This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/ika.c
Kent Mein d0e346d544 updated .c files to include:
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

Just need to finish cpp files now :)

Kent
--
mein@cs.umn.edu
2002-11-25 12:02:15 +00:00

601 lines
11 KiB
C

/* ika.c MIXED MODEL
*
* april 96
*
*
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include <math.h>
#include <stdlib.h>
#include "MEM_guardedalloc.h"
/* types */
#include "DNA_ika_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "DNA_view3d_types.h"
#include "BLI_blenlib.h"
#include "BLI_arithb.h"
/* functions */
#include "BKE_blender.h"
#include "BKE_library.h"
#include "BKE_global.h"
#include "BKE_main.h"
#include "BKE_object.h"
#include "BKE_ika.h"
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
/* Let's go! */
#define TOLER 0.000076
#define CLAMP(a, b, c) if((a)<(b)) (a)=(b); else if((a)>(c)) (a)=(c)
void unlink_ika(Ika *ika)
{
/* loskoppelen: */
}
/* niet Ika zelf vrijgeven */
void free_ika(Ika *ika)
{
/* unimplemented!!! */
unlink_ika(ika);
BLI_freelistN(&ika->limbbase);
if(ika->def) MEM_freeN(ika->def);
}
Ika *add_ika()
{
Ika *ika;
ika= alloc_libblock(&G.main->ika, ID_IK, "Ika");
ika->flag = IK_GRABEFF | IK_XYCONSTRAINT;
ika->xyconstraint= 0.5f;
ika->mem= 0.3f;
ika->iter= 6;
return ika;
}
Ika *copy_ika(Ika *ika)
{
Ika *ikan;
ikan= copy_libblock(ika);
duplicatelist(&ikan->limbbase, &ika->limbbase);
ikan->def= MEM_dupallocN(ikan->def);
return ikan;
}
void make_local_ika(Ika *ika)
{
Object *ob;
Ika *ikan;
int local=0, lib=0;
/* - zijn er alleen lib users: niet doen
* - zijn er alleen locale users: flag zetten
* - mixed: copy
*/
if(ika->id.lib==0) return;
if(ika->id.us==1) {
ika->id.lib= 0;
ika->id.flag= LIB_LOCAL;
new_id(0, (ID *)ika, 0);
return;
}
ob= G.main->object.first;
while(ob) {
if(ob->data==ika) {
if(ob->id.lib) lib= 1;
else local= 1;
}
ob= ob->id.next;
}
if(local && lib==0) {
ika->id.lib= 0;
ika->id.flag= LIB_LOCAL;
new_id(0, (ID *)ika, 0);
}
else if(local && lib) {
ikan= copy_ika(ika);
ikan->id.us= 0;
ob= G.main->object.first;
while(ob) {
if(ob->data==ika) {
if(ob->id.lib==0) {
ob->data= ikan;
ikan->id.us++;
ika->id.us--;
}
}
ob= ob->id.next;
}
}
}
int count_limbs(Object *ob)
{
int tot=0;
Ika *ika;
Limb *li;
if(ob->type!=OB_IKA) return 0;
ika= ob->data;
li= ika->limbbase.first;
while(li) {
tot++;
li= li->next;
}
return tot;
}
/* ************************************************** */
/* aan hand van eff[] de len en alpha */
void calc_limb(Limb *li)
{
Limb *prev= li;
float vec[2], alpha= 0.0;
/* alpha van 'parents' */
while( (prev=prev->prev) ) {
alpha+= prev->alpha;
}
if(li->prev) {
vec[0]= -li->prev->eff[0];
vec[1]= -li->prev->eff[1];
}
else vec[0]= vec[1]= 0.0;
vec[0]+= li->eff[0];
vec[1]+= li->eff[1];
li->alpha= (float)atan2(vec[1], vec[0]) - alpha;
li->len= (float)sqrt(vec[0]*vec[0] + vec[1]*vec[1]);
}
/* aan hand van len en alpha worden de eindpunten berekend */
void calc_ika(Ika *ika, Limb *li)
{
float alpha=0.0, co, si;
if(li) {
Limb *prev= li;
while((prev=prev->prev)) {
alpha+= prev->alpha;
}
}
else li= ika->limbbase.first;
while(li) {
if(li->alpha != li->alpha) li->alpha= 0.0f; /* NaN patch */
alpha+= li->alpha;
co= (float)cos(alpha);
si= (float)sin(alpha);
li->eff[0]= co*li->len;
li->eff[1]= si*li->len;
if(li->prev) {
li->eff[0]+= li->prev->eff[0];
li->eff[1]+= li->prev->eff[1];
}
if(li->next==0) {
ika->eff[0]= li->eff[0];
ika->eff[1]= li->eff[1];
}
li= li->next;
}
}
void init_defstate_ika(Object *ob)
{
Ika *ika;
Limb *li;
ika= ob->data;
ika->totx= 0.0;
ika->toty= 0.0;
li= ika->limbbase.first;
calc_ika(ika, 0); /* correcte eindpunten */
while(li) {
li->alphao= li->alpha;
li->leno= li->len;
li= li->next;
}
ika->eff[2]= 0.0;
VecMat4MulVecfl(ika->effg, ob->obmat, ika->eff);
}
void itterate_limb(Ika *ika, Limb *li)
{
float da, n1[2], n2[2], len1, len2;
if(li->prev) {
n1[0]= ika->eff[0] - li->prev->eff[0];
n1[1]= ika->eff[1] - li->prev->eff[1];
n2[0]= ika->effn[0] - li->prev->eff[0];
n2[1]= ika->effn[1] - li->prev->eff[1];
}
else {
n1[0]= ika->eff[0];
n1[1]= ika->eff[1];
n2[0]= ika->effn[0];
n2[1]= ika->effn[1];
}
len1= (float)sqrt(n1[0]*n1[0] + n1[1]*n1[1]);
len2= (float)sqrt(n2[0]*n2[0] + n2[1]*n2[1]);
da= (1.0f-li->fac)*saacos( (n1[0]*n2[0]+n1[1]*n2[1])/(len1*len2) );
if(n1[0]*n2[1] < n1[1]*n2[0]) da= -da;
li->alpha+= da;
}
void rotate_ika(Object *ob, Ika *ika)
{
Limb *li;
float len2, da, n1[2], n2[2];
/* terug roteren */
euler_rot(ob->rot, -ika->toty, 'y');
ika->toty= 0.0;
where_is_object(ob);
Mat4Invert(ob->imat, ob->obmat);
VecMat4MulVecfl(ika->effn, ob->imat, ika->effg);
li= ika->limbbase.last;
if(li==0) return;
n1[0]= ika->eff[0];
n2[0]= ika->effn[0];
n2[1]= ika->effn[2];
len2= (float)sqrt(n2[0]*n2[0] + n2[1]*n2[1]);
if(len2>TOLER) {
da= (n2[0])/(len2);
if(n1[0]<0.0) da= -da;
/* als de x comp bijna nul is kan dit gebeuren */
if(da<=-1.0+TOLER || da>=1.0) ;
else {
da= saacos( da );
if(n1[0]*n2[1] > 0.0) da= -da;
euler_rot(ob->rot, da, 'y');
ika->toty= da;
}
}
}
void rotate_ika_xy(Object *ob, Ika *ika)
{
Limb *li;
float ang, da, n1[3], n2[3], axis[3], quat[4];
/* terug roteren */
euler_rot(ob->rot, -ika->toty, 'y');
euler_rot(ob->rot, -ika->totx, 'x');
where_is_object(ob);
Mat4Invert(ob->imat, ob->obmat);
VecMat4MulVecfl(ika->effn, ob->imat, ika->effg);
li= ika->limbbase.last;
if(li==0) return;
/* ika->eff = old situation */
/* ika->effn = desired situation */
*(n1)= *(ika->effn);
*(n1+1)= *(ika->effn+1);
*(n1+2)= 0.0;
*(n2)= *(ika->effn);
*(n2+1)= *(ika->effn+1);
*(n2+2)= *(ika->effn+2);
Normalise(n1);
Normalise(n2);
ang= n1[0]*n2[0] + n1[1]*n2[1] + n1[2]*n2[2];
ang= saacos(ang);
if(ang<-0.0000001 || ang>0.00000001) {
Crossf(axis, n1, n2);
Normalise(axis);
quat[0]= (float)cos(0.5*ang);
da= (float)sin(0.5*ang);
quat[1]= da*axis[0];
quat[2]= da*axis[1];
quat[3]= da*axis[2];
QuatToEul(quat, axis);
ika->totx= axis[0];
CLAMP(ika->totx, -ika->xyconstraint, ika->xyconstraint);
ika->toty= axis[1];
CLAMP(ika->toty, -ika->xyconstraint, ika->xyconstraint);
}
euler_rot(ob->rot, ika->totx, 'x');
euler_rot(ob->rot, ika->toty, 'y');
}
void itterate_ika(Object *ob)
{
Ika *ika;
Limb *li;
int it = 0;
ika= ob->data;
if((ika->flag & IK_GRABEFF)==0) return;
disable_where_script(1);
/* memory: grote tijdsprongen afvangen */
it= abs(ika->lastfra - G.scene->r.cfra);
ika->lastfra= G.scene->r.cfra;
if(it>10) {
/* one itteration extra */
itterate_ika(ob);
}
else {
li= ika->limbbase.first;
while(li) {
li->alpha= (1.0f-ika->mem)*li->alpha + ika->mem*li->alphao;
if(li->fac==1.0f) li->fac= 0.05f; /* oude files: kan weg in juni 96 */
li= li->next;
}
}
calc_ika(ika, 0);
/* effector heeft parent? */
if(ika->parent) {
if(ika->partype==PAROBJECT) {
if(ika->parent->ctime != (float) G.scene->r.cfra) where_is_object(ika->parent);
*(ika->effg)= *(ika->parent->obmat[3]);
*(ika->effg+1)= *(ika->parent->obmat[3]+1);
*(ika->effg+2)= *(ika->parent->obmat[3]+2);
}
else {
what_does_parent1(ika->parent, ika->partype, ika->par1, 0, 0);
*(ika->effg)= *(workob.obmat[3]);
*(ika->effg+1)= *(workob.obmat[3]+1);
*(ika->effg+2)= *(workob.obmat[3]+2);
}
}
/* y-as goed draaien */
if(ika->flag & IK_XYCONSTRAINT)
rotate_ika_xy(ob, ika);
else
rotate_ika(ob, ika);
it= ika->iter;
while(it--) {
where_is_object(ob);
Mat4Invert(ob->imat, ob->obmat);
VecMat4MulVecfl(ika->effn, ob->imat, ika->effg);
/* forward: dan gaan ook de eerste limbs */
li= ika->limbbase.first;
while(li) {
itterate_limb(ika, li);
/* zet je calc_ika() buiten deze lus: lange kettingen instabiel */
calc_ika(ika, li);
li= li->next;
}
where_is_object(ob);
Mat4Invert(ob->imat, ob->obmat);
VecMat4MulVecfl(ika->effn, ob->imat, ika->effg);
/* backward */
li= ika->limbbase.last;
while(li) {
itterate_limb(ika, li);
/* zet je calc_ika() buiten deze lus: lange kettingen instabiel */
calc_ika(ika, li);
li= li->prev;
}
}
disable_where_script(0);
}
void do_all_ikas()
{
Base *base = 0;
base= G.scene->base.first;
while(base) {
if(base->object->type==OB_IKA) itterate_ika(base->object);
base= base->next;
}
}
void do_all_visible_ikas()
{
Base *base = 0;
base= G.scene->base.first;
while(base) {
if(base->lay & G.scene->lay) {
if(base->object->type==OB_IKA) itterate_ika(base->object);
}
base= base->next;
}
}
/* ******************** DEFORM ************************ */
void init_skel_deform(Object *par, Object *ob)
{
Deform *def;
Ika *ika;
int a;
/* deform:
*
* ob_vec * ob_obmat * def_imat (weight fie) * def_obmat * ob_imat = ob_vec'
*
* <----- premat ----> <---- postmat ---->
*/
if(par->type!=OB_IKA) return;
Mat4Invert(ob->imat, ob->obmat);
ika= par->data;
a= ika->totdef;
def= ika->def;
while(a--) {
what_does_parent1(def->ob, def->partype, def->par1, def->par2, def->par3);
Mat4MulMat4(def->premat, ob->obmat, def->imat);
Mat4MulMat4(def->postmat, workob.obmat, ob->imat);
def++;
}
}
void calc_skel_deform(Ika *ika, float *co)
{
Deform *def;
int a;
float totw=0.0, weight, fac, len, vec[3], totvec[3];
def= ika->def;
if(def==0) return;
a= ika->totdef;
totvec[0]=totvec[1]=totvec[2]= 0.0;
while(a--) {
VecMat4MulVecfl(vec, def->premat, co);
len= (float)sqrt(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]);
if(def->vec[0]==0.0f) len= 2.0f*len;
else len= len + (float)sqrt( (vec[0]+def->vec[0])*(vec[0]+def->vec[0]) + vec[1]*vec[1] + vec[2]*vec[2]);
/* def->vec[0]= len limb */
weight= 1.0f/(0.001f+len);
weight*= weight;
weight*= weight;
weight*= def->fac;
len -= def->vec[0];
if(def->dist != 0.0) {
if(len >= def->dist) {
weight= 0.0;
}
else {
fac= (def->dist - len)/def->dist;
weight*= fac;
}
}
if(weight > 0.0) {
Mat4MulVecfl(def->postmat, vec);
VecMulf(vec, weight);
VecAddf(totvec, totvec, vec);
totw+= weight;
}
def++;
}
if(totw==0.0) return;
co[0]= totvec[0]/totw;
co[1]= totvec[1]/totw;
co[2]= totvec[2]/totw;
}