This particular GPU driver does not constant fold all the way in order to discard the unused branches. To workaround that, we introduce a series of material flag that generates defines that only keep used branches. Reviewed By: jbakker Differential Revision: https://developer.blender.org/D15852
189 lines
7.3 KiB
GLSL
189 lines
7.3 KiB
GLSL
|
|
vec3 tint_from_color(vec3 color)
|
|
{
|
|
float lum = dot(color, vec3(0.3, 0.6, 0.1)); /* luminance approx. */
|
|
return (lum > 0.0) ? color / lum : vec3(1.0); /* normalize lum. to isolate hue+sat */
|
|
}
|
|
|
|
float principled_sheen(float NV)
|
|
{
|
|
float f = 1.0 - NV;
|
|
/* Empirical approximation (manual curve fitting). Can be refined. */
|
|
float sheen = f * f * f * 0.077 + f * 0.01 + 0.00026;
|
|
return sheen;
|
|
}
|
|
|
|
void node_bsdf_principled(vec4 base_color,
|
|
float subsurface,
|
|
vec3 subsurface_radius,
|
|
vec4 subsurface_color,
|
|
float subsurface_ior,
|
|
float subsurface_anisotropy,
|
|
float metallic,
|
|
float specular,
|
|
float specular_tint,
|
|
float roughness,
|
|
float anisotropic,
|
|
float anisotropic_rotation,
|
|
float sheen,
|
|
float sheen_tint,
|
|
float clearcoat,
|
|
float clearcoat_roughness,
|
|
float ior,
|
|
float transmission,
|
|
float transmission_roughness,
|
|
vec4 emission,
|
|
float emission_strength,
|
|
float alpha,
|
|
vec3 N,
|
|
vec3 CN,
|
|
vec3 T,
|
|
float weight,
|
|
const float do_diffuse,
|
|
const float do_clearcoat,
|
|
const float do_refraction,
|
|
const float do_multiscatter,
|
|
float do_sss,
|
|
out Closure result)
|
|
{
|
|
/* Match cycles. */
|
|
metallic = clamp(metallic, 0.0, 1.0);
|
|
transmission = clamp(transmission, 0.0, 1.0) * (1.0 - metallic);
|
|
float diffuse_weight = (1.0 - transmission) * (1.0 - metallic);
|
|
float specular_weight = (1.0 - transmission);
|
|
float clearcoat_weight = max(clearcoat, 0.0) * 0.25;
|
|
transmission_roughness = 1.0 - (1.0 - roughness) * (1.0 - transmission_roughness);
|
|
specular = max(0.0, specular);
|
|
|
|
N = safe_normalize(N);
|
|
CN = safe_normalize(CN);
|
|
vec3 V = cameraVec(g_data.P);
|
|
float NV = dot(N, V);
|
|
|
|
float fresnel = (do_multiscatter != 0.0) ? btdf_lut(NV, roughness, ior).y : F_eta(ior, NV);
|
|
float glass_reflection_weight = fresnel * transmission;
|
|
float glass_transmission_weight = (1.0 - fresnel) * transmission;
|
|
|
|
vec3 base_color_tint = tint_from_color(base_color.rgb);
|
|
|
|
vec2 split_sum = brdf_lut(NV, roughness);
|
|
|
|
ClosureTransparency transparency_data;
|
|
transparency_data.weight = weight;
|
|
transparency_data.transmittance = vec3(1.0 - alpha);
|
|
transparency_data.holdout = 0.0;
|
|
|
|
weight *= alpha;
|
|
|
|
ClosureEmission emission_data;
|
|
emission_data.weight = weight;
|
|
emission_data.emission = emission.rgb * emission_strength;
|
|
|
|
/* Diffuse. */
|
|
ClosureDiffuse diffuse_data;
|
|
diffuse_data.weight = diffuse_weight * weight;
|
|
diffuse_data.color = mix(base_color.rgb, subsurface_color.rgb, subsurface);
|
|
/* Sheen Coarse approximation: We reuse the diffuse radiance and just scale it. */
|
|
vec3 sheen_color = mix(vec3(1.0), base_color_tint, sheen_tint);
|
|
diffuse_data.color += sheen * sheen_color * principled_sheen(NV);
|
|
diffuse_data.N = N;
|
|
diffuse_data.sss_radius = subsurface_radius * subsurface;
|
|
diffuse_data.sss_id = uint(do_sss);
|
|
|
|
/* NOTE(@fclem): We need to blend the reflection color but also need to avoid applying the
|
|
* weights so we compule the ratio. */
|
|
float reflection_weight = specular_weight + glass_reflection_weight;
|
|
float reflection_weight_inv = safe_rcp(reflection_weight);
|
|
specular_weight *= reflection_weight_inv;
|
|
glass_reflection_weight *= reflection_weight_inv;
|
|
|
|
/* Reflection. */
|
|
ClosureReflection reflection_data;
|
|
reflection_data.weight = reflection_weight * weight;
|
|
reflection_data.N = N;
|
|
reflection_data.roughness = roughness;
|
|
if (true) {
|
|
vec3 dielectric_f0_color = mix(vec3(1.0), base_color_tint, specular_tint);
|
|
vec3 metallic_f0_color = base_color.rgb;
|
|
vec3 f0 = mix((0.08 * specular) * dielectric_f0_color, metallic_f0_color, metallic);
|
|
/* Cycles does this blending using the microfacet fresnel factor. However, our fresnel
|
|
* is already baked inside the split sum LUT. We approximate by changing the f90 color
|
|
* directly in a non linear fashion. */
|
|
vec3 f90 = mix(f0, vec3(1.0), fast_sqrt(specular));
|
|
|
|
vec3 reflection_brdf = (do_multiscatter != 0.0) ? F_brdf_multi_scatter(f0, f90, split_sum) :
|
|
F_brdf_single_scatter(f0, f90, split_sum);
|
|
reflection_data.color = reflection_brdf * specular_weight;
|
|
}
|
|
if (true) {
|
|
/* Poor approximation since we baked the LUT using a fixed IOR. */
|
|
vec3 f0 = mix(vec3(1.0), base_color.rgb, specular_tint);
|
|
vec3 f90 = vec3(1.0);
|
|
|
|
vec3 glass_brdf = (do_multiscatter != 0.0) ? F_brdf_multi_scatter(f0, f90, split_sum) :
|
|
F_brdf_single_scatter(f0, f90, split_sum);
|
|
|
|
/* Avoid 3 glossy evaluation. Use the same closure for glass reflection. */
|
|
reflection_data.color += glass_brdf * glass_reflection_weight;
|
|
}
|
|
|
|
ClosureReflection clearcoat_data;
|
|
clearcoat_data.weight = clearcoat_weight * weight;
|
|
clearcoat_data.N = CN;
|
|
clearcoat_data.roughness = clearcoat_roughness;
|
|
if (true) {
|
|
float NV = dot(clearcoat_data.N, V);
|
|
vec2 split_sum = brdf_lut(NV, clearcoat_data.roughness);
|
|
vec3 brdf = F_brdf_single_scatter(vec3(0.04), vec3(1.0), split_sum);
|
|
clearcoat_data.color = brdf;
|
|
}
|
|
|
|
/* Refraction. */
|
|
ClosureRefraction refraction_data;
|
|
refraction_data.weight = glass_transmission_weight * weight;
|
|
float btdf = (do_multiscatter != 0.0) ? 1.0 : btdf_lut(NV, roughness, ior).x;
|
|
|
|
refraction_data.color = base_color.rgb * btdf;
|
|
refraction_data.N = N;
|
|
refraction_data.roughness = do_multiscatter != 0.0 ? roughness :
|
|
max(roughness, transmission_roughness);
|
|
refraction_data.ior = ior;
|
|
|
|
/* Ref. T98190: Defines are optimizations for old compilers.
|
|
* Might become unecessary with EEVEE-Next. */
|
|
if (do_diffuse == 0.0 && do_refraction == 0.0 && do_clearcoat != 0.0) {
|
|
#ifdef PRINCIPLED_CLEARCOAT
|
|
/* Metallic & Clearcoat case. */
|
|
result = closure_eval(reflection_data, clearcoat_data);
|
|
#endif
|
|
}
|
|
else if (do_diffuse == 0.0 && do_refraction == 0.0 && do_clearcoat == 0.0) {
|
|
#ifdef PRINCIPLED_METALLIC
|
|
/* Metallic case. */
|
|
result = closure_eval(reflection_data);
|
|
#endif
|
|
}
|
|
else if (do_diffuse != 0.0 && do_refraction == 0.0 && do_clearcoat == 0.0) {
|
|
#ifdef PRINCIPLED_DIELECTRIC
|
|
/* Dielectric case. */
|
|
result = closure_eval(diffuse_data, reflection_data);
|
|
#endif
|
|
}
|
|
else if (do_diffuse == 0.0 && do_refraction != 0.0 && do_clearcoat == 0.0) {
|
|
#ifdef PRINCIPLED_GLASS
|
|
/* Glass case. */
|
|
result = closure_eval(reflection_data, refraction_data);
|
|
#endif
|
|
}
|
|
else {
|
|
#ifdef PRINCIPLED_ANY
|
|
/* Un-optimized case. */
|
|
result = closure_eval(diffuse_data, reflection_data, clearcoat_data, refraction_data);
|
|
#endif
|
|
}
|
|
Closure emission_cl = closure_eval(emission_data);
|
|
Closure transparency_cl = closure_eval(transparency_data);
|
|
result = closure_add(result, emission_cl);
|
|
result = closure_add(result, transparency_cl);
|
|
}
|