This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/api2_2x/vector.c
Stephen Swaney ae20f7a95e bugfix: #1206 Object.getBoundBox() was returning obdata coordinates.
fix memory leak in vector module.  Memory allocated by vector constructor
was not being freed.
2004-05-15 23:10:37 +00:00

616 lines
17 KiB
C

/*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
*
* Contributor(s): Willian P. Germano & Joseph Gilbert
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include "vector.h"
//doc strings
char Vector_Zero_doc[] =
"() - set all values in the vector to 0";
char Vector_Normalize_doc[] =
"() - normalize the vector";
char Vector_Negate_doc[] =
"() - changes vector to it's additive inverse";
char Vector_Resize2D_doc[] =
"() - resize a vector to [x,y]";
char Vector_Resize3D_doc[] =
"() - resize a vector to [x,y,z]";
char Vector_Resize4D_doc[] =
"() - resize a vector to [x,y,z,w]";
//method table
struct PyMethodDef Vector_methods[] = {
{"zero",(PyCFunction)Vector_Zero, METH_NOARGS,
Vector_Zero_doc},
{"normalize",(PyCFunction)Vector_Normalize, METH_NOARGS,
Vector_Normalize_doc},
{"negate",(PyCFunction)Vector_Negate, METH_NOARGS,
Vector_Negate_doc},
{"resize2D",(PyCFunction)Vector_Resize2D, METH_NOARGS,
Vector_Resize2D_doc},
{"resize3D",(PyCFunction)Vector_Resize3D, METH_NOARGS,
Vector_Resize2D_doc},
{"resize4D",(PyCFunction)Vector_Resize4D, METH_NOARGS,
Vector_Resize2D_doc},
{NULL, NULL, 0, NULL}
};
/*****************************/
// Vector Python Object
/*****************************/
//object methods
PyObject *Vector_Zero(VectorObject *self)
{
int x;
for(x = 0; x < self->size; x++){
self->vec[x] = 0.0f;
}
return EXPP_incr_ret(Py_None);
}
PyObject *Vector_Normalize(VectorObject *self)
{
float norm;
int x;
norm = 0.0f;
for(x = 0; x < self->size; x++){
norm += self->vec[x] * self->vec[x];
}
norm = (float)sqrt(norm);
for(x = 0; x < self->size; x++){
self->vec[x] /= norm;
}
return EXPP_incr_ret(Py_None);
}
PyObject *Vector_Negate(VectorObject *self)
{
int x;
for(x = 0; x < self->size; x++){
self->vec[x] = -(self->vec[x]);
}
return EXPP_incr_ret(Py_None);
}
PyObject *Vector_Resize2D(VectorObject *self)
{
float x, y;
if(self->size == 4 || self->size == 3){
x = self->vec[0];
y = self->vec[1];
PyMem_Free(self->vec);
self->vec = PyMem_Malloc(2*sizeof (float));
self->vec[0] = x;
self->vec[1] = y;
self->size = 2;
}
return EXPP_incr_ret(Py_None);
}
PyObject *Vector_Resize3D(VectorObject *self)
{
float x, y, z;
if(self->size == 2){
x = self->vec[0];
y = self->vec[1];
PyMem_Free(self->vec);
self->vec = PyMem_Malloc(3*sizeof (float));
self->vec[0] = x;
self->vec[1] = y;
self->vec[2] = 0.0f;
self->size = 3;
}
else if (self->size == 4){
x = self->vec[0];
y = self->vec[1];
z = self->vec[2];
PyMem_Free(self->vec);
self->vec = PyMem_Malloc(3*sizeof (float));
self->vec[0] = x;
self->vec[1] = y;
self->vec[2] = z;
self->size = 3;
}
return EXPP_incr_ret(Py_None);
}
PyObject *Vector_Resize4D(VectorObject *self)
{
float x, y, z;
if(self->size == 2){
x = self->vec[0];
y = self->vec[1];
PyMem_Free(self->vec);
self->vec = PyMem_Malloc(4*sizeof (float));
self->vec[0] = x;
self->vec[1] = y;
self->vec[2] = 0.0f;
self->vec[3] = 1.0f;
self->size = 4;
}
else if (self->size == 3){
x = self->vec[0];
y = self->vec[1];
z = self->vec[2];
PyMem_Free(self->vec);
self->vec = PyMem_Malloc(4*sizeof (float));
self->vec[0] = x;
self->vec[1] = y;
self->vec[2] = z;
self->vec[3] = 1.0f;
self->size = 4;
}
return EXPP_incr_ret(Py_None);
}
static void Vector_dealloc(VectorObject *self)
{
/* if we own this memory we must delete it */
if( self->delete_pymem )
PyMem_Free( self->vec );
PyObject_DEL (self);
}
static PyObject *Vector_getattr(VectorObject *self, char *name)
{
if (self->size==4 && ELEM4(name[0], 'x', 'y', 'z', 'w') && name[1]==0){
if ((name[0]) == ('w')){
return PyFloat_FromDouble(self->vec[3]);
}else{
return PyFloat_FromDouble(self->vec[name[0]-'x']);
}
}
else if (self->size==3 && ELEM3(name[0], 'x', 'y', 'z') && name[1]==0)
return PyFloat_FromDouble(self->vec[name[0]-'x']);
else if (self->size==2 && ELEM(name[0], 'x', 'y') && name[1]==0)
return PyFloat_FromDouble(self->vec[name[0]-'x']);
if ((strcmp(name,"length") == 0)){
if(self->size == 4){
return PyFloat_FromDouble(sqrt(self->vec[0] * self->vec[0] +
self->vec[1] * self->vec[1] +
self->vec[2] * self->vec[2] +
self->vec[3] * self->vec[3]));
}
else if(self->size == 3){
return PyFloat_FromDouble(sqrt(self->vec[0] * self->vec[0] +
self->vec[1] * self->vec[1] +
self->vec[2] * self->vec[2]));
}else if (self->size == 2){
return PyFloat_FromDouble(sqrt(self->vec[0] * self->vec[0] +
self->vec[1] * self->vec[1]));
}else EXPP_ReturnPyObjError(PyExc_AttributeError,
"can only return the length of a 2D ,3D or 4D vector\n");
}
return Py_FindMethod(Vector_methods, (PyObject*)self, name);
}
static int Vector_setattr(VectorObject *self, char *name, PyObject *v)
{
float val;
int valTemp;
if(!PyFloat_Check(v)){
if(!PyInt_Check(v)){
return EXPP_ReturnIntError(PyExc_TypeError,"int or float expected\n");
}else{
if (!PyArg_Parse(v, "i", &valTemp))
return EXPP_ReturnIntError(PyExc_TypeError, "unable to parse int argument\n");
val = (float)valTemp;
}
}else{
if (!PyArg_Parse(v, "f", &val))
return EXPP_ReturnIntError(PyExc_TypeError, "unable to parse float argument\n");
}
if (self->size==4 && ELEM4(name[0], 'x', 'y', 'z', 'w') && name[1]==0){
if ((name[0]) == ('w')){
self->vec[3]= val;
}else{
self->vec[name[0]-'x']= val;
}
}
else if (self->size==3 && ELEM3(name[0], 'x', 'y', 'z') && name[1]==0)
self->vec[name[0]-'x']= val;
else if (self->size==2 && ELEM(name[0], 'x', 'y') && name[1]==0)
self->vec[name[0]-'x']= val;
else return -1;
return 0;
}
/* Vectors Sequence methods */
static int Vector_len(VectorObject *self)
{
return self->size;
}
static PyObject *Vector_item(VectorObject *self, int i)
{
if (i < 0 || i >= self->size)
return EXPP_ReturnPyObjError (PyExc_IndexError, "array index out of range\n");
return Py_BuildValue("f", self->vec[i]);
}
static PyObject *Vector_slice(VectorObject *self, int begin, int end)
{
PyObject *list;
int count;
if (begin < 0) begin= 0;
if (end > self->size) end= self->size;
if (begin > end) begin= end;
list= PyList_New(end-begin);
for (count = begin; count < end; count++){
PyList_SetItem(list, count-begin, PyFloat_FromDouble(self->vec[count]));
}
return list;
}
static int Vector_ass_item(VectorObject *self, int i, PyObject *ob)
{
if (i < 0 || i >= self->size)
return EXPP_ReturnIntError(PyExc_IndexError,
"array assignment index out of range\n");
if (!PyInt_Check(ob) && !PyFloat_Check(ob))
return EXPP_ReturnIntError(PyExc_IndexError,
"vector member must be a number\n");
self->vec[i]= (float)PyFloat_AsDouble(ob);
return 0;
}
static int Vector_ass_slice(VectorObject *self, int begin, int end, PyObject *seq)
{
int count, z;
if (begin < 0) begin= 0;
if (end > self->size) end= self->size;
if (begin > end) begin= end;
if (!PySequence_Check(seq))
return EXPP_ReturnIntError(PyExc_TypeError,
"illegal argument type for built-in operation\n");
if (PySequence_Length(seq) != (end - begin))
return EXPP_ReturnIntError(PyExc_TypeError,
"size mismatch in slice assignment\n");
z = 0;
for (count = begin; count < end; count++) {
PyObject *ob = PySequence_GetItem(seq, z); z++;
if (!PyInt_Check(ob) && !PyFloat_Check(ob))
return EXPP_ReturnIntError(PyExc_IndexError,
"list member must be a number\n");
if (!PyArg_Parse(ob, "f", &self->vec[count])){
Py_DECREF(ob);
return -1;
}
}
return 0;
}
static PyObject *Vector_repr (VectorObject *self)
{
int i, maxindex = self->size - 1;
char ftoa[24];
PyObject *str1, *str2;
str1 = PyString_FromString ("[");
for (i = 0; i < maxindex; i++) {
sprintf(ftoa, "%.4f, ", self->vec[i]);
str2 = PyString_FromString (ftoa);
if (!str1 || !str2) goto error;
PyString_ConcatAndDel (&str1, str2);
}
sprintf(ftoa, "%.4f]", self->vec[maxindex]);
str2 = PyString_FromString (ftoa);
if (!str1 || !str2) goto error;
PyString_ConcatAndDel (&str1, str2);
if (str1) return str1;
error:
Py_XDECREF (str1);
Py_XDECREF (str2);
return EXPP_ReturnPyObjError (PyExc_MemoryError,
"couldn't create PyString!\n");
}
PyObject * Vector_add(PyObject *v1, PyObject *v2)
{
float * vec;
int x;
if((!VectorObject_Check(v1)) || (!VectorObject_Check(v2)))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"unsupported type for this operation\n");
if(((VectorObject*)v1)->flag != 0 || ((VectorObject*)v2)->flag != 0)
return EXPP_ReturnPyObjError (PyExc_TypeError,
"cannot add a scalar to a vector\n");
if(((VectorObject*)v1)->size != ((VectorObject*)v2)->size)
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"vectors must have the same dimensions for this operation\n");
vec = PyMem_Malloc ((((VectorObject*)v1)->size)*sizeof (float));
for(x = 0; x < ((VectorObject*)v1)->size; x++){
vec[x] = ((VectorObject*)v1)->vec[x] + ((VectorObject*)v2)->vec[x];
}
return (PyObject*)newVectorObject(vec, (((VectorObject*)v1)->size));
}
PyObject * Vector_sub(PyObject *v1, PyObject *v2)
{
float * vec;
int x;
if((!VectorObject_Check(v1)) || (!VectorObject_Check(v2)))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"unsupported type for this operation\n");
if(((VectorObject*)v1)->flag != 0 || ((VectorObject*)v2)->flag != 0)
return EXPP_ReturnPyObjError (PyExc_TypeError,
"cannot subtract a scalar from a vector\n");
if(((VectorObject*)v1)->size != ((VectorObject*)v2)->size)
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"vectors must have the same dimensions for this operation\n");
vec = PyMem_Malloc ((((VectorObject*)v1)->size)*sizeof (float));
for(x = 0; x < ((VectorObject*)v1)->size; x++){
vec[x] = ((VectorObject*)v1)->vec[x] - ((VectorObject*)v2)->vec[x];
}
return (PyObject*)newVectorObject(vec, (((VectorObject*)v1)->size));
}
PyObject * Vector_mul(PyObject *v1, PyObject * v2)
{
float * vec;
int x;
if((!VectorObject_Check(v1)) || (!VectorObject_Check(v2)))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"unsupported type for this operation\n");
if(((VectorObject*)v1)->flag == 0 && ((VectorObject*)v2)->flag == 0)
return EXPP_ReturnPyObjError (PyExc_ArithmeticError,
"please use the dot product or the cross product to multiply vectors\n");
if(((VectorObject*)v1)->size != ((VectorObject*)v2)->size)
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"vector dimension error during Vector_mul\n");
vec = PyMem_Malloc ((((VectorObject*)v1)->size)*sizeof(float));
for(x = 0; x < ((VectorObject*)v1)->size; x++){
vec[x] = ((VectorObject*)v1)->vec[x] * ((VectorObject*)v2)->vec[x];
}
return (PyObject*)newVectorObject(vec, (((VectorObject*)v1)->size));
}
PyObject * Vector_div(PyObject *v1, PyObject * v2)
{
float * vec;
int x;
if((!VectorObject_Check(v1)) || (!VectorObject_Check(v2)))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"unsupported type for this operation\n");
if(((VectorObject*)v1)->flag == 0 && ((VectorObject*)v2)->flag == 0)
return EXPP_ReturnPyObjError (PyExc_ArithmeticError,
"cannot divide two vectors\n");
if(((VectorObject*)v1)->flag != 0 && ((VectorObject*)v2)->flag == 0)
return EXPP_ReturnPyObjError (PyExc_TypeError,
"cannot divide a scalar by a vector\n");
if(((VectorObject*)v1)->size != ((VectorObject*)v2)->size)
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"vector dimension error during Vector_mul\n");
vec = PyMem_Malloc ((((VectorObject*)v1)->size)*sizeof(float));
for(x = 0; x < ((VectorObject*)v1)->size; x++){
vec[x] = ((VectorObject*)v1)->vec[x] / ((VectorObject*)v2)->vec[x];
}
return (PyObject*)newVectorObject(vec, (((VectorObject*)v1)->size));
}
//coercion of unknown types to type VectorObject for numeric protocols
int Vector_coerce(PyObject **v1, PyObject **v2)
{
long *tempI;
double *tempF;
float *vec;
int x;
if (VectorObject_Check(*v1)) {
if (VectorObject_Check(*v2)) { //two vectors
Py_INCREF(*v1);
Py_INCREF(*v2);
return 0;
}else{
if(Matrix_CheckPyObject(*v2)){
printf("vector/matrix numeric protocols unsupported...\n");
Py_INCREF(*v1);
return 0; //operation will type check
}else if(PyNumber_Check(*v2)){
if(PyInt_Check(*v2)){ //cast scalar to vector
tempI = PyMem_Malloc(1*sizeof(long));
*tempI = PyInt_AsLong(*v2);
vec = PyMem_Malloc ((((VectorObject*)*v1)->size)*sizeof (float));
for(x = 0; x < (((VectorObject*)*v1)->size); x++){
vec[x] = (float)*tempI;
}
PyMem_Free(tempI);
*v2 = newVectorObject(vec, (((VectorObject*)*v1)->size));
((VectorObject*)*v2)->flag = 1; //int coercion
Py_INCREF(*v1);
return 0;
}else if(PyFloat_Check(*v2)){ //cast scalar to vector
tempF = PyMem_Malloc(1*sizeof(double));
*tempF = PyFloat_AsDouble(*v2);
vec = PyMem_Malloc ((((VectorObject*)*v1)->size)*sizeof (float));
for(x = 0; x < (((VectorObject*)*v1)->size); x++){
vec[x] = (float)*tempF;
}
PyMem_Free(tempF);
*v2 = newVectorObject(vec, (((VectorObject*)*v1)->size));
((VectorObject*)*v2)->flag = 2; //float coercion
Py_INCREF(*v1);
return 0;
}
}
//unknown type or numeric cast failure
printf("attempting vector operation with unsupported type...\n");
Py_INCREF(*v1);
return 0; //operation will type check
}
}else{
printf("numeric protocol failure...\n");
return -1; //this should not occur - fail
}
return -1;
}
static PySequenceMethods Vector_SeqMethods =
{
(inquiry) Vector_len, /* sq_length */
(binaryfunc) 0, /* sq_concat */
(intargfunc) 0, /* sq_repeat */
(intargfunc) Vector_item, /* sq_item */
(intintargfunc) Vector_slice, /* sq_slice */
(intobjargproc) Vector_ass_item, /* sq_ass_item */
(intintobjargproc) Vector_ass_slice, /* sq_ass_slice */
};
static PyNumberMethods Vector_NumMethods =
{
(binaryfunc) Vector_add, /* __add__ */
(binaryfunc) Vector_sub, /* __sub__ */
(binaryfunc) Vector_mul, /* __mul__ */
(binaryfunc) Vector_div, /* __div__ */
(binaryfunc) 0, /* __mod__ */
(binaryfunc) 0, /* __divmod__ */
(ternaryfunc) 0, /* __pow__ */
(unaryfunc) 0, /* __neg__ */
(unaryfunc) 0, /* __pos__ */
(unaryfunc) 0, /* __abs__ */
(inquiry) 0, /* __nonzero__ */
(unaryfunc) 0, /* __invert__ */
(binaryfunc) 0, /* __lshift__ */
(binaryfunc) 0, /* __rshift__ */
(binaryfunc) 0, /* __and__ */
(binaryfunc) 0, /* __xor__ */
(binaryfunc) 0, /* __or__ */
(coercion) Vector_coerce, /* __coerce__ */
(unaryfunc) 0, /* __int__ */
(unaryfunc) 0, /* __long__ */
(unaryfunc) 0, /* __float__ */
(unaryfunc) 0, /* __oct__ */
(unaryfunc) 0, /* __hex__ */
};
PyTypeObject vector_Type =
{
PyObject_HEAD_INIT(NULL)
0, /*ob_size*/
"vector", /*tp_name*/
sizeof(VectorObject), /*tp_basicsize*/
0, /*tp_itemsize*/
(destructor) Vector_dealloc, /*tp_dealloc*/
(printfunc) 0, /*tp_print*/
(getattrfunc) Vector_getattr, /*tp_getattr*/
(setattrfunc) Vector_setattr, /*tp_setattr*/
0, /*tp_compare*/
(reprfunc) Vector_repr, /*tp_repr*/
&Vector_NumMethods, /*tp_as_number*/
&Vector_SeqMethods, /*tp_as_sequence*/
};
/*
* create a Vector Object
* if vec arg is NULL
* allocate memory on python stack.
* initialize to zero in homogenous coords.
* size arg is number of floats to alloc.
*/
PyObject *newVectorObject(float *vec, int size)
{
VectorObject *self;
int x;
vector_Type.ob_type = &PyType_Type;
self = PyObject_NEW(VectorObject, &vector_Type);
if(!vec){
self->vec = PyMem_Malloc (size *sizeof (float));
for(x = 0; x < size; x++){
self->vec[x] = 0.0f;
}
if(size == 4) self->vec[3] = 1.0f;
self->delete_pymem = 1; /* must free this alloc later */
}else{
self->vec = vec;
self->delete_pymem = 0;
}
self->size = size;
self->flag = 0;
return (PyObject*) self;
}