This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/generic/euler.c
Campbell Barton dfc7d63911 - typos in boxpack comments (incorrectly had comment that it was from NAN)
- removed unused defines STREQ, STREQ2, STREQ3 and MINSIZE
2009-08-16 08:36:08 +00:00

646 lines
17 KiB
C

/*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
*
* Contributor(s): Joseph Gilbert
*
* ***** END GPL LICENSE BLOCK *****
*/
#include "Mathutils.h"
#include "BLI_arithb.h"
#include "BKE_utildefines.h"
#include "BLI_blenlib.h"
//-------------------------DOC STRINGS ---------------------------
static PyObject *Euler_Zero( EulerObject * self );
static PyObject *Euler_Unique( EulerObject * self );
static PyObject *Euler_ToMatrix( EulerObject * self );
static PyObject *Euler_ToQuat( EulerObject * self );
static PyObject *Euler_Rotate( EulerObject * self, PyObject *args );
static PyObject *Euler_MakeCompatible( EulerObject * self, EulerObject *value );
static PyObject *Euler_copy( EulerObject * self, PyObject *args );
//-----------------------METHOD DEFINITIONS ----------------------
static struct PyMethodDef Euler_methods[] = {
{"zero", (PyCFunction) Euler_Zero, METH_NOARGS, NULL},
{"unique", (PyCFunction) Euler_Unique, METH_NOARGS, NULL},
{"toMatrix", (PyCFunction) Euler_ToMatrix, METH_NOARGS, NULL},
{"toQuat", (PyCFunction) Euler_ToQuat, METH_NOARGS, NULL},
{"rotate", (PyCFunction) Euler_Rotate, METH_VARARGS, NULL},
{"makeCompatible", (PyCFunction) Euler_MakeCompatible, METH_O, NULL},
{"__copy__", (PyCFunction) Euler_copy, METH_VARARGS, NULL},
{"copy", (PyCFunction) Euler_copy, METH_VARARGS, NULL},
{NULL, NULL, 0, NULL}
};
//----------------------------------Mathutils.Euler() -------------------
//makes a new euler for you to play with
static PyObject *Euler_new(PyTypeObject * type, PyObject * args, PyObject * kwargs)
{
PyObject *listObject = NULL;
int size, i;
float eul[3];
PyObject *e;
size = PyTuple_GET_SIZE(args);
if (size == 1) {
listObject = PyTuple_GET_ITEM(args, 0);
if (PySequence_Check(listObject)) {
size = PySequence_Length(listObject);
} else { // Single argument was not a sequence
PyErr_SetString(PyExc_TypeError, "Mathutils.Euler(): 3d numeric sequence expected\n");
return NULL;
}
} else if (size == 0) {
//returns a new empty 3d euler
return newEulerObject(NULL, Py_NEW, NULL);
} else {
listObject = args;
}
if (size != 3) { // Invalid euler size
PyErr_SetString(PyExc_AttributeError, "Mathutils.Euler(): 3d numeric sequence expected\n");
return NULL;
}
for (i=0; i<size; i++) {
e = PySequence_GetItem(listObject, i);
if (e == NULL) { // Failed to read sequence
Py_DECREF(listObject);
PyErr_SetString(PyExc_RuntimeError, "Mathutils.Euler(): 3d numeric sequence expected\n");
return NULL;
}
eul[i]= (float)PyFloat_AsDouble(e);
Py_DECREF(e);
if(eul[i]==-1 && PyErr_Occurred()) { // parsed item is not a number
PyErr_SetString(PyExc_TypeError, "Mathutils.Euler(): 3d numeric sequence expected\n");
return NULL;
}
}
return newEulerObject(eul, Py_NEW, NULL);
}
//-----------------------------METHODS----------------------------
//----------------------------Euler.toQuat()----------------------
//return a quaternion representation of the euler
static PyObject *Euler_ToQuat(EulerObject * self)
{
float quat[4];
#ifdef USE_MATHUTILS_DEG
float eul[3];
int x;
#endif
if(!BaseMath_ReadCallback(self))
return NULL;
#ifdef USE_MATHUTILS_DEG
for(x = 0; x < 3; x++) {
eul[x] = self->eul[x] * ((float)Py_PI / 180);
}
EulToQuat(eul, quat);
#else
EulToQuat(self->eul, quat);
#endif
return newQuaternionObject(quat, Py_NEW, NULL);
}
//----------------------------Euler.toMatrix()---------------------
//return a matrix representation of the euler
static PyObject *Euler_ToMatrix(EulerObject * self)
{
float mat[9] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
if(!BaseMath_ReadCallback(self))
return NULL;
#ifdef USE_MATHUTILS_DEG
{
float eul[3];
int x;
for(x = 0; x < 3; x++) {
eul[x] = self->eul[x] * ((float)Py_PI / 180);
}
EulToMat3(eul, (float (*)[3]) mat);
}
#else
EulToMat3(self->eul, (float (*)[3]) mat);
#endif
return newMatrixObject(mat, 3, 3 , Py_NEW, NULL);
}
//----------------------------Euler.unique()-----------------------
//sets the x,y,z values to a unique euler rotation
static PyObject *Euler_Unique(EulerObject * self)
{
#define PI_2 (Py_PI * 2.0)
#define PI_HALF (Py_PI / 2.0)
#define PI_INV (1.0 / Py_PI)
double heading, pitch, bank;
if(!BaseMath_ReadCallback(self))
return NULL;
#ifdef USE_MATHUTILS_DEG
//radians
heading = self->eul[0] * (float)Py_PI / 180;
pitch = self->eul[1] * (float)Py_PI / 180;
bank = self->eul[2] * (float)Py_PI / 180;
#else
heading = self->eul[0];
pitch = self->eul[1];
bank = self->eul[2];
#endif
//wrap heading in +180 / -180
pitch += Py_PI;
pitch -= floor(pitch * PI_INV) * PI_2;
pitch -= Py_PI;
if(pitch < -PI_HALF) {
pitch = -Py_PI - pitch;
heading += Py_PI;
bank += Py_PI;
} else if(pitch > PI_HALF) {
pitch = Py_PI - pitch;
heading += Py_PI;
bank += Py_PI;
}
//gimbal lock test
if(fabs(pitch) > PI_HALF - 1e-4) {
heading += bank;
bank = 0.0f;
} else {
bank += Py_PI;
bank -= (floor(bank * PI_INV)) * PI_2;
bank -= Py_PI;
}
heading += Py_PI;
heading -= (floor(heading * PI_INV)) * PI_2;
heading -= Py_PI;
#ifdef USE_MATHUTILS_DEG
//back to degrees
self->eul[0] = (float)(heading * 180 / (float)Py_PI);
self->eul[1] = (float)(pitch * 180 / (float)Py_PI);
self->eul[2] = (float)(bank * 180 / (float)Py_PI);
#endif
BaseMath_WriteCallback(self);
Py_INCREF(self);
return (PyObject *)self;
}
//----------------------------Euler.zero()-------------------------
//sets the euler to 0,0,0
static PyObject *Euler_Zero(EulerObject * self)
{
self->eul[0] = 0.0;
self->eul[1] = 0.0;
self->eul[2] = 0.0;
BaseMath_WriteCallback(self);
Py_INCREF(self);
return (PyObject *)self;
}
//----------------------------Euler.rotate()-----------------------
//rotates a euler a certain amount and returns the result
//should return a unique euler rotation (i.e. no 720 degree pitches :)
static PyObject *Euler_Rotate(EulerObject * self, PyObject *args)
{
float angle = 0.0f;
char *axis;
if(!PyArg_ParseTuple(args, "fs", &angle, &axis)){
PyErr_SetString(PyExc_TypeError, "euler.rotate():expected angle (float) and axis (x,y,z)");
return NULL;
}
if(ELEM3(*axis, 'x', 'y', 'z') && axis[1]=='\0'){
PyErr_SetString(PyExc_TypeError, "euler.rotate(): expected axis to be 'x', 'y' or 'z'");
return NULL;
}
if(!BaseMath_ReadCallback(self))
return NULL;
#ifdef USE_MATHUTILS_DEG
{
int x;
//covert to radians
angle *= ((float)Py_PI / 180);
for(x = 0; x < 3; x++) {
self->eul[x] *= ((float)Py_PI / 180);
}
}
#endif
euler_rot(self->eul, angle, *axis);
#ifdef USE_MATHUTILS_DEG
{
int x;
//convert back from radians
for(x = 0; x < 3; x++) {
self->eul[x] *= (180 / (float)Py_PI);
}
}
#endif
BaseMath_WriteCallback(self);
Py_INCREF(self);
return (PyObject *)self;
}
static PyObject *Euler_MakeCompatible(EulerObject * self, EulerObject *value)
{
#ifdef USE_MATHUTILS_DEG
float eul_from_rad[3];
int x;
#endif
if(!EulerObject_Check(value)) {
PyErr_SetString(PyExc_TypeError, "euler.makeCompatible(euler):expected a single euler argument.");
return NULL;
}
if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value))
return NULL;
#ifdef USE_MATHUTILS_DEG
//covert to radians
for(x = 0; x < 3; x++) {
self->eul[x] = self->eul[x] * ((float)Py_PI / 180);
eul_from_rad[x] = value->eul[x] * ((float)Py_PI / 180);
}
compatible_eul(self->eul, eul_from_rad);
#else
compatible_eul(self->eul, value->eul);
#endif
#ifdef USE_MATHUTILS_DEG
//convert back from radians
for(x = 0; x < 3; x++) {
self->eul[x] *= (180 / (float)Py_PI);
}
#endif
BaseMath_WriteCallback(self);
Py_INCREF(self);
return (PyObject *)self;
}
//----------------------------Euler.rotate()-----------------------
// return a copy of the euler
static PyObject *Euler_copy(EulerObject * self, PyObject *args)
{
if(!BaseMath_ReadCallback(self))
return NULL;
return newEulerObject(self->eul, Py_NEW, Py_TYPE(self));
}
//----------------------------print object (internal)--------------
//print the object to screen
static PyObject *Euler_repr(EulerObject * self)
{
char str[64];
if(!BaseMath_ReadCallback(self))
return NULL;
sprintf(str, "[%.6f, %.6f, %.6f](euler)", self->eul[0], self->eul[1], self->eul[2]);
return PyUnicode_FromString(str);
}
//------------------------tp_richcmpr
//returns -1 execption, 0 false, 1 true
static PyObject* Euler_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
{
EulerObject *eulA = NULL, *eulB = NULL;
int result = 0;
if(EulerObject_Check(objectA)) {
eulA = (EulerObject*)objectA;
if(!BaseMath_ReadCallback(eulA))
return NULL;
}
if(EulerObject_Check(objectB)) {
eulB = (EulerObject*)objectB;
if(!BaseMath_ReadCallback(eulB))
return NULL;
}
if (!eulA || !eulB){
if (comparison_type == Py_NE){
Py_RETURN_TRUE;
}else{
Py_RETURN_FALSE;
}
}
eulA = (EulerObject*)objectA;
eulB = (EulerObject*)objectB;
switch (comparison_type){
case Py_EQ:
result = EXPP_VectorsAreEqual(eulA->eul, eulB->eul, 3, 1);
break;
case Py_NE:
result = EXPP_VectorsAreEqual(eulA->eul, eulB->eul, 3, 1);
if (result == 0){
result = 1;
}else{
result = 0;
}
break;
default:
printf("The result of the comparison could not be evaluated");
break;
}
if (result == 1){
Py_RETURN_TRUE;
}else{
Py_RETURN_FALSE;
}
}
//---------------------SEQUENCE PROTOCOLS------------------------
//----------------------------len(object)------------------------
//sequence length
static int Euler_len(EulerObject * self)
{
return 3;
}
//----------------------------object[]---------------------------
//sequence accessor (get)
static PyObject *Euler_item(EulerObject * self, int i)
{
if(i<0) i= 3-i;
if(i < 0 || i >= 3) {
PyErr_SetString(PyExc_IndexError, "euler[attribute]: array index out of range");
return NULL;
}
if(!BaseMath_ReadIndexCallback(self, i))
return NULL;
return PyFloat_FromDouble(self->eul[i]);
}
//----------------------------object[]-------------------------
//sequence accessor (set)
static int Euler_ass_item(EulerObject * self, int i, PyObject * value)
{
float f = PyFloat_AsDouble(value);
if(f == -1 && PyErr_Occurred()) { // parsed item not a number
PyErr_SetString(PyExc_TypeError, "euler[attribute] = x: argument not a number");
return -1;
}
if(i<0) i= 3-i;
if(i < 0 || i >= 3){
PyErr_SetString(PyExc_IndexError, "euler[attribute] = x: array assignment index out of range\n");
return -1;
}
self->eul[i] = f;
if(!BaseMath_WriteIndexCallback(self, i))
return -1;
return 0;
}
//----------------------------object[z:y]------------------------
//sequence slice (get)
static PyObject *Euler_slice(EulerObject * self, int begin, int end)
{
PyObject *list = NULL;
int count;
if(!BaseMath_ReadCallback(self))
return NULL;
CLAMP(begin, 0, 3);
if (end<0) end= 4+end;
CLAMP(end, 0, 3);
begin = MIN2(begin,end);
list = PyList_New(end - begin);
for(count = begin; count < end; count++) {
PyList_SetItem(list, count - begin,
PyFloat_FromDouble(self->eul[count]));
}
return list;
}
//----------------------------object[z:y]------------------------
//sequence slice (set)
static int Euler_ass_slice(EulerObject * self, int begin, int end,
PyObject * seq)
{
int i, y, size = 0;
float eul[3];
PyObject *e;
if(!BaseMath_ReadCallback(self))
return -1;
CLAMP(begin, 0, 3);
if (end<0) end= 4+end;
CLAMP(end, 0, 3);
begin = MIN2(begin,end);
size = PySequence_Length(seq);
if(size != (end - begin)){
PyErr_SetString(PyExc_TypeError, "euler[begin:end] = []: size mismatch in slice assignment");
return -1;
}
for (i = 0; i < size; i++) {
e = PySequence_GetItem(seq, i);
if (e == NULL) { // Failed to read sequence
PyErr_SetString(PyExc_RuntimeError, "euler[begin:end] = []: unable to read sequence");
return -1;
}
eul[i] = (float)PyFloat_AsDouble(e);
Py_DECREF(e);
if(eul[i]==-1 && PyErr_Occurred()) { // parsed item not a number
PyErr_SetString(PyExc_TypeError, "euler[begin:end] = []: sequence argument not a number");
return -1;
}
}
//parsed well - now set in vector
for(y = 0; y < 3; y++){
self->eul[begin + y] = eul[y];
}
BaseMath_WriteCallback(self);
return 0;
}
//-----------------PROTCOL DECLARATIONS--------------------------
static PySequenceMethods Euler_SeqMethods = {
(lenfunc) Euler_len, /* sq_length */
(binaryfunc) 0, /* sq_concat */
(ssizeargfunc) 0, /* sq_repeat */
(ssizeargfunc) Euler_item, /* sq_item */
(ssizessizeargfunc) Euler_slice, /* sq_slice */
(ssizeobjargproc) Euler_ass_item, /* sq_ass_item */
(ssizessizeobjargproc) Euler_ass_slice, /* sq_ass_slice */
};
/*
* vector axis, vector.x/y/z/w
*/
static PyObject *Euler_getAxis( EulerObject * self, void *type )
{
return Euler_item(self, GET_INT_FROM_POINTER(type));
}
static int Euler_setAxis( EulerObject * self, PyObject * value, void * type )
{
return Euler_ass_item(self, GET_INT_FROM_POINTER(type), value);
}
/*****************************************************************************/
/* Python attributes get/set structure: */
/*****************************************************************************/
static PyGetSetDef Euler_getseters[] = {
{"x", (getter)Euler_getAxis, (setter)Euler_setAxis, "Euler X axis", (void *)0},
{"y", (getter)Euler_getAxis, (setter)Euler_setAxis, "Euler Y axis", (void *)1},
{"z", (getter)Euler_getAxis, (setter)Euler_setAxis, "Euler Z axis", (void *)2},
{"wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, "True when this wraps blenders internal data", NULL},
{"__owner__", (getter)BaseMathObject_getOwner, (setter)NULL, "Read only owner for vectors that depend on another object", NULL},
{NULL,NULL,NULL,NULL,NULL} /* Sentinel */
};
//------------------PY_OBECT DEFINITION--------------------------
PyTypeObject euler_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"euler", //tp_name
sizeof(EulerObject), //tp_basicsize
0, //tp_itemsize
(destructor)BaseMathObject_dealloc, //tp_dealloc
0, //tp_print
0, //tp_getattr
0, //tp_setattr
0, //tp_compare
(reprfunc) Euler_repr, //tp_repr
0, //tp_as_number
&Euler_SeqMethods, //tp_as_sequence
0, //tp_as_mapping
0, //tp_hash
0, //tp_call
0, //tp_str
0, //tp_getattro
0, //tp_setattro
0, //tp_as_buffer
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, //tp_flags
0, //tp_doc
0, //tp_traverse
0, //tp_clear
(richcmpfunc)Euler_richcmpr, //tp_richcompare
0, //tp_weaklistoffset
0, //tp_iter
0, //tp_iternext
Euler_methods, //tp_methods
0, //tp_members
Euler_getseters, //tp_getset
0, //tp_base
0, //tp_dict
0, //tp_descr_get
0, //tp_descr_set
0, //tp_dictoffset
0, //tp_init
0, //tp_alloc
Euler_new, //tp_new
0, //tp_free
0, //tp_is_gc
0, //tp_bases
0, //tp_mro
0, //tp_cache
0, //tp_subclasses
0, //tp_weaklist
0 //tp_del
};
//------------------------newEulerObject (internal)-------------
//creates a new euler object
/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
(i.e. it was allocated elsewhere by MEM_mallocN())
pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
(i.e. it must be created here with PyMEM_malloc())*/
PyObject *newEulerObject(float *eul, int type, PyTypeObject *base_type)
{
EulerObject *self;
int x;
if(base_type) self = (EulerObject *)base_type->tp_alloc(base_type, 0);
else self = PyObject_NEW(EulerObject, &euler_Type);
/* init callbacks as NULL */
self->cb_user= NULL;
self->cb_type= self->cb_subtype= 0;
if(type == Py_WRAP){
self->eul = eul;
self->wrapped = Py_WRAP;
}else if (type == Py_NEW){
self->eul = PyMem_Malloc(3 * sizeof(float));
if(!eul) { //new empty
for(x = 0; x < 3; x++) {
self->eul[x] = 0.0f;
}
}else{
VECCOPY(self->eul, eul);
}
self->wrapped = Py_NEW;
}else{ //bad type
return NULL;
}
return (PyObject *)self;
}
PyObject *newEulerObject_cb(PyObject *cb_user, int cb_type, int cb_subtype)
{
EulerObject *self= (EulerObject *)newEulerObject(NULL, Py_NEW, NULL);
if(self) {
Py_INCREF(cb_user);
self->cb_user= cb_user;
self->cb_type= (unsigned char)cb_type;
self->cb_subtype= (unsigned char)cb_subtype;
}
return (PyObject *)self;
}