This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/shrinkwrap.c

565 lines
17 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Andr Pinto
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/shrinkwrap.c
* \ingroup bke
*/
#include <string.h>
#include <float.h>
#include <math.h>
#include <memory.h>
#include <stdio.h>
#include <time.h>
#include <assert.h>
#include "DNA_object_types.h"
#include "DNA_modifier_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_mesh_types.h"
#include "DNA_scene_types.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "BKE_shrinkwrap.h"
#include "BKE_DerivedMesh.h"
#include "BKE_lattice.h"
#include "BKE_deform.h"
#include "BKE_mesh.h"
#include "BKE_subsurf.h"
#include "BKE_mesh.h"
#include "BKE_tessmesh.h"
/* Util macros */
#define OUT_OF_MEMORY() ((void)printf("Shrinkwrap: Out of memory\n"))
/* Benchmark macros */
#if !defined(_WIN32) && 0
#include <sys/time.h>
#define BENCH(a) \
do { \
double _t1, _t2; \
struct timeval _tstart, _tend; \
clock_t _clock_init = clock(); \
gettimeofday ( &_tstart, NULL); \
(a); \
gettimeofday ( &_tend, NULL); \
_t1 = ( double ) _tstart.tv_sec + ( double ) _tstart.tv_usec/ ( 1000*1000 ); \
_t2 = ( double ) _tend.tv_sec + ( double ) _tend.tv_usec/ ( 1000*1000 ); \
printf("%s: %fs (real) %fs (cpu)\n", #a, _t2-_t1, (float)(clock()-_clock_init)/CLOCKS_PER_SEC);\
} while (0)
#else
#define BENCH(a) (a)
#endif
typedef void (*Shrinkwrap_ForeachVertexCallback)(DerivedMesh *target, float *co, float *normal);
/* get derived mesh */
//TODO is anyfunction that does this? returning the derivedFinal without we caring if its in edit mode or not?
DerivedMesh *object_get_derived_final(Object *ob)
{
Mesh *me = ob->data;
BMEditMesh *em = me->edit_btmesh;
if (em) {
DerivedMesh *dm = em->derivedFinal;
return dm;
}
return ob->derivedFinal;
}
/* Space transform */
void space_transform_from_matrixs(SpaceTransform *data, float local[4][4], float target[4][4])
{
float itarget[4][4];
invert_m4_m4(itarget, target);
mul_serie_m4(data->local2target, itarget, local, NULL, NULL, NULL, NULL, NULL, NULL);
invert_m4_m4(data->target2local, data->local2target);
}
void space_transform_apply(const SpaceTransform *data, float *co)
{
mul_v3_m4v3(co, ((SpaceTransform *)data)->local2target, co);
}
void space_transform_invert(const SpaceTransform *data, float *co)
{
mul_v3_m4v3(co, ((SpaceTransform *)data)->target2local, co);
}
static void space_transform_apply_normal(const SpaceTransform *data, float *no)
{
mul_mat3_m4_v3(((SpaceTransform *)data)->local2target, no);
normalize_v3(no); // TODO: could we just determine de scale value from the matrix?
}
static void space_transform_invert_normal(const SpaceTransform *data, float *no)
{
mul_mat3_m4_v3(((SpaceTransform *)data)->target2local, no);
normalize_v3(no); // TODO: could we just determine de scale value from the matrix?
}
/*
* Shrinkwrap to the nearest vertex
*
* it builds a kdtree of vertexs we can attach to and then
* for each vertex performs a nearest vertex search on the tree
*/
static void shrinkwrap_calc_nearest_vertex(ShrinkwrapCalcData *calc)
{
int i;
BVHTreeFromMesh treeData = NULL_BVHTreeFromMesh;
BVHTreeNearest nearest = NULL_BVHTreeNearest;
BENCH(bvhtree_from_mesh_verts(&treeData, calc->target, 0.0, 2, 6));
if (treeData.tree == NULL) {
OUT_OF_MEMORY();
return;
}
//Setup nearest
nearest.index = -1;
nearest.dist = FLT_MAX;
#ifndef __APPLE__
#pragma omp parallel for default(none) private(i) firstprivate(nearest) shared(treeData,calc) schedule(static)
#endif
for (i = 0; i < calc->numVerts; ++i) {
float *co = calc->vertexCos[i];
float tmp_co[3];
float weight = defvert_array_find_weight_safe(calc->dvert, i, calc->vgroup);
if (weight == 0.0f) continue;
//Convert the vertex to tree coordinates
if (calc->vert) {
copy_v3_v3(tmp_co, calc->vert[i].co);
}
else {
copy_v3_v3(tmp_co, co);
}
space_transform_apply(&calc->local2target, tmp_co);
//Use local proximity heuristics (to reduce the nearest search)
//
//If we already had an hit before.. we assume this vertex is going to have a close hit to that other vertex
//so we can initiate the "nearest.dist" with the expected value to that last hit.
//This will lead in prunning of the search tree.
if (nearest.index != -1)
nearest.dist = len_squared_v3v3(tmp_co, nearest.co);
else
nearest.dist = FLT_MAX;
BLI_bvhtree_find_nearest(treeData.tree, tmp_co, &nearest, treeData.nearest_callback, &treeData);
//Found the nearest vertex
if (nearest.index != -1) {
//Adjusting the vertex weight, so that after interpolating it keeps a certain distance from the nearest position
float dist = sasqrt(nearest.dist);
if (dist > FLT_EPSILON) weight *= (dist - calc->keepDist) / dist;
//Convert the coordinates back to mesh coordinates
copy_v3_v3(tmp_co, nearest.co);
space_transform_invert(&calc->local2target, tmp_co);
interp_v3_v3v3(co, co, tmp_co, weight); //linear interpolation
}
}
free_bvhtree_from_mesh(&treeData);
}
/*
* This function raycast a single vertex and updates the hit if the "hit" is considered valid.
* Returns TRUE if "hit" was updated.
* Opts control whether an hit is valid or not
* Supported options are:
* MOD_SHRINKWRAP_CULL_TARGET_FRONTFACE (front faces hits are ignored)
* MOD_SHRINKWRAP_CULL_TARGET_BACKFACE (back faces hits are ignored)
*/
int normal_projection_project_vertex(char options, const float *vert, const float *dir, const SpaceTransform *transf, BVHTree *tree, BVHTreeRayHit *hit, BVHTree_RayCastCallback callback, void *userdata)
{
float tmp_co[3], tmp_no[3];
const float *co, *no;
BVHTreeRayHit hit_tmp;
//Copy from hit (we need to convert hit rays from one space coordinates to the other
memcpy(&hit_tmp, hit, sizeof(hit_tmp));
//Apply space transform (TODO readjust dist)
if (transf) {
copy_v3_v3(tmp_co, vert);
space_transform_apply(transf, tmp_co);
co = tmp_co;
copy_v3_v3(tmp_no, dir);
space_transform_apply_normal(transf, tmp_no);
no = tmp_no;
hit_tmp.dist *= mat4_to_scale(((SpaceTransform *)transf)->local2target);
}
else {
co = vert;
no = dir;
}
hit_tmp.index = -1;
BLI_bvhtree_ray_cast(tree, co, no, 0.0f, &hit_tmp, callback, userdata);
if (hit_tmp.index != -1) {
/* invert the normal first so face culling works on rotated objects */
if (transf) {
space_transform_invert_normal(transf, hit_tmp.no);
}
if (options & (MOD_SHRINKWRAP_CULL_TARGET_FRONTFACE | MOD_SHRINKWRAP_CULL_TARGET_BACKFACE)) {
/* apply backface */
const float dot = dot_v3v3(dir, hit_tmp.no);
if (((options & MOD_SHRINKWRAP_CULL_TARGET_FRONTFACE) && dot <= 0.0f) ||
((options & MOD_SHRINKWRAP_CULL_TARGET_BACKFACE) && dot >= 0.0f))
{
return FALSE; /* Ignore hit */
}
}
if (transf) {
/* Inverting space transform (TODO make coeherent with the initial dist readjust) */
space_transform_invert(transf, hit_tmp.co);
hit_tmp.dist = len_v3v3((float *)vert, hit_tmp.co);
}
memcpy(hit, &hit_tmp, sizeof(hit_tmp));
return TRUE;
}
return FALSE;
}
static void shrinkwrap_calc_normal_projection(ShrinkwrapCalcData *calc)
{
int i;
//Options about projection direction
const char use_normal = calc->smd->shrinkOpts;
float proj_axis[3] = {0.0f, 0.0f, 0.0f};
//Raycast and tree stuff
BVHTreeRayHit hit;
BVHTreeFromMesh treeData = NULL_BVHTreeFromMesh;
//auxiliary target
DerivedMesh *auxMesh = NULL;
BVHTreeFromMesh auxData = NULL_BVHTreeFromMesh;
SpaceTransform local2aux;
//If the user doesn't allows to project in any direction of projection axis
//then theres nothing todo.
if ((use_normal & (MOD_SHRINKWRAP_PROJECT_ALLOW_POS_DIR | MOD_SHRINKWRAP_PROJECT_ALLOW_NEG_DIR)) == 0)
return;
//Prepare data to retrieve the direction in which we should project each vertex
if (calc->smd->projAxis == MOD_SHRINKWRAP_PROJECT_OVER_NORMAL) {
if (calc->vert == NULL) return;
}
else {
//The code supports any axis that is a combination of X,Y,Z
//although currently UI only allows to set the 3 different axis
if (calc->smd->projAxis & MOD_SHRINKWRAP_PROJECT_OVER_X_AXIS) proj_axis[0] = 1.0f;
if (calc->smd->projAxis & MOD_SHRINKWRAP_PROJECT_OVER_Y_AXIS) proj_axis[1] = 1.0f;
if (calc->smd->projAxis & MOD_SHRINKWRAP_PROJECT_OVER_Z_AXIS) proj_axis[2] = 1.0f;
normalize_v3(proj_axis);
//Invalid projection direction
if (dot_v3v3(proj_axis, proj_axis) < FLT_EPSILON)
return;
}
if (calc->smd->auxTarget) {
auxMesh = object_get_derived_final(calc->smd->auxTarget);
if (!auxMesh)
return;
space_transform_setup(&local2aux, calc->ob, calc->smd->auxTarget);
}
//After sucessufuly build the trees, start projection vertexs
if (bvhtree_from_mesh_faces(&treeData, calc->target, 0.0, 4, 6) &&
(auxMesh == NULL || bvhtree_from_mesh_faces(&auxData, auxMesh, 0.0, 4, 6)))
{
#ifndef __APPLE__
#pragma omp parallel for private(i,hit) schedule(static)
#endif
for (i = 0; i < calc->numVerts; ++i) {
float *co = calc->vertexCos[i];
float tmp_co[3], tmp_no[3];
float weight = defvert_array_find_weight_safe(calc->dvert, i, calc->vgroup);
if (weight == 0.0f) continue;
if (calc->vert) {
/* calc->vert contains verts from derivedMesh */
/* this coordinated are deformed by vertexCos only for normal projection (to get correct normals) */
/* for other cases calc->varts contains undeformed coordinates and vertexCos should be used */
if (calc->smd->projAxis == MOD_SHRINKWRAP_PROJECT_OVER_NORMAL) {
copy_v3_v3(tmp_co, calc->vert[i].co);
normal_short_to_float_v3(tmp_no, calc->vert[i].no);
}
else {
copy_v3_v3(tmp_co, co);
copy_v3_v3(tmp_no, proj_axis);
}
}
else {
copy_v3_v3(tmp_co, co);
copy_v3_v3(tmp_no, proj_axis);
}
hit.index = -1;
hit.dist = 10000.0f; //TODO: we should use FLT_MAX here, but sweepsphere code isn't prepared for that
//Project over positive direction of axis
if (use_normal & MOD_SHRINKWRAP_PROJECT_ALLOW_POS_DIR) {
if (auxData.tree)
normal_projection_project_vertex(0, tmp_co, tmp_no, &local2aux, auxData.tree, &hit, auxData.raycast_callback, &auxData);
normal_projection_project_vertex(calc->smd->shrinkOpts, tmp_co, tmp_no, &calc->local2target, treeData.tree, &hit, treeData.raycast_callback, &treeData);
}
//Project over negative direction of axis
if (use_normal & MOD_SHRINKWRAP_PROJECT_ALLOW_NEG_DIR && hit.index == -1) {
float inv_no[3];
negate_v3_v3(inv_no, tmp_no);
if (auxData.tree)
normal_projection_project_vertex(0, tmp_co, inv_no, &local2aux, auxData.tree, &hit, auxData.raycast_callback, &auxData);
normal_projection_project_vertex(calc->smd->shrinkOpts, tmp_co, inv_no, &calc->local2target, treeData.tree, &hit, treeData.raycast_callback, &treeData);
}
if (hit.index != -1) {
madd_v3_v3v3fl(hit.co, hit.co, tmp_no, calc->keepDist);
interp_v3_v3v3(co, co, hit.co, weight);
}
}
}
//free data structures
free_bvhtree_from_mesh(&treeData);
free_bvhtree_from_mesh(&auxData);
}
/*
* Shrinkwrap moving vertexs to the nearest surface point on the target
*
* it builds a BVHTree from the target mesh and then performs a
* NN matches for each vertex
*/
static void shrinkwrap_calc_nearest_surface_point(ShrinkwrapCalcData *calc)
{
int i;
BVHTreeFromMesh treeData = NULL_BVHTreeFromMesh;
BVHTreeNearest nearest = NULL_BVHTreeNearest;
//Create a bvh-tree of the given target
BENCH(bvhtree_from_mesh_faces(&treeData, calc->target, 0.0, 2, 6));
if (treeData.tree == NULL) {
OUT_OF_MEMORY();
return;
}
//Setup nearest
nearest.index = -1;
nearest.dist = FLT_MAX;
//Find the nearest vertex
#ifndef __APPLE__
#pragma omp parallel for default(none) private(i) firstprivate(nearest) shared(calc,treeData) schedule(static)
#endif
for (i = 0; i < calc->numVerts; ++i) {
float *co = calc->vertexCos[i];
float tmp_co[3];
float weight = defvert_array_find_weight_safe(calc->dvert, i, calc->vgroup);
if (weight == 0.0f) continue;
//Convert the vertex to tree coordinates
if (calc->vert) {
copy_v3_v3(tmp_co, calc->vert[i].co);
}
else {
copy_v3_v3(tmp_co, co);
}
space_transform_apply(&calc->local2target, tmp_co);
//Use local proximity heuristics (to reduce the nearest search)
//
//If we already had an hit before.. we assume this vertex is going to have a close hit to that other vertex
//so we can initiate the "nearest.dist" with the expected value to that last hit.
//This will lead in prunning of the search tree.
if (nearest.index != -1)
nearest.dist = len_squared_v3v3(tmp_co, nearest.co);
else
nearest.dist = FLT_MAX;
BLI_bvhtree_find_nearest(treeData.tree, tmp_co, &nearest, treeData.nearest_callback, &treeData);
//Found the nearest vertex
if (nearest.index != -1) {
if (calc->smd->shrinkOpts & MOD_SHRINKWRAP_KEEP_ABOVE_SURFACE) {
//Make the vertex stay on the front side of the face
madd_v3_v3v3fl(tmp_co, nearest.co, nearest.no, calc->keepDist);
}
else {
//Adjusting the vertex weight, so that after interpolating it keeps a certain distance from the nearest position
float dist = sasqrt(nearest.dist);
if (dist > FLT_EPSILON)
interp_v3_v3v3(tmp_co, tmp_co, nearest.co, (dist - calc->keepDist) / dist); //linear interpolation
else
copy_v3_v3(tmp_co, nearest.co);
}
//Convert the coordinates back to mesh coordinates
space_transform_invert(&calc->local2target, tmp_co);
interp_v3_v3v3(co, co, tmp_co, weight); //linear interpolation
}
}
free_bvhtree_from_mesh(&treeData);
}
/* Main shrinkwrap function */
void shrinkwrapModifier_deform(ShrinkwrapModifierData *smd, Object *ob, DerivedMesh *dm, float (*vertexCos)[3], int numVerts)
{
DerivedMesh *ss_mesh = NULL;
ShrinkwrapCalcData calc = NULL_ShrinkwrapCalcData;
//remove loop dependencies on derived meshs (TODO should this be done elsewhere?)
if (smd->target == ob) smd->target = NULL;
if (smd->auxTarget == ob) smd->auxTarget = NULL;
//Configure Shrinkwrap calc data
calc.smd = smd;
calc.ob = ob;
calc.numVerts = numVerts;
calc.vertexCos = vertexCos;
//DeformVertex
calc.vgroup = defgroup_name_index(calc.ob, calc.smd->vgroup_name);
if (dm) {
calc.dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT);
}
else if (calc.ob->type == OB_LATTICE) {
calc.dvert = BKE_lattice_deform_verts_get(calc.ob);
}
if (smd->target) {
calc.target = object_get_derived_final(smd->target);
//TODO there might be several "bugs" on non-uniform scales matrixs
//because it will no longer be nearest surface, not sphere projection
//because space has been deformed
space_transform_setup(&calc.local2target, ob, smd->target);
//TODO: smd->keepDist is in global units.. must change to local
calc.keepDist = smd->keepDist;
}
calc.vgroup = defgroup_name_index(calc.ob, smd->vgroup_name);
if (dm != NULL && smd->shrinkType == MOD_SHRINKWRAP_PROJECT) {
//Setup arrays to get vertexs positions, normals and deform weights
calc.vert = dm->getVertDataArray(dm, CD_MVERT);
calc.dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT);
//Using vertexs positions/normals as if a subsurface was applied
if (smd->subsurfLevels) {
SubsurfModifierData ssmd = {{NULL}};
ssmd.subdivType = ME_CC_SUBSURF; //catmull clark
ssmd.levels = smd->subsurfLevels; //levels
ss_mesh = subsurf_make_derived_from_derived(dm, &ssmd, NULL, (ob->mode & OB_MODE_EDIT) ? SUBSURF_IN_EDIT_MODE : 0);
if (ss_mesh) {
calc.vert = ss_mesh->getVertDataArray(ss_mesh, CD_MVERT);
if (calc.vert) {
/* TRICKY: this code assumes subsurface will have the transformed original vertices
* in their original order at the end of the vert array. */
calc.vert = calc.vert + ss_mesh->getNumVerts(ss_mesh) - dm->getNumVerts(dm);
}
}
//Just to make sure we are not leaving any memory behind
assert(ssmd.emCache == NULL);
assert(ssmd.mCache == NULL);
}
}
//Projecting target defined - lets work!
if (calc.target) {
switch (smd->shrinkType) {
case MOD_SHRINKWRAP_NEAREST_SURFACE:
BENCH(shrinkwrap_calc_nearest_surface_point(&calc));
break;
case MOD_SHRINKWRAP_PROJECT:
BENCH(shrinkwrap_calc_normal_projection(&calc));
break;
case MOD_SHRINKWRAP_NEAREST_VERTEX:
BENCH(shrinkwrap_calc_nearest_vertex(&calc));
break;
}
}
//free memory
if (ss_mesh)
ss_mesh->release(ss_mesh);
}