nodes. The Rotate node was calculating the center with a 1 pixel offset, which effectively shifts the image by 1 pixel on one or both axis for right-angle (90 degree) rotations. Note that the wrapping feature for translate nodes can still produce undesirable results for non-quadratic images. This is because of how the resolution calculation works atm: the Rotate node will keep the resolution of the input image, even if the resulting image is then cropped or leaves empty margins. There is no easy way to fix that without redesign.
111 lines
3.8 KiB
C++
111 lines
3.8 KiB
C++
/*
|
|
* Copyright 2011, Blender Foundation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* Contributor:
|
|
* Jeroen Bakker
|
|
* Monique Dewanchand
|
|
*/
|
|
|
|
#include "COM_RotateOperation.h"
|
|
#include "BLI_math.h"
|
|
|
|
RotateOperation::RotateOperation() : NodeOperation()
|
|
{
|
|
this->addInputSocket(COM_DT_COLOR);
|
|
this->addInputSocket(COM_DT_VALUE);
|
|
this->addOutputSocket(COM_DT_COLOR);
|
|
this->setResolutionInputSocketIndex(0);
|
|
this->m_imageSocket = NULL;
|
|
this->m_degreeSocket = NULL;
|
|
this->m_doDegree2RadConversion = false;
|
|
this->m_isDegreeSet = false;
|
|
}
|
|
void RotateOperation::initExecution()
|
|
{
|
|
this->m_imageSocket = this->getInputSocketReader(0);
|
|
this->m_degreeSocket = this->getInputSocketReader(1);
|
|
this->m_centerX = (getWidth() - 1) / 2.0;
|
|
this->m_centerY = (getHeight() - 1) / 2.0;
|
|
}
|
|
|
|
void RotateOperation::deinitExecution()
|
|
{
|
|
this->m_imageSocket = NULL;
|
|
this->m_degreeSocket = NULL;
|
|
}
|
|
|
|
inline void RotateOperation::ensureDegree()
|
|
{
|
|
if (!this->m_isDegreeSet) {
|
|
float degree[4];
|
|
this->m_degreeSocket->readSampled(degree, 0, 0, COM_PS_NEAREST);
|
|
double rad;
|
|
if (this->m_doDegree2RadConversion) {
|
|
rad = DEG2RAD((double)degree[0]);
|
|
}
|
|
else {
|
|
rad = degree[0];
|
|
}
|
|
this->m_cosine = cos(rad);
|
|
this->m_sine = sin(rad);
|
|
|
|
this->m_isDegreeSet = true;
|
|
}
|
|
}
|
|
|
|
|
|
void RotateOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler)
|
|
{
|
|
ensureDegree();
|
|
const float dy = y - this->m_centerY;
|
|
const float dx = x - this->m_centerX;
|
|
const float nx = this->m_centerX + (this->m_cosine * dx + this->m_sine * dy);
|
|
const float ny = this->m_centerY + (-this->m_sine * dx + this->m_cosine * dy);
|
|
this->m_imageSocket->readSampled(output, nx, ny, sampler);
|
|
}
|
|
|
|
bool RotateOperation::determineDependingAreaOfInterest(rcti *input, ReadBufferOperation *readOperation, rcti *output)
|
|
{
|
|
ensureDegree();
|
|
rcti newInput;
|
|
|
|
const float dxmin = input->xmin - this->m_centerX;
|
|
const float dymin = input->ymin - this->m_centerY;
|
|
const float dxmax = input->xmax - this->m_centerX;
|
|
const float dymax = input->ymax - this->m_centerY;
|
|
|
|
const float x1 = this->m_centerX + (this->m_cosine * dxmin + this->m_sine * dymin);
|
|
const float x2 = this->m_centerX + (this->m_cosine * dxmax + this->m_sine * dymin);
|
|
const float x3 = this->m_centerX + (this->m_cosine * dxmin + this->m_sine * dymax);
|
|
const float x4 = this->m_centerX + (this->m_cosine * dxmax + this->m_sine * dymax);
|
|
const float y1 = this->m_centerY + (-this->m_sine * dxmin + this->m_cosine * dymin);
|
|
const float y2 = this->m_centerY + (-this->m_sine * dxmax + this->m_cosine * dymin);
|
|
const float y3 = this->m_centerY + (-this->m_sine * dxmin + this->m_cosine * dymax);
|
|
const float y4 = this->m_centerY + (-this->m_sine * dxmax + this->m_cosine * dymax);
|
|
const float minx = min(x1, min(x2, min(x3, x4)));
|
|
const float maxx = max(x1, max(x2, max(x3, x4)));
|
|
const float miny = min(y1, min(y2, min(y3, y4)));
|
|
const float maxy = max(y1, max(y2, max(y3, y4)));
|
|
|
|
newInput.xmax = ceil(maxx) + 1;
|
|
newInput.xmin = floor(minx) - 1;
|
|
newInput.ymax = ceil(maxy) + 1;
|
|
newInput.ymin = floor(miny) - 1;
|
|
|
|
return NodeOperation::determineDependingAreaOfInterest(&newInput, readOperation, output);
|
|
}
|