This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/modifiers/intern/MOD_array.c
Hans Goudey cfa53e0fbe Refactor: Move normals out of MVert, lazy calculation
As described in T91186, this commit moves mesh vertex normals into a
contiguous array of float vectors in a custom data layer, how face
normals are currently stored.

The main interface is documented in `BKE_mesh.h`. Vertex and face
normals are now calculated on-demand and cached, retrieved with an
"ensure" function. Since the logical state of a mesh is now "has
normals when necessary", they can be retrieved from a `const` mesh.

The goal is to use on-demand calculation for all derived data, but
leave room for eager calculation for performance purposes (modifier
evaluation is threaded, but viewport data generation is not).

**Benefits**
This moves us closer to a SoA approach rather than the current AoS
paradigm. Accessing a contiguous `float3` is much more efficient than
retrieving data from a larger struct. The memory requirements for
accessing only normals or vertex locations are smaller, and at the
cost of more memory usage for just normals, they now don't have to
be converted between float and short, which also simplifies code

In the future, the remaining items can be removed from `MVert`,
leaving only `float3`, which has similar benefits (see T93602).

Removing the combination of derived and original data makes it
conceptually simpler to only calculate normals when necessary.
This is especially important now that we have more opportunities
for temporary meshes in geometry nodes.

**Performance**
In addition to the theoretical future performance improvements by
making `MVert == float3`, I've done some basic performance testing
on this patch directly. The data is fairly rough, but it gives an idea
about where things stand generally.
 - Mesh line primitive 4m Verts: 1.16x faster (36 -> 31 ms),
   showing that accessing just `MVert` is now more efficient.
 - Spring Splash Screen: 1.03-1.06 -> 1.06-1.11 FPS, a very slight
   change that at least shows there is no regression.
 - Sprite Fright Snail Smoosh: 3.30-3.40 -> 3.42-3.50 FPS, a small
   but observable speedup.
 - Set Position Node with Scaled Normal: 1.36x faster (53 -> 39 ms),
   shows that using normals in geometry nodes is faster.
 - Normal Calculation 1.6m Vert Cube: 1.19x faster (25 -> 21 ms),
   shows that calculating normals is slightly faster now.
 - File Size of 1.6m Vert Cube: 1.03x smaller (214.7 -> 208.4 MB),
   Normals are not saved in files, which can help with large meshes.

As for memory usage, it may be slightly more in some cases, but
I didn't observe any difference in the production files I tested.

**Tests**
Some modifiers and cycles test results need to be updated with this
commit, for two reasons:
 - The subdivision surface modifier is not responsible for calculating
   normals anymore. In master, the modifier creates different normals
   than the result of the `Mesh` normal calculation, so this is a bug
   fix.
 - There are small differences in the results of some modifiers that
   use normals because they are not converted to and from `short`
   anymore.

**Future improvements**
 - Remove `ModifierTypeInfo::dependsOnNormals`. Code in each modifier
   already retrieves normals if they are needed anyway.
 - Copy normals as part of a better CoW system for attributes.
 - Make more areas use lazy instead of eager normal calculation.
 - Remove `BKE_mesh_normals_tag_dirty` in more places since that is
   now the default state of a new mesh.
 - Possibly apply a similar change to derived face corner normals.

Differential Revision: https://developer.blender.org/D12770
2022-01-13 14:38:25 -06:00

1057 lines
36 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2005 by the Blender Foundation.
* All rights reserved.
*/
/** \file
* \ingroup modifiers
*
* Array modifier: duplicates the object multiple times along an axis.
*/
#include "MEM_guardedalloc.h"
#include "BLI_utildefines.h"
#include "BLI_math.h"
#include "BLT_translation.h"
#include "DNA_curve_types.h"
#include "DNA_defaults.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "DNA_screen_types.h"
#include "BKE_anim_path.h"
#include "BKE_context.h"
#include "BKE_curve.h"
#include "BKE_displist.h"
#include "BKE_lib_id.h"
#include "BKE_lib_query.h"
#include "BKE_mesh.h"
#include "BKE_modifier.h"
#include "BKE_object_deform.h"
#include "BKE_screen.h"
#include "UI_interface.h"
#include "UI_resources.h"
#include "RNA_access.h"
#include "MOD_ui_common.h"
#include "MOD_util.h"
#include "DEG_depsgraph.h"
#include "DEG_depsgraph_query.h"
static void initData(ModifierData *md)
{
ArrayModifierData *amd = (ArrayModifierData *)md;
BLI_assert(MEMCMP_STRUCT_AFTER_IS_ZERO(amd, modifier));
MEMCPY_STRUCT_AFTER(amd, DNA_struct_default_get(ArrayModifierData), modifier);
/* Open the first sub-panel by default,
* it corresponds to Relative offset which is enabled too. */
md->ui_expand_flag = UI_PANEL_DATA_EXPAND_ROOT | UI_SUBPANEL_DATA_EXPAND_1;
}
static void foreachIDLink(ModifierData *md, Object *ob, IDWalkFunc walk, void *userData)
{
ArrayModifierData *amd = (ArrayModifierData *)md;
walk(userData, ob, (ID **)&amd->start_cap, IDWALK_CB_NOP);
walk(userData, ob, (ID **)&amd->end_cap, IDWALK_CB_NOP);
walk(userData, ob, (ID **)&amd->curve_ob, IDWALK_CB_NOP);
walk(userData, ob, (ID **)&amd->offset_ob, IDWALK_CB_NOP);
}
static void updateDepsgraph(ModifierData *md, const ModifierUpdateDepsgraphContext *ctx)
{
ArrayModifierData *amd = (ArrayModifierData *)md;
bool need_transform_dependency = false;
if (amd->start_cap != NULL) {
DEG_add_object_relation(
ctx->node, amd->start_cap, DEG_OB_COMP_GEOMETRY, "Array Modifier Start Cap");
}
if (amd->end_cap != NULL) {
DEG_add_object_relation(
ctx->node, amd->end_cap, DEG_OB_COMP_GEOMETRY, "Array Modifier End Cap");
}
if (amd->curve_ob) {
DEG_add_object_relation(
ctx->node, amd->curve_ob, DEG_OB_COMP_GEOMETRY, "Array Modifier Curve");
DEG_add_special_eval_flag(ctx->node, &amd->curve_ob->id, DAG_EVAL_NEED_CURVE_PATH);
}
if (amd->offset_ob != NULL) {
DEG_add_object_relation(
ctx->node, amd->offset_ob, DEG_OB_COMP_TRANSFORM, "Array Modifier Offset");
need_transform_dependency = true;
}
if (need_transform_dependency) {
DEG_add_modifier_to_transform_relation(ctx->node, "Array Modifier");
}
}
BLI_INLINE float sum_v3(const float v[3])
{
return v[0] + v[1] + v[2];
}
/* Structure used for sorting vertices, when processing doubles */
typedef struct SortVertsElem {
int vertex_num; /* The original index of the vertex, prior to sorting */
float co[3]; /* Its coordinates */
float sum_co; /* `sum_v3(co)`: just so we don't do the sum many times. */
} SortVertsElem;
static int svert_sum_cmp(const void *e1, const void *e2)
{
const SortVertsElem *sv1 = e1;
const SortVertsElem *sv2 = e2;
if (sv1->sum_co > sv2->sum_co) {
return 1;
}
if (sv1->sum_co < sv2->sum_co) {
return -1;
}
return 0;
}
static void svert_from_mvert(SortVertsElem *sv,
const MVert *mv,
const int i_begin,
const int i_end)
{
int i;
for (i = i_begin; i < i_end; i++, sv++, mv++) {
sv->vertex_num = i;
copy_v3_v3(sv->co, mv->co);
sv->sum_co = sum_v3(mv->co);
}
}
/**
* Take as inputs two sets of verts, to be processed for detection of doubles and mapping.
* Each set of verts is defined by its start within mverts array and its num_verts;
* It builds a mapping for all vertices within source,
* to vertices within target, or -1 if no double found.
* The int doubles_map[num_verts_source] array must have been allocated by caller.
*/
static void dm_mvert_map_doubles(int *doubles_map,
const MVert *mverts,
const int target_start,
const int target_num_verts,
const int source_start,
const int source_num_verts,
const float dist)
{
const float dist3 = ((float)M_SQRT3 + 0.00005f) * dist; /* Just above sqrt(3) */
int i_source, i_target, i_target_low_bound, target_end, source_end;
SortVertsElem *sorted_verts_target, *sorted_verts_source;
SortVertsElem *sve_source, *sve_target, *sve_target_low_bound;
bool target_scan_completed;
target_end = target_start + target_num_verts;
source_end = source_start + source_num_verts;
/* build array of MVerts to be tested for merging */
sorted_verts_target = MEM_malloc_arrayN(target_num_verts, sizeof(SortVertsElem), __func__);
sorted_verts_source = MEM_malloc_arrayN(source_num_verts, sizeof(SortVertsElem), __func__);
/* Copy target vertices index and cos into SortVertsElem array */
svert_from_mvert(sorted_verts_target, mverts + target_start, target_start, target_end);
/* Copy source vertices index and cos into SortVertsElem array */
svert_from_mvert(sorted_verts_source, mverts + source_start, source_start, source_end);
/* sort arrays according to sum of vertex coordinates (sumco) */
qsort(sorted_verts_target, target_num_verts, sizeof(SortVertsElem), svert_sum_cmp);
qsort(sorted_verts_source, source_num_verts, sizeof(SortVertsElem), svert_sum_cmp);
sve_target_low_bound = sorted_verts_target;
i_target_low_bound = 0;
target_scan_completed = false;
/* Scan source vertices, in #SortVertsElem sorted array,
* all the while maintaining the lower bound of possible doubles in target vertices. */
for (i_source = 0, sve_source = sorted_verts_source; i_source < source_num_verts;
i_source++, sve_source++) {
int best_target_vertex = -1;
float best_dist_sq = dist * dist;
float sve_source_sumco;
/* If source has already been assigned to a target (in an earlier call, with other chunks) */
if (doubles_map[sve_source->vertex_num] != -1) {
continue;
}
/* If target fully scanned already, then all remaining source vertices cannot have a double */
if (target_scan_completed) {
doubles_map[sve_source->vertex_num] = -1;
continue;
}
sve_source_sumco = sum_v3(sve_source->co);
/* Skip all target vertices that are more than dist3 lower in terms of sumco */
/* and advance the overall lower bound, applicable to all remaining vertices as well. */
while ((i_target_low_bound < target_num_verts) &&
(sve_target_low_bound->sum_co < sve_source_sumco - dist3)) {
i_target_low_bound++;
sve_target_low_bound++;
}
/* If end of target list reached, then no more possible doubles */
if (i_target_low_bound >= target_num_verts) {
doubles_map[sve_source->vertex_num] = -1;
target_scan_completed = true;
continue;
}
/* Test target candidates starting at the low bound of possible doubles,
* ordered in terms of sumco. */
i_target = i_target_low_bound;
sve_target = sve_target_low_bound;
/* i_target will scan vertices in the
* [v_source_sumco - dist3; v_source_sumco + dist3] range */
while ((i_target < target_num_verts) && (sve_target->sum_co <= sve_source_sumco + dist3)) {
/* Testing distance for candidate double in target */
/* v_target is within dist3 of v_source in terms of sumco; check real distance */
float dist_sq;
if ((dist_sq = len_squared_v3v3(sve_source->co, sve_target->co)) <= best_dist_sq) {
/* Potential double found */
best_dist_sq = dist_sq;
best_target_vertex = sve_target->vertex_num;
/* If target is already mapped, we only follow that mapping if final target remains
* close enough from current vert (otherwise no mapping at all).
* Note that if we later find another target closer than this one, then we check it.
* But if other potential targets are farther,
* then there will be no mapping at all for this source. */
while (best_target_vertex != -1 &&
!ELEM(doubles_map[best_target_vertex], -1, best_target_vertex)) {
if (compare_len_v3v3(mverts[sve_source->vertex_num].co,
mverts[doubles_map[best_target_vertex]].co,
dist)) {
best_target_vertex = doubles_map[best_target_vertex];
}
else {
best_target_vertex = -1;
}
}
}
i_target++;
sve_target++;
}
/* End of candidate scan: if none found then no doubles */
doubles_map[sve_source->vertex_num] = best_target_vertex;
}
MEM_freeN(sorted_verts_source);
MEM_freeN(sorted_verts_target);
}
static void mesh_merge_transform(Mesh *result,
Mesh *cap_mesh,
const float cap_offset[4][4],
uint cap_verts_index,
uint cap_edges_index,
int cap_loops_index,
int cap_polys_index,
int cap_nverts,
int cap_nedges,
int cap_nloops,
int cap_npolys,
int *remap,
int remap_len,
const bool recalc_normals_later)
{
int *index_orig;
int i;
MVert *mv;
MEdge *me;
MLoop *ml;
MPoly *mp;
CustomData_copy_data(&cap_mesh->vdata, &result->vdata, 0, cap_verts_index, cap_nverts);
CustomData_copy_data(&cap_mesh->edata, &result->edata, 0, cap_edges_index, cap_nedges);
CustomData_copy_data(&cap_mesh->ldata, &result->ldata, 0, cap_loops_index, cap_nloops);
CustomData_copy_data(&cap_mesh->pdata, &result->pdata, 0, cap_polys_index, cap_npolys);
mv = result->mvert + cap_verts_index;
for (i = 0; i < cap_nverts; i++, mv++) {
mul_m4_v3(cap_offset, mv->co);
/* Reset MVert flags for caps */
mv->flag = mv->bweight = 0;
}
/* We have to correct normals too, if we do not tag them as dirty later! */
if (!recalc_normals_later) {
float(*dst_vert_normals)[3] = BKE_mesh_vertex_normals_for_write(result);
for (i = 0; i < cap_nverts; i++) {
mul_mat3_m4_v3(cap_offset, dst_vert_normals[cap_verts_index + i]);
normalize_v3(dst_vert_normals[cap_verts_index + i]);
}
}
/* remap the vertex groups if necessary */
if (result->dvert != NULL) {
BKE_object_defgroup_index_map_apply(
&result->dvert[cap_verts_index], cap_nverts, remap, remap_len);
}
/* adjust cap edge vertex indices */
me = result->medge + cap_edges_index;
for (i = 0; i < cap_nedges; i++, me++) {
me->v1 += cap_verts_index;
me->v2 += cap_verts_index;
}
/* adjust cap poly loopstart indices */
mp = result->mpoly + cap_polys_index;
for (i = 0; i < cap_npolys; i++, mp++) {
mp->loopstart += cap_loops_index;
}
/* adjust cap loop vertex and edge indices */
ml = result->mloop + cap_loops_index;
for (i = 0; i < cap_nloops; i++, ml++) {
ml->v += cap_verts_index;
ml->e += cap_edges_index;
}
/* set origindex */
index_orig = CustomData_get_layer(&result->vdata, CD_ORIGINDEX);
if (index_orig) {
copy_vn_i(index_orig + cap_verts_index, cap_nverts, ORIGINDEX_NONE);
}
index_orig = CustomData_get_layer(&result->edata, CD_ORIGINDEX);
if (index_orig) {
copy_vn_i(index_orig + cap_edges_index, cap_nedges, ORIGINDEX_NONE);
}
index_orig = CustomData_get_layer(&result->pdata, CD_ORIGINDEX);
if (index_orig) {
copy_vn_i(index_orig + cap_polys_index, cap_npolys, ORIGINDEX_NONE);
}
index_orig = CustomData_get_layer(&result->ldata, CD_ORIGINDEX);
if (index_orig) {
copy_vn_i(index_orig + cap_loops_index, cap_nloops, ORIGINDEX_NONE);
}
}
static Mesh *arrayModifier_doArray(ArrayModifierData *amd,
const ModifierEvalContext *ctx,
Mesh *mesh)
{
const MVert *src_mvert;
MVert *result_dm_verts;
MEdge *me;
MLoop *ml;
MPoly *mp;
int i, j, c, count;
float length = amd->length;
/* offset matrix */
float offset[4][4];
float scale[3];
bool offset_has_scale;
float current_offset[4][4];
float final_offset[4][4];
int *full_doubles_map = NULL;
int tot_doubles;
const bool use_merge = (amd->flags & MOD_ARR_MERGE) != 0;
const bool use_recalc_normals = (mesh->runtime.cd_dirty_vert & CD_MASK_NORMAL) || use_merge;
const bool use_offset_ob = ((amd->offset_type & MOD_ARR_OFF_OBJ) && amd->offset_ob != NULL);
int start_cap_nverts = 0, start_cap_nedges = 0, start_cap_npolys = 0, start_cap_nloops = 0;
int end_cap_nverts = 0, end_cap_nedges = 0, end_cap_npolys = 0, end_cap_nloops = 0;
int result_nverts = 0, result_nedges = 0, result_npolys = 0, result_nloops = 0;
int chunk_nverts, chunk_nedges, chunk_nloops, chunk_npolys;
int first_chunk_start, first_chunk_nverts, last_chunk_start, last_chunk_nverts;
Mesh *result, *start_cap_mesh = NULL, *end_cap_mesh = NULL;
int *vgroup_start_cap_remap = NULL;
int vgroup_start_cap_remap_len = 0;
int *vgroup_end_cap_remap = NULL;
int vgroup_end_cap_remap_len = 0;
chunk_nverts = mesh->totvert;
chunk_nedges = mesh->totedge;
chunk_nloops = mesh->totloop;
chunk_npolys = mesh->totpoly;
count = amd->count;
Object *start_cap_ob = amd->start_cap;
if (start_cap_ob && start_cap_ob != ctx->object) {
vgroup_start_cap_remap = BKE_object_defgroup_index_map_create(
start_cap_ob, ctx->object, &vgroup_start_cap_remap_len);
start_cap_mesh = BKE_modifier_get_evaluated_mesh_from_evaluated_object(start_cap_ob, false);
if (start_cap_mesh) {
start_cap_nverts = start_cap_mesh->totvert;
start_cap_nedges = start_cap_mesh->totedge;
start_cap_nloops = start_cap_mesh->totloop;
start_cap_npolys = start_cap_mesh->totpoly;
}
}
Object *end_cap_ob = amd->end_cap;
if (end_cap_ob && end_cap_ob != ctx->object) {
vgroup_end_cap_remap = BKE_object_defgroup_index_map_create(
end_cap_ob, ctx->object, &vgroup_end_cap_remap_len);
end_cap_mesh = BKE_modifier_get_evaluated_mesh_from_evaluated_object(end_cap_ob, false);
if (end_cap_mesh) {
end_cap_nverts = end_cap_mesh->totvert;
end_cap_nedges = end_cap_mesh->totedge;
end_cap_nloops = end_cap_mesh->totloop;
end_cap_npolys = end_cap_mesh->totpoly;
}
}
/* Build up offset array, accumulating all settings options. */
unit_m4(offset);
src_mvert = mesh->mvert;
if (amd->offset_type & MOD_ARR_OFF_CONST) {
add_v3_v3(offset[3], amd->offset);
}
if (amd->offset_type & MOD_ARR_OFF_RELATIVE) {
float min[3], max[3];
const MVert *src_mv;
INIT_MINMAX(min, max);
for (src_mv = src_mvert, j = chunk_nverts; j--; src_mv++) {
minmax_v3v3_v3(min, max, src_mv->co);
}
for (j = 3; j--;) {
offset[3][j] += amd->scale[j] * (max[j] - min[j]);
}
}
if (use_offset_ob) {
float obinv[4][4];
float result_mat[4][4];
if (ctx->object) {
invert_m4_m4(obinv, ctx->object->obmat);
}
else {
unit_m4(obinv);
}
mul_m4_series(result_mat, offset, obinv, amd->offset_ob->obmat);
copy_m4_m4(offset, result_mat);
}
/* Check if there is some scaling. If scaling, then we will not translate mapping */
mat4_to_size(scale, offset);
offset_has_scale = !is_one_v3(scale);
if (amd->fit_type == MOD_ARR_FITCURVE && amd->curve_ob != NULL) {
Object *curve_ob = amd->curve_ob;
CurveCache *curve_cache = curve_ob->runtime.curve_cache;
if (curve_cache != NULL && curve_cache->anim_path_accum_length != NULL) {
float scale_fac = mat4_to_scale(curve_ob->obmat);
length = scale_fac * BKE_anim_path_get_length(curve_cache);
}
}
/* About 67 million vertices max seems a decent limit for now. */
const size_t max_num_vertices = 1 << 26;
/* calculate the maximum number of copies which will fit within the
* prescribed length */
if (ELEM(amd->fit_type, MOD_ARR_FITLENGTH, MOD_ARR_FITCURVE)) {
const float float_epsilon = 1e-6f;
bool offset_is_too_small = false;
float dist = len_v3(offset[3]);
if (dist > float_epsilon) {
/* this gives length = first copy start to last copy end
* add a tiny offset for floating point rounding errors */
count = (length + float_epsilon) / dist + 1;
/* Ensure we keep things to a reasonable level, in terms of rough total amount of generated
* vertices.
*/
if (((size_t)count * (size_t)chunk_nverts + (size_t)start_cap_nverts +
(size_t)end_cap_nverts) > max_num_vertices) {
count = 1;
offset_is_too_small = true;
}
}
else {
/* if the offset has no translation, just make one copy */
count = 1;
offset_is_too_small = true;
}
if (offset_is_too_small) {
BKE_modifier_set_error(
ctx->object,
&amd->modifier,
"The offset is too small, we cannot generate the amount of geometry it would require");
}
}
/* Ensure we keep things to a reasonable level, in terms of rough total amount of generated
* vertices.
*/
else if (((size_t)count * (size_t)chunk_nverts + (size_t)start_cap_nverts +
(size_t)end_cap_nverts) > max_num_vertices) {
count = 1;
BKE_modifier_set_error(ctx->object,
&amd->modifier,
"The amount of copies is too high, we cannot generate the amount of "
"geometry it would require");
}
if (count < 1) {
count = 1;
}
/* The number of verts, edges, loops, polys, before eventually merging doubles */
result_nverts = chunk_nverts * count + start_cap_nverts + end_cap_nverts;
result_nedges = chunk_nedges * count + start_cap_nedges + end_cap_nedges;
result_nloops = chunk_nloops * count + start_cap_nloops + end_cap_nloops;
result_npolys = chunk_npolys * count + start_cap_npolys + end_cap_npolys;
/* Initialize a result dm */
result = BKE_mesh_new_nomain_from_template(
mesh, result_nverts, result_nedges, 0, result_nloops, result_npolys);
result_dm_verts = result->mvert;
if (use_merge) {
/* Will need full_doubles_map for handling merge */
full_doubles_map = MEM_malloc_arrayN(result_nverts, sizeof(int), "mod array doubles map");
copy_vn_i(full_doubles_map, result_nverts, -1);
}
/* copy customdata to original geometry */
CustomData_copy_data(&mesh->vdata, &result->vdata, 0, 0, chunk_nverts);
CustomData_copy_data(&mesh->edata, &result->edata, 0, 0, chunk_nedges);
CustomData_copy_data(&mesh->ldata, &result->ldata, 0, 0, chunk_nloops);
CustomData_copy_data(&mesh->pdata, &result->pdata, 0, 0, chunk_npolys);
/* Subsurf for eg won't have mesh data in the custom data arrays.
* now add mvert/medge/mpoly layers. */
if (!CustomData_has_layer(&mesh->vdata, CD_MVERT)) {
memcpy(result->mvert, mesh->mvert, sizeof(*result->mvert) * mesh->totvert);
}
if (!CustomData_has_layer(&mesh->edata, CD_MEDGE)) {
memcpy(result->medge, mesh->medge, sizeof(*result->medge) * mesh->totedge);
}
if (!CustomData_has_layer(&mesh->pdata, CD_MPOLY)) {
memcpy(result->mloop, mesh->mloop, sizeof(*result->mloop) * mesh->totloop);
memcpy(result->mpoly, mesh->mpoly, sizeof(*result->mpoly) * mesh->totpoly);
}
/* Remember first chunk, in case of cap merge */
first_chunk_start = 0;
first_chunk_nverts = chunk_nverts;
unit_m4(current_offset);
const float(*src_vert_normals)[3] = NULL;
float(*dst_vert_normals)[3] = NULL;
if (!use_recalc_normals) {
src_vert_normals = BKE_mesh_vertex_normals_ensure(mesh);
dst_vert_normals = BKE_mesh_vertex_normals_for_write(result);
BKE_mesh_vertex_normals_clear_dirty(result);
}
for (c = 1; c < count; c++) {
/* copy customdata to new geometry */
CustomData_copy_data(&mesh->vdata, &result->vdata, 0, c * chunk_nverts, chunk_nverts);
CustomData_copy_data(&mesh->edata, &result->edata, 0, c * chunk_nedges, chunk_nedges);
CustomData_copy_data(&mesh->ldata, &result->ldata, 0, c * chunk_nloops, chunk_nloops);
CustomData_copy_data(&mesh->pdata, &result->pdata, 0, c * chunk_npolys, chunk_npolys);
const int vert_offset = c * chunk_nverts;
/* recalculate cumulative offset here */
mul_m4_m4m4(current_offset, current_offset, offset);
/* apply offset to all new verts */
for (i = 0; i < chunk_nverts; i++) {
const int i_dst = vert_offset + i;
mul_m4_v3(current_offset, result_dm_verts[i_dst].co);
/* We have to correct normals too, if we do not tag them as dirty! */
if (!use_recalc_normals) {
copy_v3_v3(dst_vert_normals[i_dst], src_vert_normals[i]);
mul_mat3_m4_v3(current_offset, dst_vert_normals[i_dst]);
normalize_v3(dst_vert_normals[i_dst]);
}
}
/* adjust edge vertex indices */
me = result->medge + c * chunk_nedges;
for (i = 0; i < chunk_nedges; i++, me++) {
me->v1 += c * chunk_nverts;
me->v2 += c * chunk_nverts;
}
mp = result->mpoly + c * chunk_npolys;
for (i = 0; i < chunk_npolys; i++, mp++) {
mp->loopstart += c * chunk_nloops;
}
/* adjust loop vertex and edge indices */
ml = result->mloop + c * chunk_nloops;
for (i = 0; i < chunk_nloops; i++, ml++) {
ml->v += c * chunk_nverts;
ml->e += c * chunk_nedges;
}
/* Handle merge between chunk n and n-1 */
if (use_merge && (c >= 1)) {
if (!offset_has_scale && (c >= 2)) {
/* Mapping chunk 3 to chunk 2 is a translation of mapping 2 to 1
* ... that is except if scaling makes the distance grow */
int k;
int this_chunk_index = c * chunk_nverts;
int prev_chunk_index = (c - 1) * chunk_nverts;
for (k = 0; k < chunk_nverts; k++, this_chunk_index++, prev_chunk_index++) {
int target = full_doubles_map[prev_chunk_index];
if (target != -1) {
target += chunk_nverts; /* translate mapping */
while (target != -1 && !ELEM(full_doubles_map[target], -1, target)) {
/* If target is already mapped, we only follow that mapping if final target remains
* close enough from current vert (otherwise no mapping at all). */
if (compare_len_v3v3(result_dm_verts[this_chunk_index].co,
result_dm_verts[full_doubles_map[target]].co,
amd->merge_dist)) {
target = full_doubles_map[target];
}
else {
target = -1;
}
}
}
full_doubles_map[this_chunk_index] = target;
}
}
else {
dm_mvert_map_doubles(full_doubles_map,
result_dm_verts,
(c - 1) * chunk_nverts,
chunk_nverts,
c * chunk_nverts,
chunk_nverts,
amd->merge_dist);
}
}
}
/* handle UVs */
if (chunk_nloops > 0 && is_zero_v2(amd->uv_offset) == false) {
const int totuv = CustomData_number_of_layers(&result->ldata, CD_MLOOPUV);
for (i = 0; i < totuv; i++) {
MLoopUV *dmloopuv = CustomData_get_layer_n(&result->ldata, CD_MLOOPUV, i);
dmloopuv += chunk_nloops;
for (c = 1; c < count; c++) {
const float uv_offset[2] = {
amd->uv_offset[0] * (float)c,
amd->uv_offset[1] * (float)c,
};
int l_index = chunk_nloops;
for (; l_index-- != 0; dmloopuv++) {
dmloopuv->uv[0] += uv_offset[0];
dmloopuv->uv[1] += uv_offset[1];
}
}
}
}
last_chunk_start = (count - 1) * chunk_nverts;
last_chunk_nverts = chunk_nverts;
copy_m4_m4(final_offset, current_offset);
if (use_merge && (amd->flags & MOD_ARR_MERGEFINAL) && (count > 1)) {
/* Merge first and last copies */
dm_mvert_map_doubles(full_doubles_map,
result_dm_verts,
last_chunk_start,
last_chunk_nverts,
first_chunk_start,
first_chunk_nverts,
amd->merge_dist);
}
/* start capping */
if (start_cap_mesh) {
float start_offset[4][4];
int start_cap_start = result_nverts - start_cap_nverts - end_cap_nverts;
invert_m4_m4(start_offset, offset);
mesh_merge_transform(result,
start_cap_mesh,
start_offset,
result_nverts - start_cap_nverts - end_cap_nverts,
result_nedges - start_cap_nedges - end_cap_nedges,
result_nloops - start_cap_nloops - end_cap_nloops,
result_npolys - start_cap_npolys - end_cap_npolys,
start_cap_nverts,
start_cap_nedges,
start_cap_nloops,
start_cap_npolys,
vgroup_start_cap_remap,
vgroup_start_cap_remap_len,
use_recalc_normals);
/* Identify doubles with first chunk */
if (use_merge) {
dm_mvert_map_doubles(full_doubles_map,
result_dm_verts,
first_chunk_start,
first_chunk_nverts,
start_cap_start,
start_cap_nverts,
amd->merge_dist);
}
}
if (end_cap_mesh) {
float end_offset[4][4];
int end_cap_start = result_nverts - end_cap_nverts;
mul_m4_m4m4(end_offset, current_offset, offset);
mesh_merge_transform(result,
end_cap_mesh,
end_offset,
result_nverts - end_cap_nverts,
result_nedges - end_cap_nedges,
result_nloops - end_cap_nloops,
result_npolys - end_cap_npolys,
end_cap_nverts,
end_cap_nedges,
end_cap_nloops,
end_cap_npolys,
vgroup_end_cap_remap,
vgroup_end_cap_remap_len,
use_recalc_normals);
/* Identify doubles with last chunk */
if (use_merge) {
dm_mvert_map_doubles(full_doubles_map,
result_dm_verts,
last_chunk_start,
last_chunk_nverts,
end_cap_start,
end_cap_nverts,
amd->merge_dist);
}
}
/* done capping */
/* Handle merging */
tot_doubles = 0;
if (use_merge) {
for (i = 0; i < result_nverts; i++) {
int new_i = full_doubles_map[i];
if (new_i != -1) {
/* We have to follow chains of doubles
* (merge start/end especially is likely to create some),
* those are not supported at all by BKE_mesh_merge_verts! */
while (!ELEM(full_doubles_map[new_i], -1, new_i)) {
new_i = full_doubles_map[new_i];
}
if (i == new_i) {
full_doubles_map[i] = -1;
}
else {
full_doubles_map[i] = new_i;
tot_doubles++;
}
}
}
if (tot_doubles > 0) {
result = BKE_mesh_merge_verts(
result, full_doubles_map, tot_doubles, MESH_MERGE_VERTS_DUMP_IF_EQUAL);
}
MEM_freeN(full_doubles_map);
}
/* In case org dm has dirty normals, or we made some merging, mark normals as dirty in new mesh!
* TODO: we may need to set other dirty flags as well?
*/
if (use_recalc_normals) {
BKE_mesh_normals_tag_dirty(result);
}
if (vgroup_start_cap_remap) {
MEM_freeN(vgroup_start_cap_remap);
}
if (vgroup_end_cap_remap) {
MEM_freeN(vgroup_end_cap_remap);
}
return result;
}
static Mesh *modifyMesh(ModifierData *md, const ModifierEvalContext *ctx, Mesh *mesh)
{
ArrayModifierData *amd = (ArrayModifierData *)md;
return arrayModifier_doArray(amd, ctx, mesh);
}
static bool isDisabled(const struct Scene *UNUSED(scene),
ModifierData *md,
bool UNUSED(useRenderParams))
{
ArrayModifierData *amd = (ArrayModifierData *)md;
/* The object type check is only needed here in case we have a placeholder
* object assigned (because the library containing the curve/mesh is missing).
*
* In other cases it should be impossible to have a type mismatch.
*/
if (amd->curve_ob && amd->curve_ob->type != OB_CURVE) {
return true;
}
if (amd->start_cap && amd->start_cap->type != OB_MESH) {
return true;
}
if (amd->end_cap && amd->end_cap->type != OB_MESH) {
return true;
}
return false;
}
static void panel_draw(const bContext *UNUSED(C), Panel *panel)
{
uiLayout *layout = panel->layout;
PointerRNA ob_ptr;
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, &ob_ptr);
uiLayoutSetPropSep(layout, true);
uiItemR(layout, ptr, "fit_type", 0, NULL, ICON_NONE);
int fit_type = RNA_enum_get(ptr, "fit_type");
if (fit_type == MOD_ARR_FIXEDCOUNT) {
uiItemR(layout, ptr, "count", 0, NULL, ICON_NONE);
}
else if (fit_type == MOD_ARR_FITLENGTH) {
uiItemR(layout, ptr, "fit_length", 0, NULL, ICON_NONE);
}
else if (fit_type == MOD_ARR_FITCURVE) {
uiItemR(layout, ptr, "curve", 0, NULL, ICON_NONE);
}
modifier_panel_end(layout, ptr);
}
static void relative_offset_header_draw(const bContext *UNUSED(C), Panel *panel)
{
uiLayout *layout = panel->layout;
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, NULL);
uiItemR(layout, ptr, "use_relative_offset", 0, NULL, ICON_NONE);
}
static void relative_offset_draw(const bContext *UNUSED(C), Panel *panel)
{
uiLayout *layout = panel->layout;
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, NULL);
uiLayoutSetPropSep(layout, true);
uiLayout *col = uiLayoutColumn(layout, false);
uiLayoutSetActive(col, RNA_boolean_get(ptr, "use_relative_offset"));
uiItemR(col, ptr, "relative_offset_displace", 0, IFACE_("Factor"), ICON_NONE);
}
static void constant_offset_header_draw(const bContext *UNUSED(C), Panel *panel)
{
uiLayout *layout = panel->layout;
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, NULL);
uiItemR(layout, ptr, "use_constant_offset", 0, NULL, ICON_NONE);
}
static void constant_offset_draw(const bContext *UNUSED(C), Panel *panel)
{
uiLayout *layout = panel->layout;
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, NULL);
uiLayoutSetPropSep(layout, true);
uiLayout *col = uiLayoutColumn(layout, false);
uiLayoutSetActive(col, RNA_boolean_get(ptr, "use_constant_offset"));
uiItemR(col, ptr, "constant_offset_displace", 0, IFACE_("Distance"), ICON_NONE);
}
/**
* Object offset in a subpanel for consistency with the other offset types.
*/
static void object_offset_header_draw(const bContext *UNUSED(C), Panel *panel)
{
uiLayout *layout = panel->layout;
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, NULL);
uiItemR(layout, ptr, "use_object_offset", 0, NULL, ICON_NONE);
}
static void object_offset_draw(const bContext *UNUSED(C), Panel *panel)
{
uiLayout *layout = panel->layout;
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, NULL);
uiLayoutSetPropSep(layout, true);
uiLayout *col = uiLayoutColumn(layout, false);
uiLayoutSetActive(col, RNA_boolean_get(ptr, "use_object_offset"));
uiItemR(col, ptr, "offset_object", 0, IFACE_("Object"), ICON_NONE);
}
static void symmetry_panel_header_draw(const bContext *UNUSED(C), Panel *panel)
{
uiLayout *layout = panel->layout;
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, NULL);
uiItemR(layout, ptr, "use_merge_vertices", 0, IFACE_("Merge"), ICON_NONE);
}
static void symmetry_panel_draw(const bContext *UNUSED(C), Panel *panel)
{
uiLayout *layout = panel->layout;
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, NULL);
uiLayoutSetPropSep(layout, true);
uiLayout *col = uiLayoutColumn(layout, false);
uiLayoutSetActive(col, RNA_boolean_get(ptr, "use_merge_vertices"));
uiItemR(col, ptr, "merge_threshold", 0, IFACE_("Distance"), ICON_NONE);
uiItemR(col, ptr, "use_merge_vertices_cap", 0, IFACE_("First and Last Copies"), ICON_NONE);
}
static void uv_panel_draw(const bContext *UNUSED(C), Panel *panel)
{
uiLayout *col;
uiLayout *layout = panel->layout;
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, NULL);
uiLayoutSetPropSep(layout, true);
col = uiLayoutColumn(layout, true);
uiItemR(col, ptr, "offset_u", UI_ITEM_R_EXPAND, IFACE_("Offset U"), ICON_NONE);
uiItemR(col, ptr, "offset_v", UI_ITEM_R_EXPAND, IFACE_("V"), ICON_NONE);
}
static void caps_panel_draw(const bContext *UNUSED(C), Panel *panel)
{
uiLayout *col;
uiLayout *layout = panel->layout;
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, NULL);
uiLayoutSetPropSep(layout, true);
col = uiLayoutColumn(layout, false);
uiItemR(col, ptr, "start_cap", 0, IFACE_("Cap Start"), ICON_NONE);
uiItemR(col, ptr, "end_cap", 0, IFACE_("End"), ICON_NONE);
}
static void panelRegister(ARegionType *region_type)
{
PanelType *panel_type = modifier_panel_register(region_type, eModifierType_Array, panel_draw);
modifier_subpanel_register(region_type,
"relative_offset",
"",
relative_offset_header_draw,
relative_offset_draw,
panel_type);
modifier_subpanel_register(region_type,
"constant_offset",
"",
constant_offset_header_draw,
constant_offset_draw,
panel_type);
modifier_subpanel_register(
region_type, "object_offset", "", object_offset_header_draw, object_offset_draw, panel_type);
modifier_subpanel_register(
region_type, "merge", "", symmetry_panel_header_draw, symmetry_panel_draw, panel_type);
modifier_subpanel_register(region_type, "uv", "UVs", NULL, uv_panel_draw, panel_type);
modifier_subpanel_register(region_type, "caps", "Caps", NULL, caps_panel_draw, panel_type);
}
ModifierTypeInfo modifierType_Array = {
/* name */ "Array",
/* structName */ "ArrayModifierData",
/* structSize */ sizeof(ArrayModifierData),
/* srna */ &RNA_ArrayModifier,
/* type */ eModifierTypeType_Constructive,
/* flags */ eModifierTypeFlag_AcceptsMesh | eModifierTypeFlag_SupportsMapping |
eModifierTypeFlag_SupportsEditmode | eModifierTypeFlag_EnableInEditmode |
eModifierTypeFlag_AcceptsCVs,
/* icon */ ICON_MOD_ARRAY,
/* copyData */ BKE_modifier_copydata_generic,
/* deformVerts */ NULL,
/* deformMatrices */ NULL,
/* deformVertsEM */ NULL,
/* deformMatricesEM */ NULL,
/* modifyMesh */ modifyMesh,
/* modifyHair */ NULL,
/* modifyGeometrySet */ NULL,
/* initData */ initData,
/* requiredDataMask */ NULL,
/* freeData */ NULL,
/* isDisabled */ isDisabled,
/* updateDepsgraph */ updateDepsgraph,
/* dependsOnTime */ NULL,
/* dependsOnNormals */ NULL,
/* foreachIDLink */ foreachIDLink,
/* foreachTexLink */ NULL,
/* freeRuntimeData */ NULL,
/* panelRegister */ panelRegister,
/* blendWrite */ NULL,
/* blendRead */ NULL,
};