 78d9891dfe
			
		
	
	78d9891dfe
	
	
	
		
			
			- terrible typo was making the multiplication to run in an infinite loop. - Any matrix * vector multiplication would crash Blender. eg #### import Mathutils from Mathutils import * vec_ray = Vector(0.0, 0.0, 1.0) tilt_mat = RotationMatrix(0.0, 3, "y") vec_ray = tilt_mat * vec_ray ####
		
			
				
	
	
		
			1327 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1327 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * $Id$
 | |
|  *
 | |
|  * ***** BEGIN GPL LICENSE BLOCK *****
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software Foundation,
 | |
|  * Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 | |
|  *
 | |
|  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Contributor(s): Michel Selten & Joseph Gilbert
 | |
|  *
 | |
|  * ***** END GPL LICENSE BLOCK *****
 | |
|  */
 | |
| 
 | |
| #include "Mathutils.h"
 | |
| 
 | |
| #include "BKE_utildefines.h"
 | |
| #include "BLI_arithb.h"
 | |
| #include "BLI_blenlib.h"
 | |
| 
 | |
| static PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject* vec); /* utility func */
 | |
| 
 | |
| 
 | |
| /* matrix vector callbacks */
 | |
| int mathutils_matrix_vector_cb_index= -1;
 | |
| 
 | |
| static int mathutils_matrix_vector_check(PyObject *self_p)
 | |
| {
 | |
| 	MatrixObject *self= (MatrixObject*)self_p;
 | |
| 	return BaseMath_ReadCallback(self);
 | |
| }
 | |
| 
 | |
| static int mathutils_matrix_vector_get(PyObject *self_p, int subtype, float *vec_from)
 | |
| {
 | |
| 	MatrixObject *self= (MatrixObject*)self_p;
 | |
| 	int i;
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return 0;
 | |
| 
 | |
| 	for(i=0; i<self->colSize; i++)
 | |
| 		vec_from[i]= self->matrix[subtype][i];
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int mathutils_matrix_vector_set(PyObject *self_p, int subtype, float *vec_to)
 | |
| {
 | |
| 	MatrixObject *self= (MatrixObject*)self_p;
 | |
| 	int i;
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return 0;
 | |
| 
 | |
| 	for(i=0; i<self->colSize; i++)
 | |
| 		self->matrix[subtype][i]= vec_to[i];
 | |
| 
 | |
| 	BaseMath_WriteCallback(self);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int mathutils_matrix_vector_get_index(PyObject *self_p, int subtype, float *vec_from, int index)
 | |
| {
 | |
| 	MatrixObject *self= (MatrixObject*)self_p;
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return 0;
 | |
| 
 | |
| 	vec_from[index]= self->matrix[subtype][index];
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int mathutils_matrix_vector_set_index(PyObject *self_p, int subtype, float *vec_to, int index)
 | |
| {
 | |
| 	MatrixObject *self= (MatrixObject*)self_p;
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return 0;
 | |
| 
 | |
| 	self->matrix[subtype][index]= vec_to[index];
 | |
| 
 | |
| 	BaseMath_WriteCallback(self);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| Mathutils_Callback mathutils_matrix_vector_cb = {
 | |
| 	mathutils_matrix_vector_check,
 | |
| 	mathutils_matrix_vector_get,
 | |
| 	mathutils_matrix_vector_set,
 | |
| 	mathutils_matrix_vector_get_index,
 | |
| 	mathutils_matrix_vector_set_index
 | |
| };
 | |
| /* matrix vector callbacks, this is so you can do matrix[i][j] = val  */
 | |
| 
 | |
| /*-------------------------DOC STRINGS ---------------------------*/
 | |
| 
 | |
| static PyObject *Matrix_Zero( MatrixObject * self );
 | |
| static PyObject *Matrix_Identity( MatrixObject * self );
 | |
| static PyObject *Matrix_Transpose( MatrixObject * self );
 | |
| static PyObject *Matrix_Determinant( MatrixObject * self );
 | |
| static PyObject *Matrix_Invert( MatrixObject * self );
 | |
| static PyObject *Matrix_TranslationPart( MatrixObject * self );
 | |
| static PyObject *Matrix_RotationPart( MatrixObject * self );
 | |
| static PyObject *Matrix_scalePart( MatrixObject * self );
 | |
| static PyObject *Matrix_Resize4x4( MatrixObject * self );
 | |
| static PyObject *Matrix_toEuler( MatrixObject * self, PyObject *args );
 | |
| static PyObject *Matrix_toQuat( MatrixObject * self );
 | |
| static PyObject *Matrix_copy( MatrixObject * self );
 | |
| 
 | |
| /*-----------------------METHOD DEFINITIONS ----------------------*/
 | |
| static struct PyMethodDef Matrix_methods[] = {
 | |
| 	{"zero", (PyCFunction) Matrix_Zero, METH_NOARGS, NULL},
 | |
| 	{"identity", (PyCFunction) Matrix_Identity, METH_NOARGS, NULL},
 | |
| 	{"transpose", (PyCFunction) Matrix_Transpose, METH_NOARGS, NULL},
 | |
| 	{"determinant", (PyCFunction) Matrix_Determinant, METH_NOARGS, NULL},
 | |
| 	{"invert", (PyCFunction) Matrix_Invert, METH_NOARGS, NULL},
 | |
| 	{"translationPart", (PyCFunction) Matrix_TranslationPart, METH_NOARGS, NULL},
 | |
| 	{"rotationPart", (PyCFunction) Matrix_RotationPart, METH_NOARGS, NULL},
 | |
| 	{"scalePart", (PyCFunction) Matrix_scalePart, METH_NOARGS, NULL},
 | |
| 	{"resize4x4", (PyCFunction) Matrix_Resize4x4, METH_NOARGS, NULL},
 | |
| 	{"toEuler", (PyCFunction) Matrix_toEuler, METH_VARARGS, NULL},
 | |
| 	{"toQuat", (PyCFunction) Matrix_toQuat, METH_NOARGS, NULL},
 | |
| 	{"copy", (PyCFunction) Matrix_copy, METH_NOARGS, NULL},
 | |
| 	{"__copy__", (PyCFunction) Matrix_copy, METH_NOARGS, NULL},
 | |
| 	{NULL, NULL, 0, NULL}
 | |
| };
 | |
| 
 | |
| //----------------------------------Mathutils.Matrix() -----------------
 | |
| //mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
 | |
| //create a new matrix type
 | |
| static PyObject *Matrix_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
 | |
| {
 | |
| 	PyObject *argObject, *m, *s;
 | |
| 	MatrixObject *mat;
 | |
| 	int argSize, seqSize = 0, i, j;
 | |
| 	float matrix[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 	float scalar;
 | |
| 
 | |
| 	argSize = PyTuple_GET_SIZE(args);
 | |
| 	if(argSize > 4){	//bad arg nums
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
 | |
| 		return NULL;
 | |
| 	} else if (argSize == 0) { //return empty 4D matrix
 | |
| 		return (PyObject *) newMatrixObject(NULL, 4, 4, Py_NEW, NULL);
 | |
| 	}else if (argSize == 1){
 | |
| 		//copy constructor for matrix objects
 | |
| 		argObject = PyTuple_GET_ITEM(args, 0);
 | |
| 		if(MatrixObject_Check(argObject)){
 | |
| 			mat = (MatrixObject*)argObject;
 | |
| 			if(!BaseMath_ReadCallback(mat))
 | |
| 				return NULL;
 | |
| 
 | |
| 			memcpy(matrix, mat->contigPtr, sizeof(float) * mat->rowSize * mat->colSize);
 | |
| 		}
 | |
| 	}else{ //2-4 arguments (all seqs? all same size?)
 | |
| 		for(i =0; i < argSize; i++){
 | |
| 			argObject = PyTuple_GET_ITEM(args, i);
 | |
| 			if (PySequence_Check(argObject)) { //seq?
 | |
| 				if(seqSize){ //0 at first
 | |
| 					if(PySequence_Length(argObject) != seqSize){ //seq size not same
 | |
| 						PyErr_SetString(PyExc_AttributeError, "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
 | |
| 						return NULL;
 | |
| 					}
 | |
| 				}
 | |
| 				seqSize = PySequence_Length(argObject);
 | |
| 			}else{ //arg not a sequence
 | |
| 				PyErr_SetString(PyExc_TypeError, "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
 | |
| 				return NULL;
 | |
| 			}
 | |
| 		}
 | |
| 		//all is well... let's continue parsing
 | |
| 		for (i = 0; i < argSize; i++){
 | |
| 			m = PyTuple_GET_ITEM(args, i);
 | |
| 			if (m == NULL) { // Failed to read sequence
 | |
| 				PyErr_SetString(PyExc_RuntimeError, "Mathutils.Matrix(): failed to parse arguments...\n");
 | |
| 				return NULL;
 | |
| 			}
 | |
| 
 | |
| 			for (j = 0; j < seqSize; j++) {
 | |
| 				s = PySequence_GetItem(m, j);
 | |
| 				if (s == NULL) { // Failed to read sequence
 | |
| 					PyErr_SetString(PyExc_RuntimeError, "Mathutils.Matrix(): failed to parse arguments...\n");
 | |
| 					return NULL;
 | |
| 				}
 | |
| 				
 | |
| 				scalar= (float)PyFloat_AsDouble(s);
 | |
| 				Py_DECREF(s);
 | |
| 				
 | |
| 				if(scalar==-1 && PyErr_Occurred()) { // parsed item is not a number
 | |
| 					PyErr_SetString(PyExc_AttributeError, "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
 | |
| 					return NULL;
 | |
| 				}
 | |
| 
 | |
| 				matrix[(seqSize*i)+j]= scalar;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return newMatrixObject(matrix, argSize, seqSize, Py_NEW, NULL);
 | |
| }
 | |
| 
 | |
| /*-----------------------------METHODS----------------------------*/
 | |
| /*---------------------------Matrix.toQuat() ---------------------*/
 | |
| static PyObject *Matrix_toQuat(MatrixObject * self)
 | |
| {
 | |
| 	float quat[4];
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	/*must be 3-4 cols, 3-4 rows, square matrix*/
 | |
| 	if(self->colSize < 3 || self->rowSize < 3 || (self->colSize != self->rowSize)) {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix.toQuat(): inappropriate matrix size - expects 3x3 or 4x4 matrix");
 | |
| 		return NULL;
 | |
| 	} 
 | |
| 	if(self->colSize == 3){
 | |
|         Mat3ToQuat((float (*)[3])*self->matrix, quat);
 | |
| 	}else{
 | |
| 		Mat4ToQuat((float (*)[4])*self->matrix, quat);
 | |
| 	}
 | |
| 	
 | |
| 	return newQuaternionObject(quat, Py_NEW, NULL);
 | |
| }
 | |
| /*---------------------------Matrix.toEuler() --------------------*/
 | |
| PyObject *Matrix_toEuler(MatrixObject * self, PyObject *args)
 | |
| {
 | |
| 	float eul[3], eul_compatf[3];
 | |
| 	EulerObject *eul_compat = NULL;
 | |
| #ifdef USE_MATHUTILS_DEG
 | |
| 	int x;
 | |
| #endif
 | |
| 	
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	if(!PyArg_ParseTuple(args, "|O!:toEuler", &euler_Type, &eul_compat))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	if(eul_compat) {
 | |
| 		if(!BaseMath_ReadCallback(eul_compat))
 | |
| 			return NULL;
 | |
| 
 | |
| #ifdef USE_MATHUTILS_DEG
 | |
| 		for(x = 0; x < 3; x++) {
 | |
| 			eul_compatf[x] = eul_compat->eul[x] * ((float)Py_PI / 180);
 | |
| 		}
 | |
| #else
 | |
| 		VECCOPY(eul_compatf, eul_compat->eul);
 | |
| #endif
 | |
| 	}
 | |
| 	
 | |
| 	/*must be 3-4 cols, 3-4 rows, square matrix*/
 | |
| 	if(self->colSize ==3 && self->rowSize ==3) {
 | |
| 		if(eul_compat)	Mat3ToCompatibleEul((float (*)[3])*self->matrix, eul, eul_compatf);
 | |
| 		else			Mat3ToEul((float (*)[3])*self->matrix, eul);
 | |
| 	}else if (self->colSize ==4 && self->rowSize ==4) {
 | |
| 		float tempmat3[3][3];
 | |
| 		Mat3CpyMat4(tempmat3, (float (*)[4])*self->matrix);
 | |
| 		Mat3ToEul(tempmat3, eul);
 | |
| 		if(eul_compat)	Mat3ToCompatibleEul(tempmat3, eul, eul_compatf);
 | |
| 		else			Mat3ToEul(tempmat3, eul);
 | |
| 		
 | |
| 	}else {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix.toEuler(): inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| #ifdef USE_MATHUTILS_DEG
 | |
| 	/*have to convert to degrees*/
 | |
| 	for(x = 0; x < 3; x++) {
 | |
| 		eul[x] *= (float) (180 / Py_PI);
 | |
| 	}
 | |
| #endif
 | |
| 	return newEulerObject(eul, Py_NEW, NULL);
 | |
| }
 | |
| /*---------------------------Matrix.resize4x4() ------------------*/
 | |
| PyObject *Matrix_Resize4x4(MatrixObject * self)
 | |
| {
 | |
| 	int x, first_row_elem, curr_pos, new_pos, blank_columns, blank_rows, index;
 | |
| 
 | |
| 	if(self->wrapped==Py_WRAP){
 | |
| 		PyErr_SetString(PyExc_TypeError, "cannot resize wrapped data - make a copy and resize that");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if(self->cb_user){
 | |
| 		PyErr_SetString(PyExc_TypeError, "cannot resize owned data - make a copy and resize that");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	
 | |
| 	self->contigPtr = PyMem_Realloc(self->contigPtr, (sizeof(float) * 16));
 | |
| 	if(self->contigPtr == NULL) {
 | |
| 		PyErr_SetString(PyExc_MemoryError, "matrix.resize4x4(): problem allocating pointer space");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	self->matrix = PyMem_Realloc(self->matrix, (sizeof(float *) * 4));
 | |
| 	if(self->matrix == NULL) {
 | |
| 		PyErr_SetString(PyExc_MemoryError, "matrix.resize4x4(): problem allocating pointer space");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	/*set row pointers*/
 | |
| 	for(x = 0; x < 4; x++) {
 | |
| 		self->matrix[x] = self->contigPtr + (x * 4);
 | |
| 	}
 | |
| 	/*move data to new spot in array + clean*/
 | |
| 	for(blank_rows = (4 - self->rowSize); blank_rows > 0; blank_rows--){
 | |
| 		for(x = 0; x < 4; x++){
 | |
| 			index = (4 * (self->rowSize + (blank_rows - 1))) + x;
 | |
| 			if (index == 10 || index == 15){
 | |
| 				self->contigPtr[index] = 1.0f;
 | |
| 			}else{
 | |
| 				self->contigPtr[index] = 0.0f;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	for(x = 1; x <= self->rowSize; x++){
 | |
| 		first_row_elem = (self->colSize * (self->rowSize - x));
 | |
| 		curr_pos = (first_row_elem + (self->colSize -1));
 | |
| 		new_pos = (4 * (self->rowSize - x )) + (curr_pos - first_row_elem);
 | |
| 		for(blank_columns = (4 - self->colSize); blank_columns > 0; blank_columns--){
 | |
| 			self->contigPtr[new_pos + blank_columns] = 0.0f;
 | |
| 		}
 | |
| 		for(curr_pos = curr_pos; curr_pos >= first_row_elem; curr_pos--){
 | |
| 			self->contigPtr[new_pos] = self->contigPtr[curr_pos];
 | |
| 			new_pos--;
 | |
| 		}
 | |
| 	}
 | |
| 	self->rowSize = 4;
 | |
| 	self->colSize = 4;
 | |
| 	
 | |
| 	Py_INCREF(self);
 | |
| 	return (PyObject *)self;
 | |
| }
 | |
| /*---------------------------Matrix.translationPart() ------------*/
 | |
| PyObject *Matrix_TranslationPart(MatrixObject * self)
 | |
| {
 | |
| 	float vec[4];
 | |
| 	
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	if(self->colSize < 3 || self->rowSize < 4){
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix.translationPart: inappropriate matrix size");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	vec[0] = self->matrix[3][0];
 | |
| 	vec[1] = self->matrix[3][1];
 | |
| 	vec[2] = self->matrix[3][2];
 | |
| 
 | |
| 	return newVectorObject(vec, 3, Py_NEW, NULL);
 | |
| }
 | |
| /*---------------------------Matrix.rotationPart() ---------------*/
 | |
| PyObject *Matrix_RotationPart(MatrixObject * self)
 | |
| {
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if(self->colSize < 3 || self->rowSize < 3){
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix.rotationPart: inappropriate matrix size\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	mat[0] = self->matrix[0][0];
 | |
| 	mat[1] = self->matrix[0][1];
 | |
| 	mat[2] = self->matrix[0][2];
 | |
| 	mat[3] = self->matrix[1][0];
 | |
| 	mat[4] = self->matrix[1][1];
 | |
| 	mat[5] = self->matrix[1][2];
 | |
| 	mat[6] = self->matrix[2][0];
 | |
| 	mat[7] = self->matrix[2][1];
 | |
| 	mat[8] = self->matrix[2][2];
 | |
| 
 | |
| 	return newMatrixObject(mat, 3, 3, Py_NEW, Py_TYPE(self));
 | |
| }
 | |
| /*---------------------------Matrix.scalePart() --------------------*/
 | |
| PyObject *Matrix_scalePart(MatrixObject * self)
 | |
| {
 | |
| 	float scale[3], rot[3];
 | |
| 	float mat[3][3], imat[3][3], tmat[3][3];
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	/*must be 3-4 cols, 3-4 rows, square matrix*/
 | |
| 	if(self->colSize == 4 && self->rowSize == 4)
 | |
| 		Mat3CpyMat4(mat, (float (*)[4])*self->matrix);
 | |
| 	else if(self->colSize == 3 && self->rowSize == 3)
 | |
| 		Mat3CpyMat3(mat, (float (*)[3])*self->matrix);
 | |
| 	else {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix.scalePart(): inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	/* functionality copied from editobject.c apply_obmat */
 | |
| 	Mat3ToEul(mat, rot);
 | |
| 	EulToMat3(rot, tmat);
 | |
| 	Mat3Inv(imat, tmat);
 | |
| 	Mat3MulMat3(tmat, imat, mat);
 | |
| 	
 | |
| 	scale[0]= tmat[0][0];
 | |
| 	scale[1]= tmat[1][1];
 | |
| 	scale[2]= tmat[2][2];
 | |
| 	return newVectorObject(scale, 3, Py_NEW, NULL);
 | |
| }
 | |
| /*---------------------------Matrix.invert() ---------------------*/
 | |
| PyObject *Matrix_Invert(MatrixObject * self)
 | |
| {
 | |
| 	
 | |
| 	int x, y, z = 0;
 | |
| 	float det = 0.0f;
 | |
| 	PyObject *f = NULL;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if(self->rowSize != self->colSize){
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix.invert(ed): only square matrices are supported");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*calculate the determinant*/
 | |
| 	f = Matrix_Determinant(self);
 | |
| 	det = (float)PyFloat_AS_DOUBLE(f); /*Increfs, so we need to decref*/
 | |
| 	Py_DECREF(f);
 | |
| 
 | |
| 	if(det != 0) {
 | |
| 		/*calculate the classical adjoint*/
 | |
| 		if(self->rowSize == 2) {
 | |
| 			mat[0] = self->matrix[1][1];
 | |
| 			mat[1] = -self->matrix[0][1];
 | |
| 			mat[2] = -self->matrix[1][0];
 | |
| 			mat[3] = self->matrix[0][0];
 | |
| 		} else if(self->rowSize == 3) {
 | |
| 			Mat3Adj((float (*)[3]) mat,(float (*)[3]) *self->matrix);
 | |
| 		} else if(self->rowSize == 4) {
 | |
| 			Mat4Adj((float (*)[4]) mat, (float (*)[4]) *self->matrix);
 | |
| 		}
 | |
| 		/*divide by determinate*/
 | |
| 		for(x = 0; x < (self->rowSize * self->colSize); x++) {
 | |
| 			mat[x] /= det;
 | |
| 		}
 | |
| 		/*set values*/
 | |
| 		for(x = 0; x < self->rowSize; x++) {
 | |
| 			for(y = 0; y < self->colSize; y++) {
 | |
| 				self->matrix[x][y] = mat[z];
 | |
| 				z++;
 | |
| 			}
 | |
| 		}
 | |
| 		/*transpose
 | |
| 		Matrix_Transpose(self);*/
 | |
| 	} else {
 | |
| 		PyErr_SetString(PyExc_ValueError, "matrix does not have an inverse");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	
 | |
| 	BaseMath_WriteCallback(self);
 | |
| 	Py_INCREF(self);
 | |
| 	return (PyObject *)self;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*---------------------------Matrix.determinant() ----------------*/
 | |
| PyObject *Matrix_Determinant(MatrixObject * self)
 | |
| {
 | |
| 	float det = 0.0f;
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	if(self->rowSize != self->colSize){
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix.determinant: only square matrices are supported");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(self->rowSize == 2) {
 | |
| 		det = Det2x2(self->matrix[0][0], self->matrix[0][1],
 | |
| 					 self->matrix[1][0], self->matrix[1][1]);
 | |
| 	} else if(self->rowSize == 3) {
 | |
| 		det = Det3x3(self->matrix[0][0], self->matrix[0][1],
 | |
| 					 self->matrix[0][2], self->matrix[1][0],
 | |
| 					 self->matrix[1][1], self->matrix[1][2],
 | |
| 					 self->matrix[2][0], self->matrix[2][1],
 | |
| 					 self->matrix[2][2]);
 | |
| 	} else {
 | |
| 		det = Det4x4((float (*)[4]) *self->matrix);
 | |
| 	}
 | |
| 
 | |
| 	return PyFloat_FromDouble( (double) det );
 | |
| }
 | |
| /*---------------------------Matrix.transpose() ------------------*/
 | |
| PyObject *Matrix_Transpose(MatrixObject * self)
 | |
| {
 | |
| 	float t = 0.0f;
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	if(self->rowSize != self->colSize){
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix.transpose(d): only square matrices are supported");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(self->rowSize == 2) {
 | |
| 		t = self->matrix[1][0];
 | |
| 		self->matrix[1][0] = self->matrix[0][1];
 | |
| 		self->matrix[0][1] = t;
 | |
| 	} else if(self->rowSize == 3) {
 | |
| 		Mat3Transp((float (*)[3])*self->matrix);
 | |
| 	} else {
 | |
| 		Mat4Transp((float (*)[4])*self->matrix);
 | |
| 	}
 | |
| 
 | |
| 	BaseMath_WriteCallback(self);
 | |
| 	Py_INCREF(self);
 | |
| 	return (PyObject *)self;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*---------------------------Matrix.zero() -----------------------*/
 | |
| PyObject *Matrix_Zero(MatrixObject * self)
 | |
| {
 | |
| 	int row, col;
 | |
| 	
 | |
| 	for(row = 0; row < self->rowSize; row++) {
 | |
| 		for(col = 0; col < self->colSize; col++) {
 | |
| 			self->matrix[row][col] = 0.0f;
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	if(!BaseMath_WriteCallback(self))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	Py_INCREF(self);
 | |
| 	return (PyObject *)self;
 | |
| }
 | |
| /*---------------------------Matrix.identity(() ------------------*/
 | |
| PyObject *Matrix_Identity(MatrixObject * self)
 | |
| {
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	if(self->rowSize != self->colSize){
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix.identity: only square matrices are supported\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(self->rowSize == 2) {
 | |
| 		self->matrix[0][0] = 1.0f;
 | |
| 		self->matrix[0][1] = 0.0f;
 | |
| 		self->matrix[1][0] = 0.0f;
 | |
| 		self->matrix[1][1] = 1.0f;
 | |
| 	} else if(self->rowSize == 3) {
 | |
| 		Mat3One((float (*)[3]) *self->matrix);
 | |
| 	} else {
 | |
| 		Mat4One((float (*)[4]) *self->matrix);
 | |
| 	}
 | |
| 
 | |
| 	if(!BaseMath_WriteCallback(self))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	Py_INCREF(self);
 | |
| 	return (PyObject *)self;
 | |
| }
 | |
| 
 | |
| /*---------------------------Matrix.inverted() ------------------*/
 | |
| PyObject *Matrix_copy(MatrixObject * self)
 | |
| {
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	return (PyObject*)newMatrixObject((float (*))*self->matrix, self->rowSize, self->colSize, Py_NEW, Py_TYPE(self));
 | |
| }
 | |
| 
 | |
| /*----------------------------print object (internal)-------------*/
 | |
| /*print the object to screen*/
 | |
| static PyObject *Matrix_repr(MatrixObject * self)
 | |
| {
 | |
| 	int x, y;
 | |
| 	char buffer[48], str[1024];
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	BLI_strncpy(str,"",1024);
 | |
| 	for(x = 0; x < self->colSize; x++){
 | |
| 		sprintf(buffer, "[");
 | |
| 		strcat(str,buffer);
 | |
| 		for(y = 0; y < (self->rowSize - 1); y++) {
 | |
| 			sprintf(buffer, "%.6f, ", self->matrix[y][x]);
 | |
| 			strcat(str,buffer);
 | |
| 		}
 | |
| 		if(x < (self->colSize-1)){
 | |
| 			sprintf(buffer, "%.6f](matrix [row %d])\n", self->matrix[y][x], x);
 | |
| 			strcat(str,buffer);
 | |
| 		}else{
 | |
| 			sprintf(buffer, "%.6f](matrix [row %d])", self->matrix[y][x], x);
 | |
| 			strcat(str,buffer);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return PyUnicode_FromString(str);
 | |
| }
 | |
| /*------------------------tp_richcmpr*/
 | |
| /*returns -1 execption, 0 false, 1 true*/
 | |
| static PyObject* Matrix_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
 | |
| {
 | |
| 	MatrixObject *matA = NULL, *matB = NULL;
 | |
| 	int result = 0;
 | |
| 
 | |
| 	if (!MatrixObject_Check(objectA) || !MatrixObject_Check(objectB)){
 | |
| 		if (comparison_type == Py_NE){
 | |
| 			Py_RETURN_TRUE;
 | |
| 		}else{
 | |
| 			Py_RETURN_FALSE;
 | |
| 		}
 | |
| 	}
 | |
| 	matA = (MatrixObject*)objectA;
 | |
| 	matB = (MatrixObject*)objectB;
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(matA) || !BaseMath_ReadCallback(matB))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	if (matA->colSize != matB->colSize || matA->rowSize != matB->rowSize){
 | |
| 		if (comparison_type == Py_NE){
 | |
| 			Py_RETURN_TRUE;
 | |
| 		}else{
 | |
| 			Py_RETURN_FALSE;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	switch (comparison_type){
 | |
| 		case Py_EQ:
 | |
| 			/*contigPtr is basically a really long vector*/
 | |
| 			result = EXPP_VectorsAreEqual(matA->contigPtr, matB->contigPtr,
 | |
| 				(matA->rowSize * matA->colSize), 1);
 | |
| 			break;
 | |
| 		case Py_NE:
 | |
| 			result = EXPP_VectorsAreEqual(matA->contigPtr, matB->contigPtr,
 | |
| 				(matA->rowSize * matA->colSize), 1);
 | |
| 			if (result == 0){
 | |
| 				result = 1;
 | |
| 			}else{
 | |
| 				result = 0;
 | |
| 			}
 | |
| 			break;
 | |
| 		default:
 | |
| 			printf("The result of the comparison could not be evaluated");
 | |
| 			break;
 | |
| 	}
 | |
| 	if (result == 1){
 | |
| 		Py_RETURN_TRUE;
 | |
| 	}else{
 | |
| 		Py_RETURN_FALSE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*---------------------SEQUENCE PROTOCOLS------------------------
 | |
|   ----------------------------len(object)------------------------
 | |
|   sequence length*/
 | |
| static int Matrix_len(MatrixObject * self)
 | |
| {
 | |
| 	return (self->rowSize);
 | |
| }
 | |
| /*----------------------------object[]---------------------------
 | |
|   sequence accessor (get)
 | |
|   the wrapped vector gives direct access to the matrix data*/
 | |
| static PyObject *Matrix_item(MatrixObject * self, int i)
 | |
| {
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	if(i < 0 || i >= self->rowSize) {
 | |
| 		PyErr_SetString(PyExc_IndexError, "matrix[attribute]: array index out of range");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return newVectorObject_cb((PyObject *)self, self->colSize, mathutils_matrix_vector_cb_index, i);
 | |
| }
 | |
| /*----------------------------object[]-------------------------
 | |
|   sequence accessor (set)*/
 | |
| static int Matrix_ass_item(MatrixObject * self, int i, PyObject * ob)
 | |
| {
 | |
| 	int y, x, size = 0;
 | |
| 	float vec[4];
 | |
| 	PyObject *m, *f;
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return -1;
 | |
| 	
 | |
| 	if(i >= self->rowSize || i < 0){
 | |
| 		PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: bad column\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	if(PySequence_Check(ob)){
 | |
| 		size = PySequence_Length(ob);
 | |
| 		if(size != self->colSize){
 | |
| 			PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: bad sequence size\n");
 | |
| 			return -1;
 | |
| 		}
 | |
| 		for (x = 0; x < size; x++) {
 | |
| 			m = PySequence_GetItem(ob, x);
 | |
| 			if (m == NULL) { /*Failed to read sequence*/
 | |
| 				PyErr_SetString(PyExc_RuntimeError, "matrix[attribute] = x: unable to read sequence\n");
 | |
| 				return -1;
 | |
| 			}
 | |
| 
 | |
| 			f = PyNumber_Float(m);
 | |
| 			if(f == NULL) { /*parsed item not a number*/
 | |
| 				Py_DECREF(m);
 | |
| 				PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: sequence argument not a number\n");
 | |
| 				return -1;
 | |
| 			}
 | |
| 
 | |
| 			vec[x] = (float)PyFloat_AS_DOUBLE(f);
 | |
| 			Py_DECREF(m);
 | |
| 			Py_DECREF(f);
 | |
| 		}
 | |
| 		/*parsed well - now set in matrix*/
 | |
| 		for(y = 0; y < size; y++){
 | |
| 			self->matrix[i][y] = vec[y];
 | |
| 		}
 | |
| 		
 | |
| 		BaseMath_WriteCallback(self);
 | |
| 		return 0;
 | |
| 	}else{
 | |
| 		PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: expects a sequence of column size\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| }
 | |
| /*----------------------------object[z:y]------------------------
 | |
|   sequence slice (get)*/
 | |
| static PyObject *Matrix_slice(MatrixObject * self, int begin, int end)
 | |
| {
 | |
| 
 | |
| 	PyObject *list = NULL;
 | |
| 	int count;
 | |
| 	
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 
 | |
| 	CLAMP(begin, 0, self->rowSize);
 | |
| 	CLAMP(end, 0, self->rowSize);
 | |
| 	begin = MIN2(begin,end);
 | |
| 
 | |
| 	list = PyList_New(end - begin);
 | |
| 	for(count = begin; count < end; count++) {
 | |
| 		PyList_SetItem(list, count - begin,
 | |
| 				newVectorObject_cb((PyObject *)self, self->colSize, mathutils_matrix_vector_cb_index, count));
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	return list;
 | |
| }
 | |
| /*----------------------------object[z:y]------------------------
 | |
|   sequence slice (set)*/
 | |
| static int Matrix_ass_slice(MatrixObject * self, int begin, int end, PyObject * seq)
 | |
| {
 | |
| 	int i, x, y, size, sub_size = 0;
 | |
| 	float mat[16], f;
 | |
| 	PyObject *subseq;
 | |
| 	PyObject *m;
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return -1;
 | |
| 	
 | |
| 	CLAMP(begin, 0, self->rowSize);
 | |
| 	CLAMP(end, 0, self->rowSize);
 | |
| 	begin = MIN2(begin,end);
 | |
| 
 | |
| 	if(PySequence_Check(seq)){
 | |
| 		size = PySequence_Length(seq);
 | |
| 		if(size != (end - begin)){
 | |
| 			PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: size mismatch in slice assignment\n");
 | |
| 			return -1;
 | |
| 		}
 | |
| 		/*parse sub items*/
 | |
| 		for (i = 0; i < size; i++) {
 | |
| 			/*parse each sub sequence*/
 | |
| 			subseq = PySequence_GetItem(seq, i);
 | |
| 			if (subseq == NULL) { /*Failed to read sequence*/
 | |
| 				PyErr_SetString(PyExc_RuntimeError, "matrix[begin:end] = []: unable to read sequence");
 | |
| 				return -1;
 | |
| 			}
 | |
| 
 | |
| 			if(PySequence_Check(subseq)){
 | |
| 				/*subsequence is also a sequence*/
 | |
| 				sub_size = PySequence_Length(subseq);
 | |
| 				if(sub_size != self->colSize){
 | |
| 					Py_DECREF(subseq);
 | |
| 					PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: size mismatch in slice assignment\n");
 | |
| 					return -1;
 | |
| 				}
 | |
| 				for (y = 0; y < sub_size; y++) {
 | |
| 					m = PySequence_GetItem(subseq, y);
 | |
| 					if (m == NULL) { /*Failed to read sequence*/
 | |
| 						Py_DECREF(subseq);
 | |
| 						PyErr_SetString(PyExc_RuntimeError, "matrix[begin:end] = []: unable to read sequence\n");
 | |
| 						return -1;
 | |
| 					}
 | |
| 					
 | |
| 					f = PyFloat_AsDouble(m); /* faster to assume a float and raise an error after */
 | |
| 					if(f == -1 && PyErr_Occurred()) { /*parsed item not a number*/
 | |
| 						Py_DECREF(m);
 | |
| 						Py_DECREF(subseq);
 | |
| 						PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: sequence argument not a number\n");
 | |
| 						return -1;
 | |
| 					}
 | |
| 
 | |
| 					mat[(i * self->colSize) + y] = f;
 | |
| 					Py_DECREF(m);
 | |
| 				}
 | |
| 			}else{
 | |
| 				Py_DECREF(subseq);
 | |
| 				PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: illegal argument type for built-in operation\n");
 | |
| 				return -1;
 | |
| 			}
 | |
| 			Py_DECREF(subseq);
 | |
| 		}
 | |
| 		/*parsed well - now set in matrix*/
 | |
| 		for(x = 0; x < (size * sub_size); x++){
 | |
| 			self->matrix[begin + (int)floor(x / self->colSize)][x % self->colSize] = mat[x];
 | |
| 		}
 | |
| 		
 | |
| 		BaseMath_WriteCallback(self);
 | |
| 		return 0;
 | |
| 	}else{
 | |
| 		PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: illegal argument type for built-in operation\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| }
 | |
| /*------------------------NUMERIC PROTOCOLS----------------------
 | |
|   ------------------------obj + obj------------------------------*/
 | |
| static PyObject *Matrix_add(PyObject * m1, PyObject * m2)
 | |
| {
 | |
| 	int x, y;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 	MatrixObject *mat1 = NULL, *mat2 = NULL;
 | |
| 
 | |
| 	mat1 = (MatrixObject*)m1;
 | |
| 	mat2 = (MatrixObject*)m2;
 | |
| 
 | |
| 	if(!MatrixObject_Check(m1) || !MatrixObject_Check(m2)) {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix addition: arguments not valid for this operation....");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	
 | |
| 	if(!BaseMath_ReadCallback(mat1) || !BaseMath_ReadCallback(mat2))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix addition: matrices must have the same dimensions for this operation");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	for(x = 0; x < mat1->rowSize; x++) {
 | |
| 		for(y = 0; y < mat1->colSize; y++) {
 | |
| 			mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] + mat2->matrix[x][y];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW, NULL);
 | |
| }
 | |
| /*------------------------obj - obj------------------------------
 | |
|   subtraction*/
 | |
| static PyObject *Matrix_sub(PyObject * m1, PyObject * m2)
 | |
| {
 | |
| 	int x, y;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 	MatrixObject *mat1 = NULL, *mat2 = NULL;
 | |
| 
 | |
| 	mat1 = (MatrixObject*)m1;
 | |
| 	mat2 = (MatrixObject*)m2;
 | |
| 
 | |
| 	if(!MatrixObject_Check(m1) || !MatrixObject_Check(m2)) {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix addition: arguments not valid for this operation....");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	
 | |
| 	if(!BaseMath_ReadCallback(mat1) || !BaseMath_ReadCallback(mat2))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix addition: matrices must have the same dimensions for this operation");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	for(x = 0; x < mat1->rowSize; x++) {
 | |
| 		for(y = 0; y < mat1->colSize; y++) {
 | |
| 			mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] - mat2->matrix[x][y];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW, NULL);
 | |
| }
 | |
| /*------------------------obj * obj------------------------------
 | |
|   mulplication*/
 | |
| static PyObject *Matrix_mul(PyObject * m1, PyObject * m2)
 | |
| {
 | |
| 	int x, y, z;
 | |
| 	float scalar;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 	double dot = 0.0f;
 | |
| 	MatrixObject *mat1 = NULL, *mat2 = NULL;
 | |
| 
 | |
| 	if(MatrixObject_Check(m1)) {
 | |
| 		mat1 = (MatrixObject*)m1;
 | |
| 		if(!BaseMath_ReadCallback(mat1))
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	if(MatrixObject_Check(m2)) {
 | |
| 		mat2 = (MatrixObject*)m2;
 | |
| 		if(!BaseMath_ReadCallback(mat2))
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(mat1 && mat2) { /*MATRIX * MATRIX*/
 | |
| 		if(mat1->rowSize != mat2->colSize){
 | |
| 			PyErr_SetString(PyExc_AttributeError,"Matrix multiplication: matrix A rowsize must equal matrix B colsize");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		for(x = 0; x < mat2->rowSize; x++) {
 | |
| 			for(y = 0; y < mat1->colSize; y++) {
 | |
| 				for(z = 0; z < mat1->rowSize; z++) {
 | |
| 					dot += (mat1->matrix[z][y] * mat2->matrix[x][z]);
 | |
| 				}
 | |
| 				mat[((x * mat1->colSize) + y)] = (float)dot;
 | |
| 				dot = 0.0f;
 | |
| 			}
 | |
| 		}
 | |
| 		
 | |
| 		return newMatrixObject(mat, mat2->rowSize, mat1->colSize, Py_NEW, NULL);
 | |
| 	}
 | |
| 	
 | |
| 	if(mat1==NULL){
 | |
| 		scalar=PyFloat_AsDouble(m1); // may not be a float...
 | |
| 		if ((scalar == -1.0 && PyErr_Occurred())==0) { /*FLOAT/INT * MATRIX, this line annoys theeth, lets see if he finds it */
 | |
| 			for(x = 0; x < mat2->rowSize; x++) {
 | |
| 				for(y = 0; y < mat2->colSize; y++) {
 | |
| 					mat[((x * mat2->colSize) + y)] = scalar * mat2->matrix[x][y];
 | |
| 				}
 | |
| 			}
 | |
| 			return newMatrixObject(mat, mat2->rowSize, mat2->colSize, Py_NEW, NULL);
 | |
| 		}
 | |
| 		
 | |
| 		PyErr_SetString(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	else /* if(mat1) { */ {
 | |
| 		
 | |
| 		if(VectorObject_Check(m2)) { /* MATRIX*VECTOR */
 | |
| 			return column_vector_multiplication(mat1, (VectorObject *)m2); /* vector update done inside the function */
 | |
| 		}
 | |
| 		else {
 | |
| 			scalar= PyFloat_AsDouble(m2);
 | |
| 			if ((scalar == -1.0 && PyErr_Occurred())==0) { /* MATRIX*FLOAT/INT */
 | |
| 				for(x = 0; x < mat1->rowSize; x++) {
 | |
| 					for(y = 0; y < mat1->colSize; y++) {
 | |
| 						mat[((x * mat1->colSize) + y)] = scalar * mat1->matrix[x][y];
 | |
| 					}
 | |
| 				}
 | |
| 				return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW, NULL);
 | |
| 			}
 | |
| 		}
 | |
| 		PyErr_SetString(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	PyErr_SetString(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation\n");
 | |
| 	return NULL;
 | |
| }
 | |
| static PyObject* Matrix_inv(MatrixObject *self)
 | |
| {
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	return Matrix_Invert(self);
 | |
| }
 | |
| 
 | |
| /*-----------------PROTOCOL DECLARATIONS--------------------------*/
 | |
| static PySequenceMethods Matrix_SeqMethods = {
 | |
| 	(lenfunc) Matrix_len,					/* sq_length */
 | |
| 	(binaryfunc) 0,							/* sq_concat */
 | |
| 	(ssizeargfunc) 0,							/* sq_repeat */
 | |
| 	(ssizeargfunc) Matrix_item,				/* sq_item */
 | |
| 	(ssizessizeargfunc) Matrix_slice,			/* sq_slice */
 | |
| 	(ssizeobjargproc) Matrix_ass_item,		/* sq_ass_item */
 | |
| 	(ssizessizeobjargproc) Matrix_ass_slice,	/* sq_ass_slice */
 | |
| };
 | |
| 
 | |
| 
 | |
| static PyObject *Matrix_subscript(MatrixObject* self, PyObject* item)
 | |
| {
 | |
| 	if (PyIndex_Check(item)) {
 | |
| 		Py_ssize_t i;
 | |
| 		i = PyNumber_AsSsize_t(item, PyExc_IndexError);
 | |
| 		if (i == -1 && PyErr_Occurred())
 | |
| 			return NULL;
 | |
| 		if (i < 0)
 | |
| 			i += self->rowSize;
 | |
| 		return Matrix_item(self, i);
 | |
| 	} else if (PySlice_Check(item)) {
 | |
| 		Py_ssize_t start, stop, step, slicelength;
 | |
| 
 | |
| 		if (PySlice_GetIndicesEx((PySliceObject*)item, self->rowSize, &start, &stop, &step, &slicelength) < 0)
 | |
| 			return NULL;
 | |
| 
 | |
| 		if (slicelength <= 0) {
 | |
| 			return PyList_New(0);
 | |
| 		}
 | |
| 		else if (step == 1) {
 | |
| 			return Matrix_slice(self, start, stop);
 | |
| 		}
 | |
| 		else {
 | |
| 			PyErr_SetString(PyExc_TypeError, "slice steps not supported with matricies");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 			     "vector indices must be integers, not %.200s",
 | |
| 			     item->ob_type->tp_name);
 | |
| 		return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int Matrix_ass_subscript(MatrixObject* self, PyObject* item, PyObject* value)
 | |
| {
 | |
| 	if (PyIndex_Check(item)) {
 | |
| 		Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
 | |
| 		if (i == -1 && PyErr_Occurred())
 | |
| 			return -1;
 | |
| 		if (i < 0)
 | |
| 			i += self->rowSize;
 | |
| 		return Matrix_ass_item(self, i, value);
 | |
| 	}
 | |
| 	else if (PySlice_Check(item)) {
 | |
| 		Py_ssize_t start, stop, step, slicelength;
 | |
| 
 | |
| 		if (PySlice_GetIndicesEx((PySliceObject*)item, self->rowSize, &start, &stop, &step, &slicelength) < 0)
 | |
| 			return -1;
 | |
| 
 | |
| 		if (step == 1)
 | |
| 			return Matrix_ass_slice(self, start, stop, value);
 | |
| 		else {
 | |
| 			PyErr_SetString(PyExc_TypeError, "slice steps not supported with matricies");
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 			     "matrix indices must be integers, not %.200s",
 | |
| 			     item->ob_type->tp_name);
 | |
| 		return -1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static PyMappingMethods Matrix_AsMapping = {
 | |
| 	(lenfunc)Matrix_len,
 | |
| 	(binaryfunc)Matrix_subscript,
 | |
| 	(objobjargproc)Matrix_ass_subscript
 | |
| };
 | |
| 
 | |
| 
 | |
| static PyNumberMethods Matrix_NumMethods = {
 | |
| 		(binaryfunc)	Matrix_add,	/*nb_add*/
 | |
| 		(binaryfunc)	Matrix_sub,	/*nb_subtract*/
 | |
| 		(binaryfunc)	Matrix_mul,	/*nb_multiply*/
 | |
| 		0,							/*nb_remainder*/
 | |
| 		0,							/*nb_divmod*/
 | |
| 		0,							/*nb_power*/
 | |
| 		(unaryfunc) 	0,	/*nb_negative*/
 | |
| 		(unaryfunc) 	0,	/*tp_positive*/
 | |
| 		(unaryfunc) 	0,	/*tp_absolute*/
 | |
| 		(inquiry)	0,	/*tp_bool*/
 | |
| 		(unaryfunc)	Matrix_inv,	/*nb_invert*/
 | |
| 		0,				/*nb_lshift*/
 | |
| 		(binaryfunc)0,	/*nb_rshift*/
 | |
| 		0,				/*nb_and*/
 | |
| 		0,				/*nb_xor*/
 | |
| 		0,				/*nb_or*/
 | |
| 		0,				/*nb_int*/
 | |
| 		0,				/*nb_reserved*/
 | |
| 		0,				/*nb_float*/
 | |
| 		0,				/* nb_inplace_add */
 | |
| 		0,				/* nb_inplace_subtract */
 | |
| 		0,				/* nb_inplace_multiply */
 | |
| 		0,				/* nb_inplace_remainder */
 | |
| 		0,				/* nb_inplace_power */
 | |
| 		0,				/* nb_inplace_lshift */
 | |
| 		0,				/* nb_inplace_rshift */
 | |
| 		0,				/* nb_inplace_and */
 | |
| 		0,				/* nb_inplace_xor */
 | |
| 		0,				/* nb_inplace_or */
 | |
| 		0,				/* nb_floor_divide */
 | |
| 		0,				/* nb_true_divide */
 | |
| 		0,				/* nb_inplace_floor_divide */
 | |
| 		0,				/* nb_inplace_true_divide */
 | |
| 		0,				/* nb_index */
 | |
| };
 | |
| 
 | |
| static PyObject *Matrix_getRowSize( MatrixObject * self, void *type )
 | |
| {
 | |
| 	return PyLong_FromLong((long) self->rowSize);
 | |
| }
 | |
| 
 | |
| static PyObject *Matrix_getColSize( MatrixObject * self, void *type )
 | |
| {
 | |
| 	return PyLong_FromLong((long) self->colSize);
 | |
| }
 | |
| 
 | |
| /*****************************************************************************/
 | |
| /* Python attributes get/set structure:                                      */
 | |
| /*****************************************************************************/
 | |
| static PyGetSetDef Matrix_getseters[] = {
 | |
| 	{"rowSize", (getter)Matrix_getRowSize, (setter)NULL, "", NULL},
 | |
| 	{"colSize", (getter)Matrix_getColSize, (setter)NULL, "", NULL},
 | |
| 	{"wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, "", NULL},
 | |
| 	{"__owner__",(getter)BaseMathObject_getOwner, (setter)NULL, "",
 | |
| 	 NULL},
 | |
| 	{NULL,NULL,NULL,NULL,NULL}  /* Sentinel */
 | |
| };
 | |
| 
 | |
| /*------------------PY_OBECT DEFINITION--------------------------*/
 | |
| PyTypeObject matrix_Type = {
 | |
| 	PyVarObject_HEAD_INIT(NULL, 0)
 | |
| 	"matrix",						/*tp_name*/
 | |
| 	sizeof(MatrixObject),			/*tp_basicsize*/
 | |
| 	0,								/*tp_itemsize*/
 | |
| 	(destructor)BaseMathObject_dealloc,		/*tp_dealloc*/
 | |
| 	0,								/*tp_print*/
 | |
| 	0,								/*tp_getattr*/
 | |
| 	0,								/*tp_setattr*/
 | |
| 	0,								/*tp_compare*/
 | |
| 	(reprfunc) Matrix_repr,			/*tp_repr*/
 | |
| 	&Matrix_NumMethods,				/*tp_as_number*/
 | |
| 	&Matrix_SeqMethods,				/*tp_as_sequence*/
 | |
| 	&Matrix_AsMapping,				/*tp_as_mapping*/
 | |
| 	0,								/*tp_hash*/
 | |
| 	0,								/*tp_call*/
 | |
| 	0,								/*tp_str*/
 | |
| 	0,								/*tp_getattro*/
 | |
| 	0,								/*tp_setattro*/
 | |
| 	0,								/*tp_as_buffer*/
 | |
| 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
 | |
| 	0,								/*tp_doc*/
 | |
| 	0,								/*tp_traverse*/
 | |
| 	0,								/*tp_clear*/
 | |
| 	(richcmpfunc)Matrix_richcmpr,	/*tp_richcompare*/
 | |
| 	0,								/*tp_weaklistoffset*/
 | |
| 	0,								/*tp_iter*/
 | |
| 	0,								/*tp_iternext*/
 | |
| 	Matrix_methods,					/*tp_methods*/
 | |
| 	0,								/*tp_members*/
 | |
| 	Matrix_getseters,				/*tp_getset*/
 | |
| 	0,								/*tp_base*/
 | |
| 	0,								/*tp_dict*/
 | |
| 	0,								/*tp_descr_get*/
 | |
| 	0,								/*tp_descr_set*/
 | |
| 	0,								/*tp_dictoffset*/
 | |
| 	0,								/*tp_init*/
 | |
| 	0,								/*tp_alloc*/
 | |
| 	Matrix_new,						/*tp_new*/
 | |
| 	0,								/*tp_free*/
 | |
| 	0,								/*tp_is_gc*/
 | |
| 	0,								/*tp_bases*/
 | |
| 	0,								/*tp_mro*/
 | |
| 	0,								/*tp_cache*/
 | |
| 	0,								/*tp_subclasses*/
 | |
| 	0,								/*tp_weaklist*/
 | |
| 	0								/*tp_del*/
 | |
| };
 | |
| 
 | |
| /*------------------------newMatrixObject (internal)-------------
 | |
| creates a new matrix object
 | |
| self->matrix     self->contiguous_ptr (reference to data.xxx)
 | |
|        [0]------------->[0]
 | |
|                         [1]
 | |
|                         [2]
 | |
|        [1]------------->[3]
 | |
|                         [4]
 | |
|                         [5]
 | |
| 	             ....
 | |
| self->matrix[1][1] = self->contigPtr[4] */
 | |
| 
 | |
| /*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
 | |
|  (i.e. it was allocated elsewhere by MEM_mallocN())
 | |
|   pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
 | |
|  (i.e. it must be created here with PyMEM_malloc())*/
 | |
| PyObject *newMatrixObject(float *mat, int rowSize, int colSize, int type, PyTypeObject *base_type)
 | |
| {
 | |
| 	MatrixObject *self;
 | |
| 	int x, row, col;
 | |
| 
 | |
| 	/*matrix objects can be any 2-4row x 2-4col matrix*/
 | |
| 	if(rowSize < 2 || rowSize > 4 || colSize < 2 || colSize > 4){
 | |
| 		PyErr_SetString(PyExc_RuntimeError, "matrix(): row and column sizes must be between 2 and 4");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(base_type)	self = (MatrixObject *)base_type->tp_alloc(base_type, 0);
 | |
| 	else			self = PyObject_NEW(MatrixObject, &matrix_Type);
 | |
| 
 | |
| 	self->rowSize = rowSize;
 | |
| 	self->colSize = colSize;
 | |
| 	
 | |
| 	/* init callbacks as NULL */
 | |
| 	self->cb_user= NULL;
 | |
| 	self->cb_type= self->cb_subtype= 0;
 | |
| 
 | |
| 	if(type == Py_WRAP){
 | |
| 		self->contigPtr = mat;
 | |
| 		/*create pointer array*/
 | |
| 		self->matrix = PyMem_Malloc(rowSize * sizeof(float *));
 | |
| 		if(self->matrix == NULL) { /*allocation failure*/
 | |
| 			PyErr_SetString( PyExc_MemoryError, "matrix(): problem allocating pointer space");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		/*pointer array points to contigous memory*/
 | |
| 		for(x = 0; x < rowSize; x++) {
 | |
| 			self->matrix[x] = self->contigPtr + (x * colSize);
 | |
| 		}
 | |
| 		self->wrapped = Py_WRAP;
 | |
| 	}else if (type == Py_NEW){
 | |
| 		self->contigPtr = PyMem_Malloc(rowSize * colSize * sizeof(float));
 | |
| 		if(self->contigPtr == NULL) { /*allocation failure*/
 | |
| 			PyErr_SetString( PyExc_MemoryError, "matrix(): problem allocating pointer space\n");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		/*create pointer array*/
 | |
| 		self->matrix = PyMem_Malloc(rowSize * sizeof(float *));
 | |
| 		if(self->matrix == NULL) { /*allocation failure*/
 | |
| 			PyMem_Free(self->contigPtr);
 | |
| 			PyErr_SetString( PyExc_MemoryError, "matrix(): problem allocating pointer space");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		/*pointer array points to contigous memory*/
 | |
| 		for(x = 0; x < rowSize; x++) {
 | |
| 			self->matrix[x] = self->contigPtr + (x * colSize);
 | |
| 		}
 | |
| 		/*parse*/
 | |
| 		if(mat) {	/*if a float array passed*/
 | |
| 			for(row = 0; row < rowSize; row++) {
 | |
| 				for(col = 0; col < colSize; col++) {
 | |
| 					self->matrix[row][col] = mat[(row * colSize) + col];
 | |
| 				}
 | |
| 			}
 | |
| 		} else if (rowSize == colSize ) { /*or if no arguments are passed return identity matrix for square matrices */
 | |
| 			Matrix_Identity(self);
 | |
| 			Py_DECREF(self);
 | |
| 		}
 | |
| 		self->wrapped = Py_NEW;
 | |
| 	}else{ /*bad type*/
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return (PyObject *) self;
 | |
| }
 | |
| 
 | |
| PyObject *newMatrixObject_cb(PyObject *cb_user, int rowSize, int colSize, int cb_type, int cb_subtype)
 | |
| {
 | |
| 	MatrixObject *self= (MatrixObject *)newMatrixObject(NULL, rowSize, colSize, Py_NEW, NULL);
 | |
| 	if(self) {
 | |
| 		Py_INCREF(cb_user);
 | |
| 		self->cb_user=			cb_user;
 | |
| 		self->cb_type=			(unsigned char)cb_type;
 | |
| 		self->cb_subtype=		(unsigned char)cb_subtype;
 | |
| 	}
 | |
| 	return (PyObject *) self;
 | |
| }
 | |
| 
 | |
| //----------------column_vector_multiplication (internal)---------
 | |
| //COLUMN VECTOR Multiplication (Matrix X Vector)
 | |
| // [1][4][7]   [a]
 | |
| // [2][5][8] * [b]
 | |
| // [3][6][9]   [c]
 | |
| //vector/matrix multiplication IS NOT COMMUTATIVE!!!!
 | |
| static PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject* vec)
 | |
| {
 | |
| 	float vecNew[4], vecCopy[4];
 | |
| 	double dot = 0.0f;
 | |
| 	int x, y, z = 0;
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(mat) || !BaseMath_ReadCallback(vec))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	if(mat->rowSize != vec->size){
 | |
| 		if(mat->rowSize == 4 && vec->size != 3){
 | |
| 			PyErr_SetString(PyExc_AttributeError, "matrix * vector: matrix row size and vector size must be the same");
 | |
| 			return NULL;
 | |
| 		}else{
 | |
| 			vecCopy[3] = 1.0f;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for(x = 0; x < vec->size; x++){
 | |
| 		vecCopy[x] = vec->vec[x];
 | |
| 	}
 | |
| 	vecNew[3] = 1.0f;
 | |
| 
 | |
| 	for(x = 0; x < mat->colSize; x++) {
 | |
| 		for(y = 0; y < mat->rowSize; y++) {
 | |
| 			dot += mat->matrix[y][x] * vecCopy[y];
 | |
| 		}
 | |
| 		vecNew[z++] = (float)dot;
 | |
| 		dot = 0.0f;
 | |
| 	}
 | |
| 	return newVectorObject(vecNew, vec->size, Py_NEW, NULL);
 | |
| }
 |