263 lines
9.1 KiB
C++
263 lines
9.1 KiB
C++
/* SPDX-License-Identifier: GPL-2.0-or-later
|
|
* Copyright 2022 Blender Foundation. */
|
|
|
|
/** \file
|
|
* \ingroup draw
|
|
*/
|
|
|
|
#include "BLI_math_geom.h"
|
|
#include "GPU_compute.h"
|
|
#include "GPU_debug.h"
|
|
|
|
#include "draw_debug.hh"
|
|
#include "draw_shader.h"
|
|
#include "draw_view.hh"
|
|
|
|
namespace blender::draw {
|
|
|
|
void View::sync(const float4x4 &view_mat, const float4x4 &win_mat)
|
|
{
|
|
data_.viewmat = view_mat;
|
|
data_.viewinv = view_mat.inverted();
|
|
data_.winmat = win_mat;
|
|
data_.wininv = win_mat.inverted();
|
|
|
|
is_inverted_ = (is_negative_m4(view_mat.ptr()) == is_negative_m4(win_mat.ptr()));
|
|
|
|
BoundBox &bound_box = *reinterpret_cast<BoundBox *>(&culling_.corners);
|
|
BoundSphere &bound_sphere = *reinterpret_cast<BoundSphere *>(&culling_.bound_sphere);
|
|
frustum_boundbox_calc(bound_box);
|
|
frustum_culling_planes_calc();
|
|
frustum_culling_sphere_calc(bound_box, bound_sphere);
|
|
|
|
dirty_ = true;
|
|
}
|
|
|
|
void View::frustum_boundbox_calc(BoundBox &bbox)
|
|
{
|
|
/* Extract the 8 corners from a Projection Matrix. */
|
|
#if 0 /* Equivalent to this but it has accuracy problems. */
|
|
BKE_boundbox_init_from_minmax(&bbox, float3(-1.0f),float3(1.0f));
|
|
for (int i = 0; i < 8; i++) {
|
|
mul_project_m4_v3(data_.wininv.ptr(), bbox.vec[i]);
|
|
}
|
|
#endif
|
|
|
|
float left, right, bottom, top, near, far;
|
|
bool is_persp = data_.winmat[3][3] == 0.0f;
|
|
|
|
projmat_dimensions(data_.winmat.ptr(), &left, &right, &bottom, &top, &near, &far);
|
|
|
|
bbox.vec[0][2] = bbox.vec[3][2] = bbox.vec[7][2] = bbox.vec[4][2] = -near;
|
|
bbox.vec[0][0] = bbox.vec[3][0] = left;
|
|
bbox.vec[4][0] = bbox.vec[7][0] = right;
|
|
bbox.vec[0][1] = bbox.vec[4][1] = bottom;
|
|
bbox.vec[7][1] = bbox.vec[3][1] = top;
|
|
|
|
/* Get the coordinates of the far plane. */
|
|
if (is_persp) {
|
|
float sca_far = far / near;
|
|
left *= sca_far;
|
|
right *= sca_far;
|
|
bottom *= sca_far;
|
|
top *= sca_far;
|
|
}
|
|
|
|
bbox.vec[1][2] = bbox.vec[2][2] = bbox.vec[6][2] = bbox.vec[5][2] = -far;
|
|
bbox.vec[1][0] = bbox.vec[2][0] = left;
|
|
bbox.vec[6][0] = bbox.vec[5][0] = right;
|
|
bbox.vec[1][1] = bbox.vec[5][1] = bottom;
|
|
bbox.vec[2][1] = bbox.vec[6][1] = top;
|
|
|
|
/* Transform into world space. */
|
|
for (int i = 0; i < 8; i++) {
|
|
mul_m4_v3(data_.viewinv.ptr(), bbox.vec[i]);
|
|
}
|
|
}
|
|
|
|
void View::frustum_culling_planes_calc()
|
|
{
|
|
float4x4 persmat = data_.winmat * data_.viewmat;
|
|
planes_from_projmat(persmat.ptr(),
|
|
culling_.planes[0],
|
|
culling_.planes[5],
|
|
culling_.planes[1],
|
|
culling_.planes[3],
|
|
culling_.planes[4],
|
|
culling_.planes[2]);
|
|
|
|
/* Normalize. */
|
|
for (int p = 0; p < 6; p++) {
|
|
culling_.planes[p].w /= normalize_v3(culling_.planes[p]);
|
|
}
|
|
}
|
|
|
|
void View::frustum_culling_sphere_calc(const BoundBox &bbox, BoundSphere &bsphere)
|
|
{
|
|
/* Extract Bounding Sphere */
|
|
if (data_.winmat[3][3] != 0.0f) {
|
|
/* Orthographic */
|
|
/* The most extreme points on the near and far plane. (normalized device coords). */
|
|
const float *nearpoint = bbox.vec[0];
|
|
const float *farpoint = bbox.vec[6];
|
|
|
|
/* just use median point */
|
|
mid_v3_v3v3(bsphere.center, farpoint, nearpoint);
|
|
bsphere.radius = len_v3v3(bsphere.center, farpoint);
|
|
}
|
|
else if (data_.winmat[2][0] == 0.0f && data_.winmat[2][1] == 0.0f) {
|
|
/* Perspective with symmetrical frustum. */
|
|
|
|
/* We obtain the center and radius of the circumscribed circle of the
|
|
* isosceles trapezoid composed by the diagonals of the near and far clipping plane */
|
|
|
|
/* center of each clipping plane */
|
|
float mid_min[3], mid_max[3];
|
|
mid_v3_v3v3(mid_min, bbox.vec[3], bbox.vec[4]);
|
|
mid_v3_v3v3(mid_max, bbox.vec[2], bbox.vec[5]);
|
|
|
|
/* square length of the diagonals of each clipping plane */
|
|
float a_sq = len_squared_v3v3(bbox.vec[3], bbox.vec[4]);
|
|
float b_sq = len_squared_v3v3(bbox.vec[2], bbox.vec[5]);
|
|
|
|
/* distance squared between clipping planes */
|
|
float h_sq = len_squared_v3v3(mid_min, mid_max);
|
|
|
|
float fac = (4 * h_sq + b_sq - a_sq) / (8 * h_sq);
|
|
|
|
/* The goal is to get the smallest sphere,
|
|
* not the sphere that passes through each corner */
|
|
CLAMP(fac, 0.0f, 1.0f);
|
|
|
|
interp_v3_v3v3(bsphere.center, mid_min, mid_max, fac);
|
|
|
|
/* distance from the center to one of the points of the far plane (1, 2, 5, 6) */
|
|
bsphere.radius = len_v3v3(bsphere.center, bbox.vec[1]);
|
|
}
|
|
else {
|
|
/* Perspective with asymmetrical frustum. */
|
|
|
|
/* We put the sphere center on the line that goes from origin
|
|
* to the center of the far clipping plane. */
|
|
|
|
/* Detect which of the corner of the far clipping plane is the farthest to the origin */
|
|
float nfar[4]; /* most extreme far point in NDC space */
|
|
float farxy[2]; /* far-point projection onto the near plane */
|
|
float farpoint[3] = {0.0f}; /* most extreme far point in camera coordinate */
|
|
float nearpoint[3]; /* most extreme near point in camera coordinate */
|
|
float farcenter[3] = {0.0f}; /* center of far clipping plane in camera coordinate */
|
|
float F = -1.0f, N; /* square distance of far and near point to origin */
|
|
float f, n; /* distance of far and near point to z axis. f is always > 0 but n can be < 0 */
|
|
float e, s; /* far and near clipping distance (<0) */
|
|
float c; /* slope of center line = distance of far clipping center
|
|
* to z axis / far clipping distance. */
|
|
float z; /* projection of sphere center on z axis (<0) */
|
|
|
|
/* Find farthest corner and center of far clip plane. */
|
|
float corner[3] = {1.0f, 1.0f, 1.0f}; /* in clip space */
|
|
for (int i = 0; i < 4; i++) {
|
|
float point[3];
|
|
mul_v3_project_m4_v3(point, data_.wininv.ptr(), corner);
|
|
float len = len_squared_v3(point);
|
|
if (len > F) {
|
|
copy_v3_v3(nfar, corner);
|
|
copy_v3_v3(farpoint, point);
|
|
F = len;
|
|
}
|
|
add_v3_v3(farcenter, point);
|
|
/* rotate by 90 degree to walk through the 4 points of the far clip plane */
|
|
float tmp = corner[0];
|
|
corner[0] = -corner[1];
|
|
corner[1] = tmp;
|
|
}
|
|
|
|
/* the far center is the average of the far clipping points */
|
|
mul_v3_fl(farcenter, 0.25f);
|
|
/* the extreme near point is the opposite point on the near clipping plane */
|
|
copy_v3_fl3(nfar, -nfar[0], -nfar[1], -1.0f);
|
|
mul_v3_project_m4_v3(nearpoint, data_.wininv.ptr(), nfar);
|
|
/* this is a frustum projection */
|
|
N = len_squared_v3(nearpoint);
|
|
e = farpoint[2];
|
|
s = nearpoint[2];
|
|
/* distance to view Z axis */
|
|
f = len_v2(farpoint);
|
|
/* get corresponding point on the near plane */
|
|
mul_v2_v2fl(farxy, farpoint, s / e);
|
|
/* this formula preserve the sign of n */
|
|
sub_v2_v2(nearpoint, farxy);
|
|
n = f * s / e - len_v2(nearpoint);
|
|
c = len_v2(farcenter) / e;
|
|
/* the big formula, it simplifies to (F-N)/(2(e-s)) for the symmetric case */
|
|
z = (F - N) / (2.0f * (e - s + c * (f - n)));
|
|
|
|
bsphere.center[0] = farcenter[0] * z / e;
|
|
bsphere.center[1] = farcenter[1] * z / e;
|
|
bsphere.center[2] = z;
|
|
|
|
/* For XR, the view matrix may contain a scale factor. Then, transforming only the center
|
|
* into world space after calculating the radius will result in incorrect behavior. */
|
|
mul_m4_v3(data_.viewinv.ptr(), bsphere.center); /* Transform to world space. */
|
|
mul_m4_v3(data_.viewinv.ptr(), farpoint);
|
|
bsphere.radius = len_v3v3(bsphere.center, farpoint);
|
|
}
|
|
}
|
|
|
|
void View::bind()
|
|
{
|
|
if (dirty_) {
|
|
dirty_ = false;
|
|
data_.push_update();
|
|
culling_.push_update();
|
|
}
|
|
|
|
GPU_uniformbuf_bind(data_, DRW_VIEW_UBO_SLOT);
|
|
GPU_uniformbuf_bind(culling_, DRW_VIEW_CULLING_UBO_SLOT);
|
|
}
|
|
|
|
void View::compute_visibility(ObjectBoundsBuf &bounds, uint resource_len, bool debug_freeze)
|
|
{
|
|
if (debug_freeze && frozen_ == false) {
|
|
data_freeze_ = static_cast<ViewMatrices>(data_);
|
|
data_freeze_.push_update();
|
|
culling_freeze_ = static_cast<ViewCullingData>(culling_);
|
|
culling_freeze_.push_update();
|
|
}
|
|
#ifdef DEBUG
|
|
if (debug_freeze) {
|
|
float4x4 persmat = data_freeze_.winmat * data_freeze_.viewmat;
|
|
drw_debug_matrix_as_bbox(persmat.inverted(), float4(0, 1, 0, 1));
|
|
}
|
|
#endif
|
|
frozen_ = debug_freeze;
|
|
|
|
GPU_debug_group_begin("View.compute_visibility");
|
|
|
|
/* TODO(fclem): Early out if visibility hasn't changed. */
|
|
/* TODO(fclem): Resize to nearest pow2 to reduce fragmentation. */
|
|
visibility_buf_.resize(divide_ceil_u(resource_len, 128));
|
|
|
|
uint32_t data = 0xFFFFFFFFu;
|
|
GPU_storagebuf_clear(visibility_buf_, GPU_R32UI, GPU_DATA_UINT, &data);
|
|
|
|
if (do_visibility_) {
|
|
GPUShader *shader = DRW_shader_draw_visibility_compute_get();
|
|
GPU_shader_bind(shader);
|
|
GPU_shader_uniform_1i(shader, "resource_len", resource_len);
|
|
GPU_storagebuf_bind(bounds, GPU_shader_get_ssbo(shader, "bounds_buf"));
|
|
GPU_storagebuf_bind(visibility_buf_, GPU_shader_get_ssbo(shader, "visibility_buf"));
|
|
GPU_uniformbuf_bind((frozen_) ? data_freeze_ : data_, DRW_VIEW_UBO_SLOT);
|
|
GPU_compute_dispatch(shader, divide_ceil_u(resource_len, DRW_VISIBILITY_GROUP_SIZE), 1, 1);
|
|
GPU_memory_barrier(GPU_BARRIER_SHADER_STORAGE);
|
|
}
|
|
|
|
if (frozen_) {
|
|
/* Bind back the non frozen data. */
|
|
GPU_uniformbuf_bind(data_, DRW_VIEW_UBO_SLOT);
|
|
}
|
|
|
|
GPU_debug_group_end();
|
|
}
|
|
|
|
} // namespace blender::draw
|