This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/functions/FN_multi_function_params.hh
Jacques Lucke d4c868da9f Geometry Nodes: refactor virtual array system
Goals of this refactor:
* Simplify creating virtual arrays.
* Simplify passing virtual arrays around.
* Simplify converting between typed and generic virtual arrays.
* Reduce memory allocations.

As a quick reminder, a virtual arrays is a data structure that behaves like an
array (i.e. it can be accessed using an index). However, it may not actually
be stored as array internally. The two most important implementations
of virtual arrays are those that correspond to an actual plain array and those
that have the same value for every index. However, many more
implementations exist for various reasons (interfacing with legacy attributes,
unified iterator over all points in multiple splines, ...).

With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and
`GVMutableArray`) can be used like "normal values". They typically live
on the stack. Before, they were usually inside a `std::unique_ptr`. This makes
passing them around much easier. Creation of new virtual arrays is also
much simpler now due to some constructors. Memory allocations are
reduced by making use of small object optimization inside the core types.

Previously, `VArray` was a class with virtual methods that had to be overridden
to change the behavior of a the virtual array. Now,`VArray` has a fixed size
and has no virtual methods. Instead it contains a `VArrayImpl` that is
similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly,
unless a new virtual array implementation is added.

To support the small object optimization for many `VArrayImpl` classes,
a new `blender::Any` type is added. It is similar to `std::any` with two
additional features. It has an adjustable inline buffer size and alignment.
The inline buffer size of `std::any` can't be relied on and is usually too
small for our use case here. Furthermore, `blender::Any` can store
additional user-defined type information without increasing the
stack size.

Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:16:30 +01:00

362 lines
13 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#pragma once
/** \file
* \ingroup fn
*
* This file provides an MFParams and MFParamsBuilder structure.
*
* `MFParamsBuilder` is used by a function caller to be prepare all parameters that are passed into
* the function. `MFParams` is then used inside the called function to access the parameters.
*/
#include "BLI_resource_scope.hh"
#include "FN_generic_pointer.hh"
#include "FN_generic_vector_array.hh"
#include "FN_generic_virtual_vector_array.hh"
#include "FN_multi_function_signature.hh"
namespace blender::fn {
class MFParamsBuilder {
private:
ResourceScope scope_;
const MFSignature *signature_;
IndexMask mask_;
int64_t min_array_size_;
Vector<GVArray> virtual_arrays_;
Vector<GMutableSpan> mutable_spans_;
Vector<const GVVectorArray *> virtual_vector_arrays_;
Vector<GVectorArray *> vector_arrays_;
friend class MFParams;
MFParamsBuilder(const MFSignature &signature, const IndexMask mask)
: signature_(&signature), mask_(mask), min_array_size_(mask.min_array_size())
{
}
public:
MFParamsBuilder(const class MultiFunction &fn, int64_t size);
/**
* The indices referenced by the #mask has to live longer than the params builder. This is
* because the it might have to destruct elements for all masked indices in the end.
*/
MFParamsBuilder(const class MultiFunction &fn, const IndexMask *mask);
template<typename T> void add_readonly_single_input_value(T value, StringRef expected_name = "")
{
T *value_ptr = &scope_.add_value<T>(std::move(value));
this->add_readonly_single_input(value_ptr, expected_name);
}
template<typename T> void add_readonly_single_input(const T *value, StringRef expected_name = "")
{
this->add_readonly_single_input(
GVArray::ForSingleRef(CPPType::get<T>(), min_array_size_, value), expected_name);
}
void add_readonly_single_input(const GSpan span, StringRef expected_name = "")
{
this->add_readonly_single_input(GVArray::ForSpan(span), expected_name);
}
void add_readonly_single_input(GPointer value, StringRef expected_name = "")
{
this->add_readonly_single_input(
GVArray::ForSingleRef(*value.type(), min_array_size_, value.get()), expected_name);
}
void add_readonly_single_input(GVArray varray, StringRef expected_name = "")
{
this->assert_current_param_type(MFParamType::ForSingleInput(varray.type()), expected_name);
BLI_assert(varray.size() >= min_array_size_);
virtual_arrays_.append(varray);
}
void add_readonly_vector_input(const GVectorArray &vector_array, StringRef expected_name = "")
{
this->add_readonly_vector_input(scope_.construct<GVVectorArray_For_GVectorArray>(vector_array),
expected_name);
}
void add_readonly_vector_input(const GSpan single_vector, StringRef expected_name = "")
{
this->add_readonly_vector_input(
scope_.construct<GVVectorArray_For_SingleGSpan>(single_vector, min_array_size_),
expected_name);
}
void add_readonly_vector_input(const GVVectorArray &ref, StringRef expected_name = "")
{
this->assert_current_param_type(MFParamType::ForVectorInput(ref.type()), expected_name);
BLI_assert(ref.size() >= min_array_size_);
virtual_vector_arrays_.append(&ref);
}
template<typename T> void add_uninitialized_single_output(T *value, StringRef expected_name = "")
{
this->add_uninitialized_single_output(GMutableSpan(CPPType::get<T>(), value, 1),
expected_name);
}
void add_uninitialized_single_output(GMutableSpan ref, StringRef expected_name = "")
{
this->assert_current_param_type(MFParamType::ForSingleOutput(ref.type()), expected_name);
BLI_assert(ref.size() >= min_array_size_);
mutable_spans_.append(ref);
}
void add_ignored_single_output(StringRef expected_name = "")
{
this->assert_current_param_name(expected_name);
const int param_index = this->current_param_index();
const MFParamType &param_type = signature_->param_types[param_index];
BLI_assert(param_type.category() == MFParamType::SingleOutput);
const CPPType &type = param_type.data_type().single_type();
/* An empty span indicates that this is ignored. */
const GMutableSpan dummy_span{type};
mutable_spans_.append(dummy_span);
}
void add_vector_output(GVectorArray &vector_array, StringRef expected_name = "")
{
this->assert_current_param_type(MFParamType::ForVectorOutput(vector_array.type()),
expected_name);
BLI_assert(vector_array.size() >= min_array_size_);
vector_arrays_.append(&vector_array);
}
void add_single_mutable(GMutableSpan ref, StringRef expected_name = "")
{
this->assert_current_param_type(MFParamType::ForMutableSingle(ref.type()), expected_name);
BLI_assert(ref.size() >= min_array_size_);
mutable_spans_.append(ref);
}
void add_vector_mutable(GVectorArray &vector_array, StringRef expected_name = "")
{
this->assert_current_param_type(MFParamType::ForMutableVector(vector_array.type()),
expected_name);
BLI_assert(vector_array.size() >= min_array_size_);
vector_arrays_.append(&vector_array);
}
GMutableSpan computed_array(int param_index)
{
BLI_assert(ELEM(signature_->param_types[param_index].category(),
MFParamType::SingleOutput,
MFParamType::SingleMutable));
int data_index = signature_->data_index(param_index);
return mutable_spans_[data_index];
}
GVectorArray &computed_vector_array(int param_index)
{
BLI_assert(ELEM(signature_->param_types[param_index].category(),
MFParamType::VectorOutput,
MFParamType::VectorMutable));
int data_index = signature_->data_index(param_index);
return *vector_arrays_[data_index];
}
ResourceScope &resource_scope()
{
return scope_;
}
private:
void assert_current_param_type(MFParamType param_type, StringRef expected_name = "")
{
UNUSED_VARS_NDEBUG(param_type, expected_name);
#ifdef DEBUG
int param_index = this->current_param_index();
if (expected_name != "") {
StringRef actual_name = signature_->param_names[param_index];
BLI_assert(actual_name == expected_name);
}
MFParamType expected_type = signature_->param_types[param_index];
BLI_assert(expected_type == param_type);
#endif
}
void assert_current_param_name(StringRef expected_name)
{
UNUSED_VARS_NDEBUG(expected_name);
#ifdef DEBUG
if (expected_name.is_empty()) {
return;
}
const int param_index = this->current_param_index();
StringRef actual_name = signature_->param_names[param_index];
BLI_assert(actual_name == expected_name);
#endif
}
int current_param_index() const
{
return virtual_arrays_.size() + mutable_spans_.size() + virtual_vector_arrays_.size() +
vector_arrays_.size();
}
};
class MFParams {
private:
MFParamsBuilder *builder_;
public:
MFParams(MFParamsBuilder &builder) : builder_(&builder)
{
}
template<typename T> VArray<T> readonly_single_input(int param_index, StringRef name = "")
{
const GVArray &varray = this->readonly_single_input(param_index, name);
return varray.typed<T>();
}
const GVArray &readonly_single_input(int param_index, StringRef name = "")
{
this->assert_correct_param(param_index, name, MFParamType::SingleInput);
int data_index = builder_->signature_->data_index(param_index);
return builder_->virtual_arrays_[data_index];
}
/**
* \return True when the caller provided a buffer for this output parameter. This allows the
* called multi-function to skip some computation. It is still valid to call
* #uninitialized_single_output when this returns false. In this case a new temporary buffer is
* allocated.
*/
bool single_output_is_required(int param_index, StringRef name = "")
{
this->assert_correct_param(param_index, name, MFParamType::SingleOutput);
int data_index = builder_->signature_->data_index(param_index);
return !builder_->mutable_spans_[data_index].is_empty();
}
template<typename T>
MutableSpan<T> uninitialized_single_output(int param_index, StringRef name = "")
{
return this->uninitialized_single_output(param_index, name).typed<T>();
}
GMutableSpan uninitialized_single_output(int param_index, StringRef name = "")
{
this->assert_correct_param(param_index, name, MFParamType::SingleOutput);
int data_index = builder_->signature_->data_index(param_index);
GMutableSpan span = builder_->mutable_spans_[data_index];
if (span.is_empty()) {
/* The output is ignored by the caller, but the multi-function does not handle this case. So
* create a temporary buffer that the multi-function can write to. */
const CPPType &type = span.type();
void *buffer = builder_->scope_.linear_allocator().allocate(
builder_->min_array_size_ * type.size(), type.alignment());
if (!type.is_trivially_destructible()) {
/* Make sure the temporary elements will be destructed in the end. */
builder_->scope_.add_destruct_call(
[&type, buffer, mask = builder_->mask_]() { type.destruct_indices(buffer, mask); });
}
span = GMutableSpan{type, buffer, builder_->min_array_size_};
}
return span;
}
/**
* Same as #uninitialized_single_output, but returns an empty span when the output is not
* required.
*/
template<typename T>
MutableSpan<T> uninitialized_single_output_if_required(int param_index, StringRef name = "")
{
return this->uninitialized_single_output_if_required(param_index, name).typed<T>();
}
GMutableSpan uninitialized_single_output_if_required(int param_index, StringRef name = "")
{
this->assert_correct_param(param_index, name, MFParamType::SingleOutput);
int data_index = builder_->signature_->data_index(param_index);
return builder_->mutable_spans_[data_index];
}
template<typename T>
const VVectorArray<T> &readonly_vector_input(int param_index, StringRef name = "")
{
const GVVectorArray &vector_array = this->readonly_vector_input(param_index, name);
return builder_->scope_.construct<VVectorArray_For_GVVectorArray<T>>(vector_array);
}
const GVVectorArray &readonly_vector_input(int param_index, StringRef name = "")
{
this->assert_correct_param(param_index, name, MFParamType::VectorInput);
int data_index = builder_->signature_->data_index(param_index);
return *builder_->virtual_vector_arrays_[data_index];
}
template<typename T>
GVectorArray_TypedMutableRef<T> vector_output(int param_index, StringRef name = "")
{
return {this->vector_output(param_index, name)};
}
GVectorArray &vector_output(int param_index, StringRef name = "")
{
this->assert_correct_param(param_index, name, MFParamType::VectorOutput);
int data_index = builder_->signature_->data_index(param_index);
return *builder_->vector_arrays_[data_index];
}
template<typename T> MutableSpan<T> single_mutable(int param_index, StringRef name = "")
{
return this->single_mutable(param_index, name).typed<T>();
}
GMutableSpan single_mutable(int param_index, StringRef name = "")
{
this->assert_correct_param(param_index, name, MFParamType::SingleMutable);
int data_index = builder_->signature_->data_index(param_index);
return builder_->mutable_spans_[data_index];
}
template<typename T>
GVectorArray_TypedMutableRef<T> vector_mutable(int param_index, StringRef name = "")
{
return {this->vector_mutable(param_index, name)};
}
GVectorArray &vector_mutable(int param_index, StringRef name = "")
{
this->assert_correct_param(param_index, name, MFParamType::VectorMutable);
int data_index = builder_->signature_->data_index(param_index);
return *builder_->vector_arrays_[data_index];
}
private:
void assert_correct_param(int param_index, StringRef name, MFParamType param_type)
{
UNUSED_VARS_NDEBUG(param_index, name, param_type);
#ifdef DEBUG
BLI_assert(builder_->signature_->param_types[param_index] == param_type);
if (name.size() > 0) {
BLI_assert(builder_->signature_->param_names[param_index] == name);
}
#endif
}
void assert_correct_param(int param_index, StringRef name, MFParamType::Category category)
{
UNUSED_VARS_NDEBUG(param_index, name, category);
#ifdef DEBUG
BLI_assert(builder_->signature_->param_types[param_index].category() == category);
if (name.size() > 0) {
BLI_assert(builder_->signature_->param_names[param_index] == name);
}
#endif
}
};
} // namespace blender::fn