This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/collada/collada_utils.cpp
Sergey Sharybin 79312c1912 Depsgraph: Remove duplicated sets of recalc/update flags
There were at least three copies of those:

- OB_RECALC* family of flags, which are rudiment of an old
  dependency graph system.
- PSYS_RECALC* which were used by old dependency graph system
  as a separate set since the graph itself did not handle
  particle systems.
- DEG_TAG_* which was used to tag IDs.

Now there is a single set, which defines what can be tagged
and queried for an update. It also has some aggregate flags
to make queries simpler.

Lets once and for all solve the madness of those flags, stick
to a single set, which will not overlap with anything or require
any extra conversion.

Technically, shouldn't be measurable user difference, but some
of the agregate flags for few dependency graph components did
change.

Fixes T58632: Particle don't update rotation settings
2018-12-07 11:37:38 +01:00

1439 lines
36 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor(s): Chingiz Dyussenov, Arystanbek Dyussenov, Nathan Letwory.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/collada/collada_utils.cpp
* \ingroup collada
*/
/* COLLADABU_ASSERT, may be able to remove later */
#include "COLLADABUPlatform.h"
#include "COLLADAFWGeometry.h"
#include "COLLADAFWMeshPrimitive.h"
#include "COLLADAFWMeshVertexData.h"
#include <set>
#include <string>
extern "C" {
#include "DNA_modifier_types.h"
#include "DNA_customdata_types.h"
#include "DNA_key_types.h"
#include "DNA_object_types.h"
#include "DNA_constraint_types.h"
#include "DNA_mesh_types.h"
#include "DNA_scene_types.h"
#include "DNA_armature_types.h"
#include "BLI_math.h"
#include "BLI_linklist.h"
#include "BLI_listbase.h"
#include "BKE_action.h"
#include "BKE_context.h"
#include "BKE_customdata.h"
#include "BKE_constraint.h"
#include "BKE_key.h"
#include "BKE_material.h"
#include "BKE_node.h"
#include "BKE_object.h"
#include "BKE_global.h"
#include "BKE_layer.h"
#include "BKE_library.h"
#include "BKE_mesh.h"
#include "BKE_mesh_runtime.h"
#include "BKE_object.h"
#include "BKE_scene.h"
#include "ED_armature.h"
#include "ED_screen.h"
#include "ED_node.h"
#include "MEM_guardedalloc.h"
#include "WM_api.h" // XXX hrm, see if we can do without this
#include "WM_types.h"
#include "bmesh.h"
#include "bmesh_tools.h"
#include "DEG_depsgraph.h"
#include "DEG_depsgraph_query.h"
#if 0
#include "NOD_common.h"
#endif
}
#include "collada_utils.h"
#include "ExportSettings.h"
#include "BlenderContext.h"
float bc_get_float_value(const COLLADAFW::FloatOrDoubleArray& array, unsigned int index)
{
if (index >= array.getValuesCount())
return 0.0f;
if (array.getType() == COLLADAFW::MeshVertexData::DATA_TYPE_FLOAT)
return array.getFloatValues()->getData()[index];
else
return array.getDoubleValues()->getData()[index];
}
// copied from /editors/object/object_relations.c
int bc_test_parent_loop(Object *par, Object *ob)
{
/* test if 'ob' is a parent somewhere in par's parents */
if (par == NULL) return 0;
if (ob == par) return 1;
return bc_test_parent_loop(par->parent, ob);
}
void bc_get_children(std::vector<Object *> &child_set, Object *ob, ViewLayer *view_layer)
{
Base *base;
for (base = (Base *)view_layer->object_bases.first; base; base = base->next) {
Object *cob = base->object;
if (cob->parent == ob) {
switch (ob->type) {
case OB_MESH:
case OB_CAMERA:
case OB_LAMP:
case OB_EMPTY:
case OB_ARMATURE:
child_set.push_back(cob);
default: break;
}
}
}
}
bool bc_validateConstraints(bConstraint *con)
{
const bConstraintTypeInfo *cti = BKE_constraint_typeinfo_get(con);
/* these we can skip completely (invalid constraints...) */
if (cti == NULL)
return false;
if (con->flag & (CONSTRAINT_DISABLE | CONSTRAINT_OFF))
return false;
/* these constraints can't be evaluated anyway */
if (cti->evaluate_constraint == NULL)
return false;
/* influence == 0 should be ignored */
if (con->enforce == 0.0f)
return false;
/* validation passed */
return true;
}
// a shortened version of parent_set_exec()
// if is_parent_space is true then ob->obmat will be multiplied by par->obmat before parenting
int bc_set_parent(Object *ob, Object *par, bContext *C, bool is_parent_space)
{
Object workob;
Depsgraph *depsgraph = CTX_data_depsgraph(C);
Scene *sce = CTX_data_scene(C);
if (!par || bc_test_parent_loop(par, ob))
return false;
ob->parent = par;
ob->partype = PAROBJECT;
ob->parsubstr[0] = 0;
if (is_parent_space) {
float mat[4][4];
// calc par->obmat
BKE_object_where_is_calc(depsgraph, sce, par);
// move child obmat into world space
mul_m4_m4m4(mat, par->obmat, ob->obmat);
copy_m4_m4(ob->obmat, mat);
}
// apply child obmat (i.e. decompose it into rot/loc/size)
BKE_object_apply_mat4(ob, ob->obmat, 0, 0);
// compute parentinv
BKE_object_workob_calc_parent(depsgraph, sce, ob, &workob);
invert_m4_m4(ob->parentinv, workob.obmat);
DEG_id_tag_update(&ob->id, ID_RECALC_TRANSFORM | ID_RECALC_GEOMETRY);
DEG_id_tag_update(&par->id, ID_RECALC_TRANSFORM);
return true;
}
std::vector<bAction *> bc_getSceneActions(const bContext *C, Object *ob, bool all_actions)
{
std::vector<bAction *> actions;
if (all_actions) {
Main *bmain = CTX_data_main(C);
ID *id;
for (id = (ID *)bmain->action.first; id; id = (ID *)(id->next)) {
bAction *act = (bAction *)id;
/* XXX This currently creates too many actions.
TODO Need to check if the action is compatible to the given object
*/
actions.push_back(act);
}
}
else
{
bAction *action = bc_getSceneObjectAction(ob);
actions.push_back(action);
}
return actions;
}
std::string bc_get_action_id(std::string action_name, std::string ob_name, std::string channel_type, std::string axis_name, std::string axis_separator)
{
std::string result = action_name + "_" + channel_type;
if (ob_name.length() > 0)
result = ob_name + "_" + result;
if (axis_name.length() > 0)
result += axis_separator + axis_name;
return translate_id(result);
}
void bc_update_scene(BlenderContext &blender_context, float ctime)
{
Main *bmain = blender_context.get_main();
Scene *scene = blender_context.get_scene();
Depsgraph *depsgraph = blender_context.get_depsgraph();
/*
* See remark in physics_fluid.c lines 395...)
* BKE_scene_update_for_newframe(ev_context, bmain, scene, scene->lay);
*/
BKE_scene_frame_set(scene, ctime);
ED_update_for_newframe(bmain, depsgraph);
}
Object *bc_add_object(Main *bmain, Scene *scene, ViewLayer *view_layer, int type, const char *name)
{
Object *ob = BKE_object_add_only_object(bmain, type, name);
ob->data = BKE_object_obdata_add_from_type(bmain, type, name);
ob->lay = scene->lay;
DEG_id_tag_update(&ob->id, ID_RECALC_TRANSFORM | ID_RECALC_GEOMETRY | ID_RECALC_ANIMATION);
LayerCollection *layer_collection = BKE_layer_collection_get_active(view_layer);
BKE_collection_object_add(bmain, layer_collection->collection, ob);
Base *base = BKE_view_layer_base_find(view_layer, ob);
/* TODO: is setting active needed? */
BKE_view_layer_base_select_and_set_active(view_layer, base);
return ob;
}
Mesh *bc_get_mesh_copy(
BlenderContext &blender_context,
Object *ob,
BC_export_mesh_type export_mesh_type,
bool apply_modifiers,
bool triangulate)
{
CustomDataMask mask = CD_MASK_MESH;
Mesh *tmpmesh = NULL;
if (apply_modifiers) {
#if 0 /* Not supported by new system currently... */
switch (export_mesh_type) {
case BC_MESH_TYPE_VIEW:
{
dm = mesh_create_derived_view(depsgraph, scene, ob, mask);
break;
}
case BC_MESH_TYPE_RENDER:
{
dm = mesh_create_derived_render(depsgraph, scene, ob, mask);
break;
}
}
#else
Depsgraph *depsgraph = blender_context.get_depsgraph();
Scene *scene_eval = blender_context.get_evaluated_scene();
Object *ob_eval = blender_context.get_evaluated_object(ob);
tmpmesh = mesh_get_eval_final(depsgraph, scene_eval, ob_eval, mask);
#endif
}
else {
tmpmesh = (Mesh *)ob->data;
}
BKE_id_copy_ex(NULL, &tmpmesh->id, (ID **)&tmpmesh,
LIB_ID_CREATE_NO_MAIN |
LIB_ID_CREATE_NO_USER_REFCOUNT |
LIB_ID_CREATE_NO_DEG_TAG |
LIB_ID_COPY_NO_PREVIEW,
false);
if (triangulate) {
bc_triangulate_mesh(tmpmesh);
}
BKE_mesh_tessface_ensure(tmpmesh);
return tmpmesh;
}
Object *bc_get_assigned_armature(Object *ob)
{
Object *ob_arm = NULL;
if (ob->parent && ob->partype == PARSKEL && ob->parent->type == OB_ARMATURE) {
ob_arm = ob->parent;
}
else {
ModifierData *mod;
for (mod = (ModifierData *)ob->modifiers.first; mod; mod = mod->next) {
if (mod->type == eModifierType_Armature) {
ob_arm = ((ArmatureModifierData *)mod)->object;
}
}
}
return ob_arm;
}
/*
* Returns the highest selected ancestor
* returns NULL if no ancestor is selected
* IMPORTANT: This function expects that all exported objects have set:
* ob->id.tag & LIB_TAG_DOIT
*/
Object *bc_get_highest_selected_ancestor_or_self(LinkNode *export_set, Object *ob)
{
Object *ancestor = ob;
while (ob->parent && bc_is_marked(ob->parent)) {
ob = ob->parent;
ancestor = ob;
}
return ancestor;
}
bool bc_is_base_node(LinkNode *export_set, Object *ob)
{
Object *root = bc_get_highest_selected_ancestor_or_self(export_set, ob);
return (root == ob);
}
bool bc_is_in_Export_set(LinkNode *export_set, Object *ob, ViewLayer *view_layer)
{
bool to_export = (BLI_linklist_index(export_set, ob) != -1);
if (!to_export)
{
/* Mark this object as to_export even if it is not in the
export list, but it contains children to export */
std::vector<Object *> children;
bc_get_children(children, ob, view_layer);
for (int i = 0; i < children.size(); i++) {
if (bc_is_in_Export_set(export_set, children[i], view_layer)) {
to_export = true;
break;
}
}
}
return to_export;
}
bool bc_has_object_type(LinkNode *export_set, short obtype)
{
LinkNode *node;
for (node = export_set; node; node = node->next) {
Object *ob = (Object *)node->link;
/* XXX - why is this checking for ob->data? - we could be looking for empties */
if (ob->type == obtype && ob->data) {
return true;
}
}
return false;
}
int bc_is_marked(Object *ob)
{
return ob && (ob->id.tag & LIB_TAG_DOIT);
}
void bc_remove_mark(Object *ob)
{
ob->id.tag &= ~LIB_TAG_DOIT;
}
void bc_set_mark(Object *ob)
{
ob->id.tag |= LIB_TAG_DOIT;
}
// Use bubble sort algorithm for sorting the export set
void bc_bubble_sort_by_Object_name(LinkNode *export_set)
{
bool sorted = false;
LinkNode *node;
for (node = export_set; node->next && !sorted; node = node->next) {
sorted = true;
LinkNode *current;
for (current = export_set; current->next; current = current->next) {
Object *a = (Object *)current->link;
Object *b = (Object *)current->next->link;
if (strcmp(a->id.name, b->id.name) > 0) {
current->link = b;
current->next->link = a;
sorted = false;
}
}
}
}
/* Check if a bone is the top most exportable bone in the bone hierarchy.
* When deform_bones_only == false, then only bones with NO parent
* can be root bones. Otherwise the top most deform bones in the hierarchy
* are root bones.
*/
bool bc_is_root_bone(Bone *aBone, bool deform_bones_only)
{
if (deform_bones_only) {
Bone *root = NULL;
Bone *bone = aBone;
while (bone) {
if (!(bone->flag & BONE_NO_DEFORM))
root = bone;
bone = bone->parent;
}
return (aBone == root);
}
else
return !(aBone->parent);
}
int bc_get_active_UVLayer(Object *ob)
{
Mesh *me = (Mesh *)ob->data;
return CustomData_get_active_layer_index(&me->ldata, CD_MLOOPUV);
}
std::string bc_url_encode(std::string data)
{
/* XXX We probably do not need to do a full encoding.
* But in case that is necessary,then it can be added here.
*/
return bc_replace_string(data,"#", "%23");
}
std::string bc_replace_string(std::string data, const std::string& pattern,
const std::string& replacement)
{
size_t pos = 0;
while ((pos = data.find(pattern, pos)) != std::string::npos) {
data.replace(pos, pattern.length(), replacement);
pos += replacement.length();
}
return data;
}
/**
* Calculate a rescale factor such that the imported scene's scale
* is preserved. I.e. 1 meter in the import will also be
* 1 meter in the current scene.
*/
void bc_match_scale(Object *ob, UnitConverter &bc_unit, bool scale_to_scene)
{
if (scale_to_scene) {
mul_m4_m4m4(ob->obmat, bc_unit.get_scale(), ob->obmat);
}
mul_m4_m4m4(ob->obmat, bc_unit.get_rotation(), ob->obmat);
BKE_object_apply_mat4(ob, ob->obmat, 0, 0);
}
void bc_match_scale(std::vector<Object *> *objects_done,
UnitConverter &bc_unit,
bool scale_to_scene)
{
for (std::vector<Object *>::iterator it = objects_done->begin();
it != objects_done->end();
++it)
{
Object *ob = *it;
if (ob -> parent == NULL) {
bc_match_scale(*it, bc_unit, scale_to_scene);
}
}
}
/*
* Convenience function to get only the needed components of a matrix
*/
void bc_decompose(float mat[4][4], float *loc, float eul[3], float quat[4], float *size)
{
if (size) {
mat4_to_size(size, mat);
}
if (eul) {
mat4_to_eul(eul, mat);
}
if (quat) {
mat4_to_quat(quat, mat);
}
if (loc) {
copy_v3_v3(loc, mat[3]);
}
}
/*
* Create rotation_quaternion from a delta rotation and a reference quat
*
* Input:
* mat_from: The rotation matrix before rotation
* mat_to : The rotation matrix after rotation
* qref : the quat corresponding to mat_from
*
* Output:
* rot : the calculated result (quaternion)
*
*/
void bc_rotate_from_reference_quat(float quat_to[4], float quat_from[4], float mat_to[4][4])
{
float qd[4];
float matd[4][4];
float mati[4][4];
float mat_from[4][4];
quat_to_mat4(mat_from, quat_from);
// Calculate the difference matrix matd between mat_from and mat_to
invert_m4_m4(mati, mat_from);
mul_m4_m4m4(matd, mati, mat_to);
mat4_to_quat(qd, matd);
mul_qt_qtqt(quat_to, qd, quat_from); // rot is the final rotation corresponding to mat_to
}
void bc_triangulate_mesh(Mesh *me)
{
bool use_beauty = false;
bool tag_only = false;
int quad_method = MOD_TRIANGULATE_QUAD_SHORTEDGE; /* XXX: The triangulation method selection could be offered in the UI */
const struct BMeshCreateParams bm_create_params = {0};
BMesh *bm = BM_mesh_create(
&bm_mesh_allocsize_default,
&bm_create_params);
BMeshFromMeshParams bm_from_me_params = {0};
bm_from_me_params.calc_face_normal = true;
BM_mesh_bm_from_me(bm, me, &bm_from_me_params);
BM_mesh_triangulate(bm, quad_method, use_beauty, tag_only, NULL, NULL, NULL);
BMeshToMeshParams bm_to_me_params = {0};
bm_to_me_params.calc_object_remap = false;
BM_mesh_bm_to_me(NULL, bm, me, &bm_to_me_params);
BM_mesh_free(bm);
}
/*
* A bone is a leaf when it has no children or all children are not connected.
*/
bool bc_is_leaf_bone(Bone *bone)
{
for (Bone *child = (Bone *)bone->childbase.first; child; child = child->next) {
if (child->flag & BONE_CONNECTED)
return false;
}
return true;
}
EditBone *bc_get_edit_bone(bArmature * armature, char *name) {
EditBone *eBone;
for (eBone = (EditBone *)armature->edbo->first; eBone; eBone = eBone->next) {
if (STREQ(name, eBone->name))
return eBone;
}
return NULL;
}
int bc_set_layer(int bitfield, int layer)
{
return bc_set_layer(bitfield, layer, true); /* enable */
}
int bc_set_layer(int bitfield, int layer, bool enable)
{
int bit = 1u << layer;
if (enable)
bitfield |= bit;
else
bitfield &= ~bit;
return bitfield;
}
/**
* This method creates a new extension map when needed.
* \note The ~BoneExtensionManager destructor takes care
* to delete the created maps when the manager is removed.
*/
BoneExtensionMap &BoneExtensionManager::getExtensionMap(bArmature *armature)
{
std::string key = armature->id.name;
BoneExtensionMap *result = extended_bone_maps[key];
if (result == NULL)
{
result = new BoneExtensionMap();
extended_bone_maps[key] = result;
}
return *result;
}
BoneExtensionManager::~BoneExtensionManager()
{
std::map<std::string, BoneExtensionMap *>::iterator map_it;
for (map_it = extended_bone_maps.begin(); map_it != extended_bone_maps.end(); ++map_it)
{
BoneExtensionMap *extended_bones = map_it->second;
for (BoneExtensionMap::iterator ext_it = extended_bones->begin(); ext_it != extended_bones->end(); ++ext_it) {
if (ext_it->second != NULL)
delete ext_it->second;
}
extended_bones->clear();
delete extended_bones;
}
}
/**
* BoneExtended is a helper class needed for the Bone chain finder
* See ArmatureImporter::fix_leaf_bones()
* and ArmatureImporter::connect_bone_chains()
*/
BoneExtended::BoneExtended(EditBone *aBone)
{
this->set_name(aBone->name);
this->chain_length = 0;
this->is_leaf = false;
this->tail[0] = 0.0f;
this->tail[1] = 0.5f;
this->tail[2] = 0.0f;
this->use_connect = -1;
this->roll = 0;
this->bone_layers = 0;
this->has_custom_tail = false;
this->has_custom_roll = false;
}
char *BoneExtended::get_name()
{
return name;
}
void BoneExtended::set_name(char *aName)
{
BLI_strncpy(name, aName, MAXBONENAME);
}
int BoneExtended::get_chain_length()
{
return chain_length;
}
void BoneExtended::set_chain_length(const int aLength)
{
chain_length = aLength;
}
void BoneExtended::set_leaf_bone(bool state)
{
is_leaf = state;
}
bool BoneExtended::is_leaf_bone()
{
return is_leaf;
}
void BoneExtended::set_roll(float roll)
{
this->roll = roll;
this->has_custom_roll = true;
}
bool BoneExtended::has_roll()
{
return this->has_custom_roll;
}
float BoneExtended::get_roll()
{
return this->roll;
}
void BoneExtended::set_tail(float vec[])
{
this->tail[0] = vec[0];
this->tail[1] = vec[1];
this->tail[2] = vec[2];
this->has_custom_tail = true;
}
bool BoneExtended::has_tail()
{
return this->has_custom_tail;
}
float *BoneExtended::get_tail()
{
return this->tail;
}
inline bool isInteger(const std::string & s)
{
if (s.empty() || ((!isdigit(s[0])) && (s[0] != '-') && (s[0] != '+'))) return false;
char *p;
strtol(s.c_str(), &p, 10);
return (*p == 0);
}
void BoneExtended::set_bone_layers(std::string layerString, std::vector<std::string> &layer_labels)
{
std::stringstream ss(layerString);
std::string layer;
int pos;
while (ss >> layer) {
/* Blender uses numbers to specify layers*/
if (isInteger(layer))
{
pos = atoi(layer.c_str());
if (pos >= 0 && pos < 32) {
this->bone_layers = bc_set_layer(this->bone_layers, pos);
continue;
}
}
/* layer uses labels (not supported by blender). Map to layer numbers:*/
pos = find(layer_labels.begin(), layer_labels.end(), layer) - layer_labels.begin();
if (pos >= layer_labels.size()) {
layer_labels.push_back(layer); /* remember layer number for future usage*/
}
if (pos > 31)
{
fprintf(stderr, "Too many layers in Import. Layer %s mapped to Blender layer 31\n", layer.c_str());
pos = 31;
}
/* If numeric layers and labeled layers are used in parallel (unlikely),
* we get a potential mixup. Just leave as is for now.
*/
this->bone_layers = bc_set_layer(this->bone_layers, pos);
}
}
std::string BoneExtended::get_bone_layers(int bitfield)
{
std::string result = "";
std::string sep = "";
int bit = 1u;
std::ostringstream ss;
for (int i = 0; i < 32; i++)
{
if (bit & bitfield)
{
ss << sep << i;
sep = " ";
}
bit = bit << 1;
}
return ss.str();
}
int BoneExtended::get_bone_layers()
{
return (bone_layers == 0) ? 1 : bone_layers; // ensure that the bone is in at least one bone layer!
}
void BoneExtended::set_use_connect(int use_connect)
{
this->use_connect = use_connect;
}
int BoneExtended::get_use_connect()
{
return this->use_connect;
}
/**
* Stores a 4*4 matrix as a custom bone property array of size 16
*/
void bc_set_IDPropertyMatrix(EditBone *ebone, const char *key, float mat[4][4])
{
IDProperty *idgroup = (IDProperty *)ebone->prop;
if (idgroup == NULL)
{
IDPropertyTemplate val = { 0 };
idgroup = IDP_New(IDP_GROUP, &val, "RNA_EditBone ID properties");
ebone->prop = idgroup;
}
IDPropertyTemplate val = { 0 };
val.array.len = 16;
val.array.type = IDP_FLOAT;
IDProperty *data = IDP_New(IDP_ARRAY, &val, key);
float *array = (float *)IDP_Array(data);
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
array[4 * i + j] = mat[i][j];
IDP_AddToGroup(idgroup, data);
}
#if 0
/**
* Stores a Float value as a custom bone property
*
* Note: This function is currently not needed. Keep for future usage
*/
static void bc_set_IDProperty(EditBone *ebone, const char *key, float value)
{
if (ebone->prop == NULL)
{
IDPropertyTemplate val = { 0 };
ebone->prop = IDP_New(IDP_GROUP, &val, "RNA_EditBone ID properties");
}
IDProperty *pgroup = (IDProperty *)ebone->prop;
IDPropertyTemplate val = { 0 };
IDProperty *prop = IDP_New(IDP_FLOAT, &val, key);
IDP_Float(prop) = value;
IDP_AddToGroup(pgroup, prop);
}
#endif
/**
* Get a custom property when it exists.
* This function is also used to check if a property exists.
*/
IDProperty *bc_get_IDProperty(Bone *bone, std::string key)
{
return (bone->prop == NULL) ? NULL : IDP_GetPropertyFromGroup(bone->prop, key.c_str());
}
/**
* Read a custom bone property and convert to float
* Return def if the property does not exist.
*/
float bc_get_property(Bone *bone, std::string key, float def)
{
float result = def;
IDProperty *property = bc_get_IDProperty(bone, key);
if (property) {
switch (property->type) {
case IDP_INT:
result = (float)(IDP_Int(property));
break;
case IDP_FLOAT:
result = (float)(IDP_Float(property));
break;
case IDP_DOUBLE:
result = (float)(IDP_Double(property));
break;
default:
result = def;
}
}
return result;
}
/**
* Read a custom bone property and convert to matrix
* Return true if conversion was successful
*
* Return false if:
* - the property does not exist
* - is not an array of size 16
*/
bool bc_get_property_matrix(Bone *bone, std::string key, float mat[4][4])
{
IDProperty *property = bc_get_IDProperty(bone, key);
if (property && property->type == IDP_ARRAY && property->len == 16) {
float *array = (float *)IDP_Array(property);
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
mat[i][j] = array[4 * i + j];
return true;
}
return false;
}
/**
* get a vector that is stored in 3 custom properties (used in Blender <= 2.78)
*/
void bc_get_property_vector(Bone *bone, std::string key, float val[3], const float def[3])
{
val[0] = bc_get_property(bone, key + "_x", def[0]);
val[1] = bc_get_property(bone, key + "_y", def[1]);
val[2] = bc_get_property(bone, key + "_z", def[2]);
}
/**
* Check if vector exist stored in 3 custom properties (used in Blender <= 2.78)
*/
static bool has_custom_props(Bone *bone, bool enabled, std::string key)
{
if (!enabled)
return false;
return (bc_get_IDProperty(bone, key + "_x")
|| bc_get_IDProperty(bone, key + "_y")
|| bc_get_IDProperty(bone, key + "_z"));
}
void bc_enable_fcurves(bAction *act, char *bone_name)
{
FCurve *fcu;
char prefix[200];
if (bone_name)
BLI_snprintf(prefix, sizeof(prefix), "pose.bones[\"%s\"]", bone_name);
for (fcu = (FCurve *)act->curves.first; fcu; fcu = fcu->next) {
if (bone_name) {
if (STREQLEN(fcu->rna_path, prefix, strlen(prefix)))
fcu->flag &= ~FCURVE_DISABLED;
else
fcu->flag |= FCURVE_DISABLED;
}
else {
fcu->flag &= ~FCURVE_DISABLED;
}
}
}
bool bc_bone_matrix_local_get(Object *ob, Bone *bone, Matrix &mat, bool for_opensim)
{
/* Ok, lets be super cautious and check if the bone exists */
bPose *pose = ob->pose;
bPoseChannel *pchan = BKE_pose_channel_find_name(pose, bone->name);
if (!pchan) {
return false;
}
bAction *action = bc_getSceneObjectAction(ob);
bPoseChannel *parchan = pchan->parent;
bc_enable_fcurves(action, bone->name);
float ipar[4][4];
if (bone->parent) {
invert_m4_m4(ipar, parchan->pose_mat);
mul_m4_m4m4(mat, ipar, pchan->pose_mat);
}
else
copy_m4_m4(mat, pchan->pose_mat);
/* OPEN_SIM_COMPATIBILITY
* AFAIK animation to second life is via BVH, but no
* reason to not have the collada-animation be correct
*/
if (for_opensim) {
float temp[4][4];
copy_m4_m4(temp, bone->arm_mat);
temp[3][0] = temp[3][1] = temp[3][2] = 0.0f;
invert_m4(temp);
mul_m4_m4m4(mat, mat, temp);
if (bone->parent) {
copy_m4_m4(temp, bone->parent->arm_mat);
temp[3][0] = temp[3][1] = temp[3][2] = 0.0f;
mul_m4_m4m4(mat, temp, mat);
}
}
bc_enable_fcurves(action, NULL);
return true;
}
bool bc_is_animated(BCMatrixSampleMap &values)
{
static float MIN_DISTANCE = 0.00001;
if (values.size() < 2)
return false; // need at least 2 entries to be not flat
BCMatrixSampleMap::iterator it;
const BCMatrix *refmat = NULL;
for (it = values.begin(); it != values.end(); ++it) {
const BCMatrix *matrix = it->second;
if (refmat == NULL) {
refmat = matrix;
continue;
}
if (!matrix->in_range(*refmat, MIN_DISTANCE))
return true;
}
return false;
}
bool bc_has_animations(Object *ob)
{
/* Check for object,lamp and camera transform animations */
if ((bc_getSceneObjectAction(ob) && bc_getSceneObjectAction(ob)->curves.first) ||
(bc_getSceneLampAction(ob) && bc_getSceneLampAction(ob)->curves.first) ||
(bc_getSceneCameraAction(ob) && bc_getSceneCameraAction(ob)->curves.first))
return true;
//Check Material Effect parameter animations.
for (int a = 0; a < ob->totcol; a++) {
Material *ma = give_current_material(ob, a + 1);
if (!ma) continue;
if (ma->adt && ma->adt->action && ma->adt->action->curves.first)
return true;
}
Key *key = BKE_key_from_object(ob);
if ((key && key->adt && key->adt->action) && key->adt->action->curves.first)
return true;
return false;
}
bool bc_has_animations(Scene *sce, LinkNode &export_set)
{
LinkNode *node;
for (node = &export_set; node; node = node->next) {
Object *ob = (Object *)node->link;
if (bc_has_animations(ob))
return true;
}
return false;
}
/**
* Check if custom information about bind matrix exists and modify the from_mat
* accordingly.
*
* Note: This is old style for Blender <= 2.78 only kept for compatibility
*/
void bc_create_restpose_mat(const ExportSettings *export_settings, Bone *bone, float to_mat[4][4], float from_mat[4][4], bool use_local_space)
{
float loc[3];
float rot[3];
float scale[3];
static const float V0[3] = { 0, 0, 0 };
if (!has_custom_props(bone, export_settings->keep_bind_info, "restpose_loc") &&
!has_custom_props(bone, export_settings->keep_bind_info, "restpose_rot") &&
!has_custom_props(bone, export_settings->keep_bind_info, "restpose_scale"))
{
/* No need */
copy_m4_m4(to_mat, from_mat);
return;
}
bc_decompose(from_mat, loc, rot, NULL, scale);
loc_eulO_size_to_mat4(to_mat, loc, rot, scale, 6);
if (export_settings->keep_bind_info) {
bc_get_property_vector(bone, "restpose_loc", loc, loc);
if (use_local_space && bone->parent) {
Bone *b = bone;
while (b->parent) {
b = b->parent;
float ploc[3];
bc_get_property_vector(b, "restpose_loc", ploc, V0);
loc[0] += ploc[0];
loc[1] += ploc[1];
loc[2] += ploc[2];
}
}
}
if (export_settings->keep_bind_info) {
if (bc_get_IDProperty(bone, "restpose_rot_x"))
rot[0] = DEG2RADF(bc_get_property(bone, "restpose_rot_x", 0));
if (bc_get_IDProperty(bone, "restpose_rot_y"))
rot[1] = DEG2RADF(bc_get_property(bone, "restpose_rot_y", 0));
if (bc_get_IDProperty(bone, "restpose_rot_z"))
rot[2] = DEG2RADF(bc_get_property(bone, "restpose_rot_z", 0));
}
if (export_settings->keep_bind_info) {
bc_get_property_vector(bone, "restpose_scale", scale, scale);
}
loc_eulO_size_to_mat4(to_mat, loc, rot, scale, 6);
}
/*
* Make 4*4 matrices better readable
*/
void bc_sanitize_mat(float mat[4][4], int precision)
{
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++) {
double val = (double)mat[i][j];
val = double_round(val, precision);
mat[i][j] = (float)val;
}
}
void bc_sanitize_v3(float v[3], int precision)
{
for (int i = 0; i < 3; i++) {
double val = (double)v[i];
val = double_round(val, precision);
v[i] = (float)val;
}
}
void bc_sanitize_mat(double mat[4][4], int precision)
{
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
mat[i][j] = double_round(mat[i][j], precision);
}
void bc_sanitize_v3(double v[3], int precision)
{
for (int i = 0; i < 3; i++) {
v[i] = double_round(v[i], precision);
}
}
void bc_copy_m4_farray(float r[4][4], float *a)
{
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
r[i][j] = *a++;
}
void bc_copy_farray_m4(float *r, float a[4][4])
{
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
*r++ = a[i][j];
}
void bc_copy_darray_m4d(double *r, double a[4][4])
{
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
*r++ = a[i][j];
}
void bc_copy_v44_m4d(std::vector<std::vector<double>> &r, double(&a)[4][4])
{
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
r[i][j] = a[i][j];
}
}
}
void bc_copy_m4d_v44(double (&r)[4][4], std::vector<std::vector<double>> &a)
{
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
r[i][j] = a[i][j];
}
}
}
/**
* Returns name of Active UV Layer or empty String if no active UV Layer defined
*/
std::string bc_get_active_uvlayer_name(Mesh *me)
{
int num_layers = CustomData_number_of_layers(&me->ldata, CD_MLOOPUV);
if (num_layers) {
char *layer_name = bc_CustomData_get_active_layer_name(&me->ldata, CD_MLOOPUV);
if (layer_name) {
return std::string(layer_name);
}
}
return "";
}
/**
* Returns name of Active UV Layer or empty String if no active UV Layer defined.
* Assuming the Object is of type MESH
*/
std::string bc_get_active_uvlayer_name(Object *ob)
{
Mesh *me = (Mesh *)ob->data;
return bc_get_active_uvlayer_name(me);
}
/**
* Returns UV Layer name or empty string if layer index is out of range
*/
std::string bc_get_uvlayer_name(Mesh *me, int layer)
{
int num_layers = CustomData_number_of_layers(&me->ldata, CD_MLOOPUV);
if (num_layers && layer < num_layers) {
char *layer_name = bc_CustomData_get_layer_name(&me->ldata, CD_MLOOPUV, layer);
if (layer_name) {
return std::string(layer_name);
}
}
return "";
}
std::string bc_find_bonename_in_path(std::string path, std::string probe)
{
std::string result;
char *boneName = BLI_str_quoted_substrN(path.c_str(), probe.c_str());
if (boneName) {
result = std::string(boneName);
MEM_freeN(boneName);
}
return result;
}
static bNodeTree *prepare_material_nodetree(Material *ma)
{
if (ma->nodetree == NULL) {
ma->nodetree = ntreeAddTree(NULL, "Shader Nodetree", "ShaderNodeTree");
ma->use_nodes = true;
}
return ma->nodetree;
}
bNode *bc_add_node(bContext *C, bNodeTree *ntree, int node_type, int locx, int locy, std::string label)
{
bNode *node = nodeAddStaticNode(C, ntree, node_type);
if (node) {
if (label.length() > 0) {
strcpy(node->label, label.c_str());
}
node->locx = locx;
node->locy = locy;
node->flag |= NODE_SELECT;
}
return node;
}
bNode *bc_add_node(bContext *C, bNodeTree *ntree, int node_type, int locx, int locy)
{
return bc_add_node(C, ntree, node_type, locx, locy, "");
}
#if 0
// experimental, probably not used
static bNodeSocket *bc_group_add_input_socket(bNodeTree *ntree, bNode *to_node, int to_index, std::string label)
{
bNodeSocket *to_socket = (bNodeSocket *)BLI_findlink(&to_node->inputs, to_index);
//bNodeSocket *socket = ntreeAddSocketInterfaceFromSocket(ntree, to_node, to_socket);
//return socket;
bNodeSocket *gsock = ntreeAddSocketInterfaceFromSocket(ntree, to_node, to_socket);
bNode *inputGroup = ntreeFindType(ntree, NODE_GROUP_INPUT);
node_group_input_verify(ntree, inputGroup, (ID *)ntree);
bNodeSocket *newsock = node_group_input_find_socket(inputGroup, gsock->identifier);
nodeAddLink(ntree, inputGroup, newsock, to_node, to_socket);
strcpy(newsock->name, label.c_str());
return newsock;
}
static bNodeSocket *bc_group_add_output_socket(bNodeTree *ntree, bNode *from_node, int from_index, std::string label)
{
bNodeSocket *from_socket = (bNodeSocket *)BLI_findlink(&from_node->outputs, from_index);
//bNodeSocket *socket = ntreeAddSocketInterfaceFromSocket(ntree, to_node, to_socket);
//return socket;
bNodeSocket *gsock = ntreeAddSocketInterfaceFromSocket(ntree, from_node, from_socket);
bNode *outputGroup = ntreeFindType(ntree, NODE_GROUP_OUTPUT);
node_group_output_verify(ntree, outputGroup, (ID *)ntree);
bNodeSocket *newsock = node_group_output_find_socket(outputGroup, gsock->identifier);
nodeAddLink(ntree, from_node, from_socket, outputGroup, newsock);
strcpy(newsock->name, label.c_str());
return newsock;
}
void bc_make_group(bContext *C, bNodeTree *ntree, std::map<std::string, bNode *> nmap)
{
bNode *gnode = node_group_make_from_selected(C, ntree, "ShaderNodeGroup", "ShaderNodeTree");
bNodeTree *gtree = (bNodeTree *)gnode->id;
bc_group_add_input_socket(gtree, nmap["main"], 0, "Diffuse");
bc_group_add_input_socket(gtree, nmap["emission"], 0, "Emission");
bc_group_add_input_socket(gtree, nmap["mix"], 0, "Transparency");
bc_group_add_input_socket(gtree, nmap["emission"], 1, "Emission");
bc_group_add_input_socket(gtree, nmap["main"], 4, "Metallic");
bc_group_add_input_socket(gtree, nmap["main"], 5, "Specular");
bc_group_add_output_socket(gtree, nmap["mix"], 0, "Shader");
}
#endif
static void bc_node_add_link(bNodeTree *ntree, bNode *from_node, int from_index, bNode *to_node, int to_index)
{
bNodeSocket *from_socket = (bNodeSocket *)BLI_findlink(&from_node->outputs, from_index);
bNodeSocket *to_socket = (bNodeSocket *)BLI_findlink(&to_node->inputs, to_index);
nodeAddLink(ntree, from_node, from_socket, to_node, to_socket);
}
void bc_add_default_shader(bContext *C, Material *ma)
{
bNodeTree *ntree = prepare_material_nodetree(ma);
std::map<std::string, bNode *> nmap;
#if 0
nmap["main"] = bc_add_node(C, ntree, SH_NODE_BSDF_PRINCIPLED, -300, 300);
nmap["emission"] = bc_add_node(C, ntree, SH_NODE_EMISSION, -300, 500, "emission");
nmap["add"] = bc_add_node(C, ntree, SH_NODE_ADD_SHADER, 100, 400);
nmap["transparent"] = bc_add_node(C, ntree, SH_NODE_BSDF_TRANSPARENT, 100, 200);
nmap["mix"] = bc_add_node(C, ntree, SH_NODE_MIX_SHADER, 400, 300, "transparency");
nmap["out"] = bc_add_node(C, ntree, SH_NODE_OUTPUT_MATERIAL, 600, 300);
nmap["out"]->flag &= ~NODE_SELECT;
bc_node_add_link(ntree, nmap["emission"], 0, nmap["add"], 0);
bc_node_add_link(ntree, nmap["main"], 0, nmap["add"], 1);
bc_node_add_link(ntree, nmap["add"], 0, nmap["mix"], 1);
bc_node_add_link(ntree, nmap["transparent"], 0, nmap["mix"], 2);
bc_node_add_link(ntree, nmap["mix"], 0, nmap["out"], 0);
// experimental, probably not used.
bc_make_group(C, ntree, nmap);
#else
nmap["main"] = bc_add_node(C, ntree, SH_NODE_BSDF_PRINCIPLED, 0, 300);
nmap["out"] = bc_add_node(C, ntree, SH_NODE_OUTPUT_MATERIAL, 300, 300);
bc_node_add_link(ntree, nmap["main"], 0, nmap["out"], 0);
#endif
}
COLLADASW::ColorOrTexture bc_get_base_color(Material *ma)
{
bNode *master_shader = bc_get_master_shader(ma);
if (master_shader) {
return bc_get_base_color(master_shader);
}
else {
return bc_get_cot(ma->r, ma->g, ma->b, ma->alpha);
}
}
COLLADASW::ColorOrTexture bc_get_specular_color(Material *ma, bool use_fallback)
{
bNode *master_shader = bc_get_master_shader(ma);
if (master_shader) {
return bc_get_specular_color(master_shader);
}
else if (use_fallback) {
return bc_get_cot(ma->specr * ma->spec, ma->specg * ma->spec, ma->specb * ma->spec, 1.0f);
}
else {
return bc_get_cot(0.0, 0.0, 0.0, 1.0); // no specular
}
}
COLLADASW::ColorOrTexture bc_get_base_color(bNode *shader)
{
bNodeSocket *socket = nodeFindSocket(shader, SOCK_IN, "Base Color");
if (socket)
{
bNodeSocketValueRGBA *dcol = (bNodeSocketValueRGBA *)socket->default_value;
float* col = dcol->value;
return bc_get_cot(col[0], col[1], col[2], col[3]);
}
else {
return bc_get_cot(0.8, 0.8, 0.8, 1.0); //default white
}
}
COLLADASW::ColorOrTexture bc_get_specular_color(bNode *shader)
{
bNodeSocket *socket = nodeFindSocket(shader, SOCK_IN, "Specular");
if (socket)
{
bNodeSocketValueRGBA *dcol = (bNodeSocketValueRGBA *)socket->default_value;
float* col = dcol->value;
return bc_get_cot(col[0], col[1], col[2], col[3]);
}
else {
return bc_get_cot(0.8, 0.8, 0.8, 1.0); //default white
}
}
bNode *bc_get_master_shader(Material *ma)
{
bNodeTree *nodetree = ma->nodetree;
if (nodetree) {
for (bNode *node = (bNode *)nodetree->nodes.first; node; node = node->next) {
if (node->typeinfo->type == SH_NODE_BSDF_PRINCIPLED) {
return node;
}
}
}
return NULL;
}
COLLADASW::ColorOrTexture bc_get_cot(float r, float g, float b, float a)
{
COLLADASW::Color color(r, g, b, a);
COLLADASW::ColorOrTexture cot(color);
return cot;
}