TransDataContainer *UNUSED(tc),
 | 
						|
                                    TransData *td,
 | 
						|
                                    float smat[3][3])
 | 
						|
{
 | 
						|
  if (!td && t->con.mode & CON_APPLY) {
 | 
						|
    float tmat[3][3];
 | 
						|
 | 
						|
    if (!(t->con.mode & CON_AXIS0)) {
 | 
						|
      smat[0][0] = 1.0f;
 | 
						|
    }
 | 
						|
    if (!(t->con.mode & CON_AXIS1)) {
 | 
						|
      smat[1][1] = 1.0f;
 | 
						|
    }
 | 
						|
    if (!(t->con.mode & CON_AXIS2)) {
 | 
						|
      smat[2][2] = 1.0f;
 | 
						|
    }
 | 
						|
 | 
						|
    mul_m3_m3m3(tmat, smat, t->con.imtx);
 | 
						|
    mul_m3_m3m3(smat, t->con.mtx, tmat);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Callback for object based spatial constraints applied to resize motion
 | 
						|
 */
 | 
						|
 | 
						|
static void applyObjectConstraintSize(TransInfo *t,
 | 
						|
                                      TransDataContainer *tc,
 | 
						|
                                      TransData *td,
 | 
						|
                                      float smat[3][3])
 | 
						|
{
 | 
						|
  if (td && t->con.mode & CON_APPLY) {
 | 
						|
    float tmat[3][3];
 | 
						|
    float imat[3][3];
 | 
						|
 | 
						|
    invert_m3_m3(imat, td->axismtx);
 | 
						|
 | 
						|
    if (!(t->con.mode & CON_AXIS0)) {
 | 
						|
      smat[0][0] = 1.0f;
 | 
						|
    }
 | 
						|
    if (!(t->con.mode & CON_AXIS1)) {
 | 
						|
      smat[1][1] = 1.0f;
 | 
						|
    }
 | 
						|
    if (!(t->con.mode & CON_AXIS2)) {
 | 
						|
      smat[2][2] = 1.0f;
 | 
						|
    }
 | 
						|
 | 
						|
    mul_m3_m3m3(tmat, smat, imat);
 | 
						|
    if (t->flag & T_EDIT) {
 | 
						|
      mul_m3_m3m3(smat, tc->mat3_unit, smat);
 | 
						|
    }
 | 
						|
    mul_m3_m3m3(smat, td->axismtx, tmat);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Generic callback for constant spatial constraints applied to rotations
 | 
						|
 *
 | 
						|
 * The rotation axis is copied into VEC.
 | 
						|
 *
 | 
						|
 * In the case of single axis constraints, the rotation axis is directly the one constrained to.
 | 
						|
 * For planar constraints (2 axis), the rotation axis is the normal of the plane.
 | 
						|
 *
 | 
						|
 * The following only applies when CON_NOFLIP is not set.
 | 
						|
 * The vector is then modified to always point away from the screen (in global space)
 | 
						|
 * This insures that the rotation is always logically following the mouse.
 | 
						|
 * (ie: not doing counterclockwise rotations when the mouse moves clockwise).
 | 
						|
 */
 | 
						|
 | 
						|
static void applyAxisConstraintRot(
 | 
						|
    TransInfo *t, TransDataContainer *UNUSED(tc), TransData *td, float vec[3], float *angle)
 | 
						|
{
 | 
						|
  if (!td && t->con.mode & CON_APPLY) {
 | 
						|
    int mode = t->con.mode & (CON_AXIS0 | CON_AXIS1 | CON_AXIS2);
 | 
						|
 | 
						|
    switch (mode) {
 | 
						|
      case CON_AXIS0:
 | 
						|
      case (CON_AXIS1 | CON_AXIS2):
 | 
						|
        copy_v3_v3(vec, t->con.mtx[0]);
 | 
						|
        break;
 | 
						|
      case CON_AXIS1:
 | 
						|
      case (CON_AXIS0 | CON_AXIS2):
 | 
						|
        copy_v3_v3(vec, t->con.mtx[1]);
 | 
						|
        break;
 | 
						|
      case CON_AXIS2:
 | 
						|
      case (CON_AXIS0 | CON_AXIS1):
 | 
						|
        copy_v3_v3(vec, t->con.mtx[2]);
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    /* don't flip axis if asked to or if num input */
 | 
						|
    if (angle && (mode & CON_NOFLIP) == 0 && hasNumInput(&t->num) == 0) {
 | 
						|
      if (dot_v3v3(vec, t->viewinv[2]) > 0.0f) {
 | 
						|
        *angle = -(*angle);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Callback for object based spatial constraints applied to rotations
 | 
						|
 *
 | 
						|
 * The rotation axis is copied into VEC.
 | 
						|
 *
 | 
						|
 * In the case of single axis constraints, the rotation axis is directly the one constrained to.
 | 
						|
 * For planar constraints (2 axis), the rotation axis is the normal of the plane.
 | 
						|
 *
 | 
						|
 * The following only applies when CON_NOFLIP is not set.
 | 
						|
 * The vector is then modified to always point away from the screen (in global space)
 | 
						|
 * This insures that the rotation is always logically following the mouse.
 | 
						|
 * (ie: not doing counterclockwise rotations when the mouse moves clockwise).
 | 
						|
 */
 | 
						|
 | 
						|
static void applyObjectConstraintRot(
 | 
						|
    TransInfo *t, TransDataContainer *tc, TransData *td, float vec[3], float *angle)
 | 
						|
{
 | 
						|
  if (t->con.mode & CON_APPLY) {
 | 
						|
    int mode = t->con.mode & (CON_AXIS0 | CON_AXIS1 | CON_AXIS2);
 | 
						|
    float tmp_axismtx[3][3];
 | 
						|
    float(*axismtx)[3];
 | 
						|
 | 
						|
    /* on setup call, use first object */
 | 
						|
    if (td == NULL) {
 | 
						|
      BLI_assert(tc == NULL);
 | 
						|
      tc = TRANS_DATA_CONTAINER_FIRST_OK(t);
 | 
						|
      td = tc->data;
 | 
						|
    }
 | 
						|
 | 
						|
    if (t->flag & T_EDIT) {
 | 
						|
      mul_m3_m3m3(tmp_axismtx, tc->mat3_unit, td->axismtx);
 | 
						|
      axismtx = tmp_axismtx;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      axismtx = td->axismtx;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (mode) {
 | 
						|
      case CON_AXIS0:
 | 
						|
      case (CON_AXIS1 | CON_AXIS2):
 | 
						|
        copy_v3_v3(vec, axismtx[0]);
 | 
						|
        break;
 | 
						|
      case CON_AXIS1:
 | 
						|
      case (CON_AXIS0 | CON_AXIS2):
 | 
						|
        copy_v3_v3(vec, axismtx[1]);
 | 
						|
        break;
 | 
						|
      case CON_AXIS2:
 | 
						|
      case (CON_AXIS0 | CON_AXIS1):
 | 
						|
        copy_v3_v3(vec, axismtx[2]);
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    if (angle && (mode & CON_NOFLIP) == 0 && hasNumInput(&t->num) == 0) {
 | 
						|
      if (dot_v3v3(vec, t->viewinv[2]) > 0.0f) {
 | 
						|
        *angle = -(*angle);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*--------------------- INTERNAL SETUP CALLS ------------------*/
 | 
						|
 | 
						|
void setConstraint(TransInfo *t, float space[3][3], int mode, const char text[])
 | 
						|
{
 | 
						|
  BLI_strncpy(t->con.text + 1, text, sizeof(t->con.text) - 1);
 | 
						|
  copy_m3_m3(t->con.mtx, space);
 | 
						|
  t->con.mode = mode;
 | 
						|
  getConstraintMatrix(t);
 | 
						|
 | 
						|
  startConstraint(t);
 | 
						|
 | 
						|
  t->con.drawExtra = NULL;
 | 
						|
  t->con.applyVec = applyAxisConstraintVec;
 | 
						|
  t->con.applySize = applyAxisConstraintSize;
 | 
						|
  t->con.applyRot = applyAxisConstraintRot;
 | 
						|
  t->redraw = TREDRAW_HARD;
 | 
						|
}
 | 
						|
 | 
						|
/* applies individual td->axismtx constraints */
 | 
						|
void setAxisMatrixConstraint(TransInfo *t, int mode, const char text[])
 | 
						|
{
 | 
						|
  TransDataContainer *tc = t->data_container;
 | 
						|
  if (t->data_len_all == 1) {
 | 
						|
    float axismtx[3][3];
 | 
						|
    if (t->flag & T_EDIT) {
 | 
						|
      mul_m3_m3m3(axismtx, tc->mat3_unit, tc->data->axismtx);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      copy_m3_m3(axismtx, tc->data->axismtx);
 | 
						|
    }
 | 
						|
 | 
						|
    setConstraint(t, axismtx, mode, text);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    BLI_strncpy(t->con.text + 1, text, sizeof(t->con.text) - 1);
 | 
						|
    copy_m3_m3(t->con.mtx, tc->data->axismtx);
 | 
						|
    t->con.mode = mode;
 | 
						|
    getConstraintMatrix(t);
 | 
						|
 | 
						|
    startConstraint(t);
 | 
						|
 | 
						|
    t->con.drawExtra = drawObjectConstraint;
 | 
						|
    t->con.applyVec = applyObjectConstraintVec;
 | 
						|
    t->con.applySize = applyObjectConstraintSize;
 | 
						|
    t->con.applyRot = applyObjectConstraintRot;
 | 
						|
    t->redraw = TREDRAW_HARD;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void setLocalConstraint(TransInfo *t, int mode, const char text[])
 | 
						|
{
 | 
						|
  /* edit-mode now allows local transforms too */
 | 
						|
  if (t->flag & T_EDIT) {
 | 
						|
    /* Use the active (first) edit object. */
 | 
						|
    TransDataContainer *tc = t->data_container;
 | 
						|
    setConstraint(t, tc->mat3_unit, mode, text);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    setAxisMatrixConstraint(t, mode, text);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Set the constraint according to the user defined orientation
 | 
						|
 *
 | 
						|
 * ftext is a format string passed to BLI_snprintf. It will add the name of
 | 
						|
 * the orientation where %s is (logically).
 | 
						|
 */
 | 
						|
void setUserConstraint(TransInfo *t, short orientation, int mode, const char ftext[])
 | 
						|
{
 | 
						|
  char text[256];
 | 
						|
 | 
						|
  switch (orientation) {
 | 
						|
    case V3D_ORIENT_GLOBAL: {
 | 
						|
      float mtx[3][3];
 | 
						|
      BLI_snprintf(text, sizeof(text), ftext, TIP_("global"));
 | 
						|
      unit_m3(mtx);
 | 
						|
      setConstraint(t, mtx, mode, text);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case V3D_ORIENT_LOCAL:
 | 
						|
      BLI_snprintf(text, sizeof(text), ftext, TIP_("local"));
 | 
						|
      setLocalConstraint(t, mode, text);
 | 
						|
      break;
 | 
						|
    case V3D_ORIENT_NORMAL:
 | 
						|
      BLI_snprintf(text, sizeof(text), ftext, TIP_("normal"));
 | 
						|
      if (checkUseAxisMatrix(t)) {
 | 
						|
        setAxisMatrixConstraint(t, mode, text);
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        setConstraint(t, t->spacemtx, mode, text);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case V3D_ORIENT_VIEW:
 | 
						|
      BLI_snprintf(text, sizeof(text), ftext, TIP_("view"));
 | 
						|
      setConstraint(t, t->spacemtx, mode, text);
 | 
						|
      break;
 | 
						|
    case V3D_ORIENT_CURSOR:
 | 
						|
      BLI_snprintf(text, sizeof(text), ftext, TIP_("cursor"));
 | 
						|
      setConstraint(t, t->spacemtx, mode, text);
 | 
						|
      break;
 | 
						|
    case V3D_ORIENT_GIMBAL:
 | 
						|
      BLI_snprintf(text, sizeof(text), ftext, TIP_("gimbal"));
 | 
						|
      setConstraint(t, t->spacemtx, mode, text);
 | 
						|
      break;
 | 
						|
    case V3D_ORIENT_CUSTOM_MATRIX:
 | 
						|
      BLI_snprintf(text, sizeof(text), ftext, TIP_("custom matrix"));
 | 
						|
      setConstraint(t, t->spacemtx, mode, text);
 | 
						|
      break;
 | 
						|
    case V3D_ORIENT_CUSTOM: {
 | 
						|
      char orientation_str[128];
 | 
						|
      BLI_snprintf(orientation_str,
 | 
						|
                   sizeof(orientation_str),
 | 
						|
                   "%s \"%s\"",
 | 
						|
                   TIP_("custom orientation"),
 | 
						|
                   t->orientation.custom->name);
 | 
						|
      BLI_snprintf(text, sizeof(text), ftext, orientation_str);
 | 
						|
      setConstraint(t, t->spacemtx, mode, text);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  t->con.orientation = orientation;
 | 
						|
 | 
						|
  t->con.mode |= CON_USER;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------- DRAWING CONSTRAINTS -------------------*/
 | 
						|
 | 
						|
void drawConstraint(TransInfo *t)
 | 
						|
{
 | 
						|
  TransCon *tc = &(t->con);
 | 
						|
 | 
						|
  if (!ELEM(t->spacetype, SPACE_VIEW3D, SPACE_IMAGE, SPACE_NODE)) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (!(tc->mode & CON_APPLY)) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (t->flag & T_NO_CONSTRAINT) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (tc->drawExtra) {
 | 
						|
    tc->drawExtra(t);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    if (tc->mode & CON_SELECT) {
 | 
						|
      float vec[3];
 | 
						|
      int depth_test_enabled;
 | 
						|
 | 
						|
      convertViewVec(t, vec, (t->mval[0] - t->con.imval[0]), (t->mval[1] - t->con.imval[1]));
 | 
						|
      add_v3_v3(vec, t->center_global);
 | 
						|
 | 
						|
      drawLine(t, t->center_global, tc->mtx[0], 'X', 0);
 | 
						|
      drawLine(t, t->center_global, tc->mtx[1], 'Y', 0);
 | 
						|
      drawLine(t, t->center_global, tc->mtx[2], 'Z', 0);
 | 
						|
 | 
						|
      depth_test_enabled = GPU_depth_test_enabled();
 | 
						|
      if (depth_test_enabled) {
 | 
						|
        GPU_depth_test(false);
 | 
						|
      }
 | 
						|
 | 
						|
      const uint shdr_pos = GPU_vertformat_attr_add(
 | 
						|
          immVertexFormat(), "pos", GPU_COMP_F32, 3, GPU_FETCH_FLOAT);
 | 
						|
 | 
						|
      immBindBuiltinProgram(GPU_SHADER_3D_LINE_DASHED_UNIFORM_COLOR);
 | 
						|
 | 
						|
      float viewport_size[4];
 | 
						|
      GPU_viewport_size_get_f(viewport_size);
 | 
						|
      immUniform2f("viewport_size", viewport_size[2], viewport_size[3]);
 | 
						|
 | 
						|
      immUniform1i("colors_len", 0); /* "simple" mode */
 | 
						|
      immUniformColor4f(1.0f, 1.0f, 1.0f, 1.0f);
 | 
						|
      immUniform1f("dash_width", 2.0f);
 | 
						|
      immUniform1f("dash_factor", 0.5f);
 | 
						|
 | 
						|
      immBegin(GPU_PRIM_LINES, 2);
 | 
						|
      immVertex3fv(shdr_pos, t->center_global);
 | 
						|
      immVertex3fv(shdr_pos, vec);
 | 
						|
      immEnd();
 | 
						|
 | 
						|
      immUnbindProgram();
 | 
						|
 | 
						|
      if (depth_test_enabled) {
 | 
						|
        GPU_depth_test(true);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (tc->mode & CON_AXIS0) {
 | 
						|
      drawLine(t, t->center_global, tc->mtx[0], 'X', DRAWLIGHT);
 | 
						|
    }
 | 
						|
    if (tc->mode & CON_AXIS1) {
 | 
						|
      drawLine(t, t->center_global, tc->mtx[1], 'Y', DRAWLIGHT);
 | 
						|
    }
 | 
						|
    if (tc->mode & CON_AXIS2) {
 | 
						|
      drawLine(t, t->center_global, tc->mtx[2], 'Z', DRAWLIGHT);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* called from drawview.c, as an extra per-window draw option */
 | 
						|
void drawPropCircle(const struct bContext *C, TransInfo *t)
 | 
						|
{
 | 
						|
  if (t->flag & T_PROP_EDIT) {
 | 
						|
    RegionView3D *rv3d = CTX_wm_region_view3d(C);
 | 
						|
    float tmat[4][4], imat[4][4];
 | 
						|
    int depth_test_enabled;
 | 
						|
 | 
						|
    if (t->spacetype == SPACE_VIEW3D && rv3d != NULL) {
 | 
						|
      copy_m4_m4(tmat, rv3d->viewmat);
 | 
						|
      invert_m4_m4(imat, tmat);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      unit_m4(tmat);
 | 
						|
      unit_m4(imat);
 | 
						|
    }
 | 
						|
 | 
						|
    GPU_matrix_push();
 | 
						|
 | 
						|
    if (t->spacetype == SPACE_VIEW3D) {
 | 
						|
      /* pass */
 | 
						|
    }
 | 
						|
    else if (t->spacetype == SPACE_IMAGE) {
 | 
						|
      GPU_matrix_scale_2f(1.0f / t->aspect[0], 1.0f / t->aspect[1]);
 | 
						|
    }
 | 
						|
    else if (ELEM(t->spacetype, SPACE_GRAPH, SPACE_ACTION)) {
 | 
						|
      /* only scale y */
 | 
						|
      rcti *mask = &t->ar->v2d.mask;
 | 
						|
      rctf *datamask = &t->ar->v2d.cur;
 | 
						|
      float xsize = BLI_rctf_size_x(datamask);
 | 
						|
      float ysize = BLI_rctf_size_y(datamask);
 | 
						|
      float xmask = BLI_rcti_size_x(mask);
 | 
						|
      float ymask = BLI_rcti_size_y(mask);
 | 
						|
      GPU_matrix_scale_2f(1.0f, (ysize / xsize) * (xmask / ymask));
 | 
						|
    }
 | 
						|
 | 
						|
    depth_test_enabled = GPU_depth_test_enabled();
 | 
						|
    if (depth_test_enabled) {
 | 
						|
      GPU_depth_test(false);
 | 
						|
    }
 | 
						|
 | 
						|
    uint pos = GPU_vertformat_attr_add(immVertexFormat(), "pos", GPU_COMP_F32, 3, GPU_FETCH_FLOAT);
 | 
						|
 | 
						|
    immBindBuiltinProgram(GPU_SHADER_3D_UNIFORM_COLOR);
 | 
						|
    immUniformThemeColor(TH_GRID);
 | 
						|
 | 
						|
    GPU_logic_op_invert_set(true);
 | 
						|
    imm_drawcircball(t->center_global, t->prop_size, imat, pos);
 | 
						|
    GPU_logic_op_invert_set(false);
 | 
						|
 | 
						|
    immUnbindProgram();
 | 
						|
 | 
						|
    if (depth_test_enabled) {
 | 
						|
      GPU_depth_test(true);
 | 
						|
    }
 | 
						|
 | 
						|
    GPU_matrix_pop();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void drawObjectConstraint(TransInfo *t)
 | 
						|
{
 | 
						|
  /* Draw the first one lighter because that's the one who controls the others.
 | 
						|
   * Meaning the transformation is projected on that one and just copied on the others
 | 
						|
   * constraint space.
 | 
						|
   * In a nutshell, the object with light axis is controlled by the user and the others follow.
 | 
						|
   * Without drawing the first light, users have little clue what they are doing.
 | 
						|
   */
 | 
						|
  short options = DRAWLIGHT;
 | 
						|
  int i;
 | 
						|
  float tmp_axismtx[3][3];
 | 
						|
 | 
						|
  FOREACH_TRANS_DATA_CONTAINER (t, tc) {
 | 
						|
    TransData *td = tc->data;
 | 
						|
    for (i = 0; i < tc->data_len; i++, td++) {
 | 
						|
      float co[3];
 | 
						|
      float(*axismtx)[3];
 | 
						|
 | 
						|
      if (t->flag & T_PROP_EDIT) {
 | 
						|
        /* we're sorted, so skip the rest */
 | 
						|
        if (td->factor == 0.0f) {
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (t->options & CTX_GPENCIL_STROKES) {
 | 
						|
        /* only draw a constraint line for one point, otherwise we can't see anything */
 | 
						|
        if ((options & DRAWLIGHT) == 0) {
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (t->flag & T_OBJECT) {
 | 
						|
        copy_v3_v3(co, td->ob->obmat[3]);
 | 
						|
        axismtx = td->axismtx;
 | 
						|
      }
 | 
						|
      else if (t->flag & T_EDIT) {
 | 
						|
        mul_v3_m4v3(co, tc->mat, td->center);
 | 
						|
 | 
						|
        mul_m3_m3m3(tmp_axismtx, tc->mat3_unit, td->axismtx);
 | 
						|
        axismtx = tmp_axismtx;
 | 
						|
      }
 | 
						|
      else if (t->flag & T_POSE) {
 | 
						|
        mul_v3_m4v3(co, tc->mat, td->center);
 | 
						|
        axismtx = td->axismtx;
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        copy_v3_v3(co, td->center);
 | 
						|
        axismtx = td->axismtx;
 | 
						|
      }
 | 
						|
 | 
						|
      if (t->con.mode & CON_AXIS0) {
 | 
						|
        drawLine(t, co, axismtx[0], 'X', options);
 | 
						|
      }
 | 
						|
      if (t->con.mode & CON_AXIS1) {
 | 
						|
        drawLine(t, co, axismtx[1], 'Y', options);
 | 
						|
      }
 | 
						|
      if (t->con.mode & CON_AXIS2) {
 | 
						|
        drawLine(t, co, axismtx[2], 'Z', options);
 | 
						|
      }
 | 
						|
      options &= ~DRAWLIGHT;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*--------------------- START / STOP CONSTRAINTS ---------------------- */
 | 
						|
 | 
						|
void startConstraint(TransInfo *t)
 | 
						|
{
 | 
						|
  t->con.mode |= CON_APPLY;
 | 
						|
  *t->con.text = ' ';
 | 
						|
  t->num.idx_max = min_ii(getConstraintSpaceDimension(t) - 1, t->idx_max);
 | 
						|
}
 | 
						|
 | 
						|
void stopConstraint(TransInfo *t)
 | 
						|
{
 | 
						|
  t->con.mode &= ~(CON_APPLY | CON_SELECT);
 | 
						|
  *t->con.text = '\0';
 | 
						|
  t->num.idx_max = t->idx_max;
 | 
						|
}
 | 
						|
 | 
						|
void getConstraintMatrix(TransInfo *t)
 | 
						|
{
 | 
						|
  float mat[3][3];
 | 
						|
  invert_m3_m3(t->con.imtx, t->con.mtx);
 | 
						|
  unit_m3(t->con.pmtx);
 | 
						|
 | 
						|
  if (!(t->con.mode & CON_AXIS0)) {
 | 
						|
    zero_v3(t->con.pmtx[0]);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!(t->con.mode & CON_AXIS1)) {
 | 
						|
    zero_v3(t->con.pmtx[1]);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!(t->con.mode & CON_AXIS2)) {
 | 
						|
    zero_v3(t->con.pmtx[2]);
 | 
						|
  }
 | 
						|
 | 
						|
  mul_m3_m3m3(mat, t->con.pmtx, t->con.imtx);
 | 
						|
  mul_m3_m3m3(t->con.pmtx, t->con.mtx, mat);
 | 
						|
}
 | 
						|
 | 
						|
/*------------------------- MMB Select -------------------------------*/
 | 
						|
 | 
						|
void initSelectConstraint(TransInfo *t, float mtx[3][3])
 | 
						|
{
 | 
						|
  copy_m3_m3(t->con.mtx, mtx);
 | 
						|
  t->con.mode |= CON_APPLY;
 | 
						|
  t->con.mode |= CON_SELECT;
 | 
						|
 | 
						|
  setNearestAxis(t);
 | 
						|
  t->con.drawExtra = NULL;
 | 
						|
  t->con.applyVec = applyAxisConstraintVec;
 | 
						|
  t->con.applySize = applyAxisConstraintSize;
 | 
						|
  t->con.applyRot = applyAxisConstraintRot;
 | 
						|
}
 | 
						|
 | 
						|
void selectConstraint(TransInfo *t)
 | 
						|
{
 | 
						|
  if (t->con.mode & CON_SELECT) {
 | 
						|
    setNearestAxis(t);
 | 
						|
    startConstraint(t);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void postSelectConstraint(TransInfo *t)
 | 
						|
{
 | 
						|
  if (!(t->con.mode & CON_SELECT)) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  t->con.mode &= ~CON_AXIS0;
 | 
						|
  t->con.mode &= ~CON_AXIS1;
 | 
						|
  t->con.mode &= ~CON_AXIS2;
 | 
						|
  t->con.mode &= ~CON_SELECT;
 | 
						|
 | 
						|
  setNearestAxis(t);
 | 
						|
 | 
						|
  startConstraint(t);
 | 
						|
  t->redraw = TREDRAW_HARD;
 | 
						|
}
 | 
						|
 | 
						|
static void setNearestAxis2d(TransInfo *t)
 | 
						|
{
 | 
						|
  /* no correction needed... just use whichever one is lower */
 | 
						|
  if (abs(t->mval[0] - t->con.imval[0]) < abs(t->mval[1] - t->con.imval[1])) {
 | 
						|
    t->con.mode |= CON_AXIS1;
 | 
						|
    BLI_strncpy(t->con.text, TIP_(" along Y axis"), sizeof(t->con.text));
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    t->con.mode |= CON_AXIS0;
 | 
						|
    BLI_strncpy(t->con.text, TIP_(" along X axis"), sizeof(t->con.text));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void setNearestAxis3d(TransInfo *t)
 | 
						|
{
 | 
						|
  float zfac;
 | 
						|
  float mvec[3], proj[3];
 | 
						|
  float len[3];
 | 
						|
  int i;
 | 
						|
 | 
						|
  /* calculate mouse movement */
 | 
						|
  mvec[0] = (float)(t->mval[0] - t->con.imval[0]);
 | 
						|
  mvec[1] = (float)(t->mval[1] - t->con.imval[1]);
 | 
						|
  mvec[2] = 0.0f;
 | 
						|
 | 
						|
  /* We need to correct axis length for the current zoom-level of view,
 | 
						|
   * this to prevent projected values to be clipped behind the camera
 | 
						|
   * and to overflow the short integers.
 | 
						|
   * The formula used is a bit stupid, just a simplification of the subtraction
 | 
						|
   * of two 2D points 30 pixels apart (that's the last factor in the formula) after
 | 
						|
   * projecting them with ED_view3d_win_to_delta and then get the length of that vector.
 | 
						|
   */
 | 
						|
  zfac = mul_project_m4_v3_zfac(t->persmat, t->center_global);
 | 
						|
  zfac = len_v3(t->persinv[0]) * 2.0f / t->ar->winx * zfac * 30.0f;
 | 
						|
 | 
						|
  for (i = 0; i < 3; i++) {
 | 
						|
    float axis[3], axis_2d[2];
 | 
						|
 | 
						|
    copy_v3_v3(axis, t->con.mtx[i]);
 | 
						|
 | 
						|
    mul_v3_fl(axis, zfac);
 | 
						|
    /* now we can project to get window coordinate */
 | 
						|
    add_v3_v3(axis, t->center_global);
 | 
						|
    projectFloatView(t, axis, axis_2d);
 | 
						|
 | 
						|
    sub_v2_v2v2(axis, axis_2d, t->center2d);
 | 
						|
    axis[2] = 0.0f;
 | 
						|
 | 
						|
    if (normalize_v3(axis) > 1e-3f) {
 | 
						|
      project_v3_v3v3(proj, mvec, axis);
 | 
						|
      sub_v3_v3v3(axis, mvec, proj);
 | 
						|
      len[i] = normalize_v3(axis);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      len[i] = 1e10f;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (len[0] <= len[1] && len[0] <= len[2]) {
 | 
						|
    if (t->modifiers & MOD_CONSTRAINT_PLANE) {
 | 
						|
      t->con.mode |= (CON_AXIS1 | CON_AXIS2);
 | 
						|
      BLI_snprintf(t->con.text, sizeof(t->con.text), TIP_(" locking %s X axis"), t->spacename);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      t->con.mode |= CON_AXIS0;
 | 
						|
      BLI_snprintf(t->con.text, sizeof(t->con.text), TIP_(" along %s X axis"), t->spacename);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else if (len[1] <= len[0] && len[1] <= len[2]) {
 | 
						|
    if (t->modifiers & MOD_CONSTRAINT_PLANE) {
 | 
						|
      t->con.mode |= (CON_AXIS0 | CON_AXIS2);
 | 
						|
      BLI_snprintf(t->con.text, sizeof(t->con.text), TIP_(" locking %s Y axis"), t->spacename);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      t->con.mode |= CON_AXIS1;
 | 
						|
      BLI_snprintf(t->con.text, sizeof(t->con.text), TIP_(" along %s Y axis"), t->spacename);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else if (len[2] <= len[1] && len[2] <= len[0]) {
 | 
						|
    if (t->modifiers & MOD_CONSTRAINT_PLANE) {
 | 
						|
      t->con.mode |= (CON_AXIS0 | CON_AXIS1);
 | 
						|
      BLI_snprintf(t->con.text, sizeof(t->con.text), TIP_(" locking %s Z axis"), t->spacename);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      t->con.mode |= CON_AXIS2;
 | 
						|
      BLI_snprintf(t->con.text, sizeof(t->con.text), TIP_(" along %s Z axis"), t->spacename);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void setNearestAxis(TransInfo *t)
 | 
						|
{
 | 
						|
  /* clear any prior constraint flags */
 | 
						|
  t->con.mode &= ~CON_AXIS0;
 | 
						|
  t->con.mode &= ~CON_AXIS1;
 | 
						|
  t->con.mode &= ~CON_AXIS2;
 | 
						|
 | 
						|
  /* constraint setting - depends on spacetype */
 | 
						|
  if (t->spacetype == SPACE_VIEW3D) {
 | 
						|
    /* 3d-view */
 | 
						|
    setNearestAxis3d(t);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    /* assume that this means a 2D-Editor */
 | 
						|
    setNearestAxis2d(t);
 | 
						|
  }
 | 
						|
 | 
						|
  getConstraintMatrix(t);
 | 
						|
}
 | 
						|
 | 
						|
/*-------------- HELPER FUNCTIONS ----------------*/
 | 
						|
 | 
						|
int constraintModeToIndex(const TransInfo *t)
 | 
						|
{
 | 
						|
  if ((t->con.mode & CON_APPLY) == 0) {
 | 
						|
    return -1;
 | 
						|
  }
 | 
						|
  switch (t->con.mode & (CON_AXIS0 | CON_AXIS1 | CON_AXIS2)) {
 | 
						|
    case (CON_AXIS0):
 | 
						|
    case (CON_AXIS1 | CON_AXIS2):
 | 
						|
      return 0;
 | 
						|
    case (CON_AXIS1):
 | 
						|
    case (CON_AXIS0 | CON_AXIS2):
 | 
						|
      return 1;
 | 
						|
    case (CON_AXIS2):
 | 
						|
    case (CON_AXIS0 | CON_AXIS1):
 | 
						|
      return 2;
 | 
						|
    default:
 | 
						|
      return -1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
char constraintModeToChar(const TransInfo *t)
 | 
						|
{
 | 
						|
  int index = constraintModeToIndex(t);
 | 
						|
  if (index == -1) {
 | 
						|
    return '\0';
 | 
						|
  }
 | 
						|
  BLI_assert((uint)index < 3);
 | 
						|
  return 'X' + index;
 | 
						|
}
 | 
						|
 | 
						|
bool isLockConstraint(TransInfo *t)
 | 
						|
{
 | 
						|
  int mode = t->con.mode;
 | 
						|
 | 
						|
  if ((mode & (CON_AXIS0 | CON_AXIS1)) == (CON_AXIS0 | CON_AXIS1)) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if ((mode & (CON_AXIS1 | CON_AXIS2)) == (CON_AXIS1 | CON_AXIS2)) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if ((mode & (CON_AXIS0 | CON_AXIS2)) == (CON_AXIS0 | CON_AXIS2)) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns the dimension of the constraint space.
 | 
						|
 *
 | 
						|
 * For that reason, the flags always needs to be set to properly evaluate here,
 | 
						|
 * even if they aren't actually used in the callback function. (Which could happen
 | 
						|
 * for weird constraints not yet designed. Along a path for example.)
 | 
						|
 */
 | 
						|
 | 
						|
int getConstraintSpaceDimension(TransInfo *t)
 | 
						|
{
 | 
						|
  int n = 0;
 | 
						|
 | 
						|
  if (t->con.mode & CON_AXIS0) {
 | 
						|
    n++;
 | 
						|
  }
 | 
						|
 | 
						|
  if (t->con.mode & CON_AXIS1) {
 | 
						|
    n++;
 | 
						|
  }
 | 
						|
 | 
						|
  if (t->con.mode & CON_AXIS2) {
 | 
						|
    n++;
 | 
						|
  }
 | 
						|
 | 
						|
  return n;
 | 
						|
  /*
 | 
						|
   * Someone willing to do it cryptically could do the following instead:
 | 
						|
   *
 | 
						|
   * return t->con & (CON_AXIS0|CON_AXIS1|CON_AXIS2);
 | 
						|
   *
 | 
						|
   * Based on the assumptions that the axis flags are one after the other and start at 1
 | 
						|
   */
 | 
						|
}
 |