1407 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1407 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ***** BEGIN GPL LICENSE BLOCK *****
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software Foundation,
 | |
|  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | |
|  *
 | |
|  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * This is a new part of Blender.
 | |
|  *
 | |
|  * Contributor(s): Joseph Gilbert, Campbell Barton
 | |
|  *
 | |
|  * ***** END GPL LICENSE BLOCK *****
 | |
|  */
 | |
| 
 | |
| /** \file blender/python/mathutils/mathutils_geometry.c
 | |
|  *  \ingroup pymathutils
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include <Python.h>
 | |
| 
 | |
| #include "mathutils_geometry.h"
 | |
| 
 | |
| /* Used for PolyFill */
 | |
| #ifndef MATH_STANDALONE /* define when building outside blender */
 | |
| #  include "MEM_guardedalloc.h"
 | |
| #  include "BLI_blenlib.h"
 | |
| #  include "BLI_boxpack2d.h"
 | |
| #  include "BKE_displist.h"
 | |
| #  include "BKE_curve.h"
 | |
| #endif
 | |
| 
 | |
| #include "BLI_math.h"
 | |
| #include "BLI_utildefines.h"
 | |
| 
 | |
| /*-------------------------DOC STRINGS ---------------------------*/
 | |
| PyDoc_STRVAR(M_Geometry_doc,
 | |
| "The Blender geometry module"
 | |
| );
 | |
| 
 | |
| /* ---------------------------------INTERSECTION FUNCTIONS-------------------- */
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_intersect_ray_tri_doc,
 | |
| ".. function:: intersect_ray_tri(v1, v2, v3, ray, orig, clip=True)\n"
 | |
| "\n"
 | |
| "   Returns the intersection between a ray and a triangle, if possible, returns None otherwise.\n"
 | |
| "\n"
 | |
| "   :arg v1: Point1\n"
 | |
| "   :type v1: :class:`mathutils.Vector`\n"
 | |
| "   :arg v2: Point2\n"
 | |
| "   :type v2: :class:`mathutils.Vector`\n"
 | |
| "   :arg v3: Point3\n"
 | |
| "   :type v3: :class:`mathutils.Vector`\n"
 | |
| "   :arg ray: Direction of the projection\n"
 | |
| "   :type ray: :class:`mathutils.Vector`\n"
 | |
| "   :arg orig: Origin\n"
 | |
| "   :type orig: :class:`mathutils.Vector`\n"
 | |
| "   :arg clip: When False, don't restrict the intersection to the area of the triangle, use the infinite plane defined by the triangle.\n"
 | |
| "   :type clip: boolean\n"
 | |
| "   :return: The point of intersection or None if no intersection is found\n"
 | |
| "   :rtype: :class:`mathutils.Vector` or None\n"
 | |
| );
 | |
| static PyObject *M_Geometry_intersect_ray_tri(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	VectorObject *ray, *ray_off, *vec1, *vec2, *vec3;
 | |
| 	float dir[3], orig[3], v1[3], v2[3], v3[3], e1[3], e2[3], pvec[3], tvec[3], qvec[3];
 | |
| 	float det, inv_det, u, v, t;
 | |
| 	int clip = 1;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(args,
 | |
| 	                      "O!O!O!O!O!|i:intersect_ray_tri",
 | |
| 	                      &vector_Type, &vec1,
 | |
| 	                      &vector_Type, &vec2,
 | |
| 	                      &vector_Type, &vec3,
 | |
| 	                      &vector_Type, &ray,
 | |
| 	                      &vector_Type, &ray_off, &clip))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (vec1->size != 3 || vec2->size != 3 || vec3->size != 3 || ray->size != 3 || ray_off->size != 3) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "only 3D vectors for all parameters");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(vec1) == -1 ||
 | |
| 	    BaseMath_ReadCallback(vec2) == -1 ||
 | |
| 	    BaseMath_ReadCallback(vec3) == -1 ||
 | |
| 	    BaseMath_ReadCallback(ray)  == -1 ||
 | |
| 	    BaseMath_ReadCallback(ray_off) == -1)
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	copy_v3_v3(v1, vec1->vec);
 | |
| 	copy_v3_v3(v2, vec2->vec);
 | |
| 	copy_v3_v3(v3, vec3->vec);
 | |
| 
 | |
| 	copy_v3_v3(dir, ray->vec);
 | |
| 	normalize_v3(dir);
 | |
| 
 | |
| 	copy_v3_v3(orig, ray_off->vec);
 | |
| 
 | |
| 	/* find vectors for two edges sharing v1 */
 | |
| 	sub_v3_v3v3(e1, v2, v1);
 | |
| 	sub_v3_v3v3(e2, v3, v1);
 | |
| 
 | |
| 	/* begin calculating determinant - also used to calculated U parameter */
 | |
| 	cross_v3_v3v3(pvec, dir, e2);
 | |
| 
 | |
| 	/* if determinant is near zero, ray lies in plane of triangle */
 | |
| 	det = dot_v3v3(e1, pvec);
 | |
| 
 | |
| 	if (det > -0.000001f && det < 0.000001f) {
 | |
| 		Py_RETURN_NONE;
 | |
| 	}
 | |
| 
 | |
| 	inv_det = 1.0f / det;
 | |
| 
 | |
| 	/* calculate distance from v1 to ray origin */
 | |
| 	sub_v3_v3v3(tvec, orig, v1);
 | |
| 
 | |
| 	/* calculate U parameter and test bounds */
 | |
| 	u = dot_v3v3(tvec, pvec) * inv_det;
 | |
| 	if (clip && (u < 0.0f || u > 1.0f)) {
 | |
| 		Py_RETURN_NONE;
 | |
| 	}
 | |
| 
 | |
| 	/* prepare to test the V parameter */
 | |
| 	cross_v3_v3v3(qvec, tvec, e1);
 | |
| 
 | |
| 	/* calculate V parameter and test bounds */
 | |
| 	v = dot_v3v3(dir, qvec) * inv_det;
 | |
| 
 | |
| 	if (clip && (v < 0.0f || u + v > 1.0f)) {
 | |
| 		Py_RETURN_NONE;
 | |
| 	}
 | |
| 
 | |
| 	/* calculate t, ray intersects triangle */
 | |
| 	t = dot_v3v3(e2, qvec) * inv_det;
 | |
| 
 | |
| 	mul_v3_fl(dir, t);
 | |
| 	add_v3_v3v3(pvec, orig, dir);
 | |
| 
 | |
| 	return Vector_CreatePyObject(pvec, 3, Py_NEW, NULL);
 | |
| }
 | |
| 
 | |
| /* Line-Line intersection using algorithm from mathworld.wolfram.com */
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_intersect_line_line_doc,
 | |
| ".. function:: intersect_line_line(v1, v2, v3, v4)\n"
 | |
| "\n"
 | |
| "   Returns a tuple with the points on each line respectively closest to the other.\n"
 | |
| "\n"
 | |
| "   :arg v1: First point of the first line\n"
 | |
| "   :type v1: :class:`mathutils.Vector`\n"
 | |
| "   :arg v2: Second point of the first line\n"
 | |
| "   :type v2: :class:`mathutils.Vector`\n"
 | |
| "   :arg v3: First point of the second line\n"
 | |
| "   :type v3: :class:`mathutils.Vector`\n"
 | |
| "   :arg v4: Second point of the second line\n"
 | |
| "   :type v4: :class:`mathutils.Vector`\n"
 | |
| "   :rtype: tuple of :class:`mathutils.Vector`'s\n"
 | |
| );
 | |
| static PyObject *M_Geometry_intersect_line_line(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	PyObject *tuple;
 | |
| 	VectorObject *vec1, *vec2, *vec3, *vec4;
 | |
| 	float v1[3], v2[3], v3[3], v4[3], i1[3], i2[3];
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(args, "O!O!O!O!:intersect_line_line",
 | |
| 	                      &vector_Type, &vec1,
 | |
| 	                      &vector_Type, &vec2,
 | |
| 	                      &vector_Type, &vec3,
 | |
| 	                      &vector_Type, &vec4))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (vec1->size != vec2->size || vec1->size != vec3->size || vec3->size != vec2->size) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "vectors must be of the same size");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(vec1) == -1 ||
 | |
| 	    BaseMath_ReadCallback(vec2) == -1 ||
 | |
| 	    BaseMath_ReadCallback(vec3) == -1 ||
 | |
| 	    BaseMath_ReadCallback(vec4) == -1)
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (vec1->size == 3 || vec1->size == 2) {
 | |
| 		int result;
 | |
| 
 | |
| 		if (vec1->size == 3) {
 | |
| 			copy_v3_v3(v1, vec1->vec);
 | |
| 			copy_v3_v3(v2, vec2->vec);
 | |
| 			copy_v3_v3(v3, vec3->vec);
 | |
| 			copy_v3_v3(v4, vec4->vec);
 | |
| 		}
 | |
| 		else {
 | |
| 			v1[0] = vec1->vec[0];
 | |
| 			v1[1] = vec1->vec[1];
 | |
| 			v1[2] = 0.0f;
 | |
| 
 | |
| 			v2[0] = vec2->vec[0];
 | |
| 			v2[1] = vec2->vec[1];
 | |
| 			v2[2] = 0.0f;
 | |
| 
 | |
| 			v3[0] = vec3->vec[0];
 | |
| 			v3[1] = vec3->vec[1];
 | |
| 			v3[2] = 0.0f;
 | |
| 
 | |
| 			v4[0] = vec4->vec[0];
 | |
| 			v4[1] = vec4->vec[1];
 | |
| 			v4[2] = 0.0f;
 | |
| 		}
 | |
| 
 | |
| 		result = isect_line_line_v3(v1, v2, v3, v4, i1, i2);
 | |
| 
 | |
| 		if (result == 0) {
 | |
| 			/* colinear */
 | |
| 			Py_RETURN_NONE;
 | |
| 		}
 | |
| 		else {
 | |
| 			tuple = PyTuple_New(2);
 | |
| 			PyTuple_SET_ITEM(tuple, 0, Vector_CreatePyObject(i1, vec1->size, Py_NEW, NULL));
 | |
| 			PyTuple_SET_ITEM(tuple, 1, Vector_CreatePyObject(i2, vec1->size, Py_NEW, NULL));
 | |
| 			return tuple;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "2D/3D vectors only");
 | |
| 		return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_normal_doc,
 | |
| ".. function:: normal(v1, v2, v3, v4=None)\n"
 | |
| "\n"
 | |
| "   Returns the normal of the 3D tri or quad.\n"
 | |
| "\n"
 | |
| "   :arg v1: Point1\n"
 | |
| "   :type v1: :class:`mathutils.Vector`\n"
 | |
| "   :arg v2: Point2\n"
 | |
| "   :type v2: :class:`mathutils.Vector`\n"
 | |
| "   :arg v3: Point3\n"
 | |
| "   :type v3: :class:`mathutils.Vector`\n"
 | |
| "   :arg v4: Point4 (optional)\n"
 | |
| "   :type v4: :class:`mathutils.Vector`\n"
 | |
| "   :rtype: :class:`mathutils.Vector`\n"
 | |
| );
 | |
| static PyObject *M_Geometry_normal(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	VectorObject *vec1, *vec2, *vec3, *vec4;
 | |
| 	float n[3];
 | |
| 
 | |
| 	if (PyTuple_GET_SIZE(args) == 3) {
 | |
| 		if (!PyArg_ParseTuple(args, "O!O!O!:normal",
 | |
| 		                      &vector_Type, &vec1,
 | |
| 		                      &vector_Type, &vec2,
 | |
| 		                      &vector_Type, &vec3))
 | |
| 		{
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		if (vec1->size != vec2->size || vec1->size != vec3->size) {
 | |
| 			PyErr_SetString(PyExc_ValueError,
 | |
| 			                "vectors must be of the same size");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		if (vec1->size < 3) {
 | |
| 			PyErr_SetString(PyExc_ValueError,
 | |
| 			                "2D vectors unsupported");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		if (BaseMath_ReadCallback(vec1) == -1 ||
 | |
| 		    BaseMath_ReadCallback(vec2) == -1 ||
 | |
| 		    BaseMath_ReadCallback(vec3) == -1)
 | |
| 		{
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		normal_tri_v3(n, vec1->vec, vec2->vec, vec3->vec);
 | |
| 	}
 | |
| 	else {
 | |
| 		if (!PyArg_ParseTuple(args, "O!O!O!O!:normal",
 | |
| 		                      &vector_Type, &vec1,
 | |
| 		                      &vector_Type, &vec2,
 | |
| 		                      &vector_Type, &vec3,
 | |
| 		                      &vector_Type, &vec4))
 | |
| 		{
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		if (vec1->size != vec2->size || vec1->size != vec3->size || vec1->size != vec4->size) {
 | |
| 			PyErr_SetString(PyExc_ValueError,
 | |
| 			                "vectors must be of the same size");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		if (vec1->size < 3) {
 | |
| 			PyErr_SetString(PyExc_ValueError,
 | |
| 			                "2D vectors unsupported");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		if (BaseMath_ReadCallback(vec1) == -1 ||
 | |
| 		    BaseMath_ReadCallback(vec2) == -1 ||
 | |
| 		    BaseMath_ReadCallback(vec3) == -1 ||
 | |
| 		    BaseMath_ReadCallback(vec4) == -1)
 | |
| 		{
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		normal_quad_v3(n, vec1->vec, vec2->vec, vec3->vec, vec4->vec);
 | |
| 	}
 | |
| 
 | |
| 	return Vector_CreatePyObject(n, 3, Py_NEW, NULL);
 | |
| }
 | |
| 
 | |
| /* --------------------------------- AREA FUNCTIONS-------------------- */
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_area_tri_doc,
 | |
| ".. function:: area_tri(v1, v2, v3)\n"
 | |
| "\n"
 | |
| "   Returns the area size of the 2D or 3D triangle defined.\n"
 | |
| "\n"
 | |
| "   :arg v1: Point1\n"
 | |
| "   :type v1: :class:`mathutils.Vector`\n"
 | |
| "   :arg v2: Point2\n"
 | |
| "   :type v2: :class:`mathutils.Vector`\n"
 | |
| "   :arg v3: Point3\n"
 | |
| "   :type v3: :class:`mathutils.Vector`\n"
 | |
| "   :rtype: float\n"
 | |
| );
 | |
| static PyObject *M_Geometry_area_tri(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	VectorObject *vec1, *vec2, *vec3;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(args, "O!O!O!:area_tri",
 | |
| 	                      &vector_Type, &vec1,
 | |
| 	                      &vector_Type, &vec2,
 | |
| 	                      &vector_Type, &vec3))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (vec1->size != vec2->size || vec1->size != vec3->size) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "vectors must be of the same size");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(vec1) == -1 ||
 | |
| 	    BaseMath_ReadCallback(vec2) == -1 ||
 | |
| 	    BaseMath_ReadCallback(vec3) == -1)
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (vec1->size == 3) {
 | |
| 		return PyFloat_FromDouble(area_tri_v3(vec1->vec, vec2->vec, vec3->vec));
 | |
| 	}
 | |
| 	else if (vec1->size == 2) {
 | |
| 		return PyFloat_FromDouble(area_tri_v2(vec1->vec, vec2->vec, vec3->vec));
 | |
| 	}
 | |
| 	else {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "only 2D,3D vectors are supported");
 | |
| 		return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_intersect_line_line_2d_doc,
 | |
| ".. function:: intersect_line_line_2d(lineA_p1, lineA_p2, lineB_p1, lineB_p2)\n"
 | |
| "\n"
 | |
| "   Takes 2 lines (as 4 vectors) and returns a vector for their point of intersection or None.\n"
 | |
| "\n"
 | |
| "   :arg lineA_p1: First point of the first line\n"
 | |
| "   :type lineA_p1: :class:`mathutils.Vector`\n"
 | |
| "   :arg lineA_p2: Second point of the first line\n"
 | |
| "   :type lineA_p2: :class:`mathutils.Vector`\n"
 | |
| "   :arg lineB_p1: First point of the second line\n"
 | |
| "   :type lineB_p1: :class:`mathutils.Vector`\n"
 | |
| "   :arg lineB_p2: Second point of the second line\n"
 | |
| "   :type lineB_p2: :class:`mathutils.Vector`\n"
 | |
| "   :return: The point of intersection or None when not found\n"
 | |
| "   :rtype: :class:`mathutils.Vector` or None\n"
 | |
| );
 | |
| static PyObject *M_Geometry_intersect_line_line_2d(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	VectorObject *line_a1, *line_a2, *line_b1, *line_b2;
 | |
| 	float vi[2];
 | |
| 	if (!PyArg_ParseTuple(args, "O!O!O!O!:intersect_line_line_2d",
 | |
| 	                      &vector_Type, &line_a1,
 | |
| 	                      &vector_Type, &line_a2,
 | |
| 	                      &vector_Type, &line_b1,
 | |
| 	                      &vector_Type, &line_b2))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	
 | |
| 	if (BaseMath_ReadCallback(line_a1) == -1 ||
 | |
| 	    BaseMath_ReadCallback(line_a2) == -1 ||
 | |
| 	    BaseMath_ReadCallback(line_b1) == -1 ||
 | |
| 	    BaseMath_ReadCallback(line_b2) == -1)
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (isect_seg_seg_v2_point(line_a1->vec, line_a2->vec, line_b1->vec, line_b2->vec, vi) == 1) {
 | |
| 		return Vector_CreatePyObject(vi, 2, Py_NEW, NULL);
 | |
| 	}
 | |
| 	else {
 | |
| 		Py_RETURN_NONE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_intersect_line_plane_doc,
 | |
| ".. function:: intersect_line_plane(line_a, line_b, plane_co, plane_no, no_flip=False)\n"
 | |
| "\n"
 | |
| "   Calculate the intersection between a line (as 2 vectors) and a plane.\n"
 | |
| "   Returns a vector for the intersection or None.\n"
 | |
| "\n"
 | |
| "   :arg line_a: First point of the first line\n"
 | |
| "   :type line_a: :class:`mathutils.Vector`\n"
 | |
| "   :arg line_b: Second point of the first line\n"
 | |
| "   :type line_b: :class:`mathutils.Vector`\n"
 | |
| "   :arg plane_co: A point on the plane\n"
 | |
| "   :type plane_co: :class:`mathutils.Vector`\n"
 | |
| "   :arg plane_no: The direction the plane is facing\n"
 | |
| "   :type plane_no: :class:`mathutils.Vector`\n"
 | |
| "   :arg no_flip: Always return an intersection on the directon defined bt line_a -> line_b\n"
 | |
| "   :type no_flip: :boolean\n"
 | |
| "   :return: The point of intersection or None when not found\n"
 | |
| "   :rtype: :class:`mathutils.Vector` or None\n"
 | |
| );
 | |
| static PyObject *M_Geometry_intersect_line_plane(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	VectorObject *line_a, *line_b, *plane_co, *plane_no;
 | |
| 	int no_flip = 0;
 | |
| 	float isect[3];
 | |
| 	if (!PyArg_ParseTuple(args, "O!O!O!O!|i:intersect_line_plane",
 | |
| 	                      &vector_Type, &line_a,
 | |
| 	                      &vector_Type, &line_b,
 | |
| 	                      &vector_Type, &plane_co,
 | |
| 	                      &vector_Type, &plane_no,
 | |
| 	                      &no_flip))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(line_a) == -1 ||
 | |
| 	    BaseMath_ReadCallback(line_b) == -1 ||
 | |
| 	    BaseMath_ReadCallback(plane_co) == -1 ||
 | |
| 	    BaseMath_ReadCallback(plane_no) == -1)
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (ELEM4(2, line_a->size, line_b->size, plane_co->size, plane_no->size)) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "geometry.intersect_line_plane(...): "
 | |
| 		                " can't use 2D Vectors");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (isect_line_plane_v3(isect, line_a->vec, line_b->vec, plane_co->vec, plane_no->vec, no_flip) == 1) {
 | |
| 		return Vector_CreatePyObject(isect, 3, Py_NEW, NULL);
 | |
| 	}
 | |
| 	else {
 | |
| 		Py_RETURN_NONE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_intersect_plane_plane_doc,
 | |
| ".. function:: intersect_plane_plane(plane_a_co, plane_a_no, plane_b_co, plane_b_no)\n"
 | |
| "\n"
 | |
| "   Return the intersection between two planes\n"
 | |
| "\n"
 | |
| "   :arg plane_a_co: Point on the first plane\n"
 | |
| "   :type plane_a_co: :class:`mathutils.Vector`\n"
 | |
| "   :arg plane_a_no: Normal of the first plane\n"
 | |
| "   :type plane_a_no: :class:`mathutils.Vector`\n"
 | |
| "   :arg plane_b_co: Point on the second plane\n"
 | |
| "   :type plane_b_co: :class:`mathutils.Vector`\n"
 | |
| "   :arg plane_b_no: Normal of the second plane\n"
 | |
| "   :type plane_b_no: :class:`mathutils.Vector`\n"
 | |
| "   :return: The line of the intersection represented as a point and a vector\n"
 | |
| "   :rtype: tuple pair of :class:`mathutils.Vector`\n"
 | |
| );
 | |
| static PyObject *M_Geometry_intersect_plane_plane(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	PyObject *ret;
 | |
| 	VectorObject *plane_a_co, *plane_a_no, *plane_b_co, *plane_b_no;
 | |
| 
 | |
| 	float isect_co[3];
 | |
| 	float isect_no[3];
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(args, "O!O!O!O!|i:intersect_plane_plane",
 | |
| 	                      &vector_Type, &plane_a_co,
 | |
| 	                      &vector_Type, &plane_a_no,
 | |
| 	                      &vector_Type, &plane_b_co,
 | |
| 	                      &vector_Type, &plane_b_no))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(plane_a_co) == -1 ||
 | |
| 	    BaseMath_ReadCallback(plane_a_no) == -1 ||
 | |
| 	    BaseMath_ReadCallback(plane_b_co) == -1 ||
 | |
| 	    BaseMath_ReadCallback(plane_b_no) == -1)
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (ELEM4(2, plane_a_co->size, plane_a_no->size, plane_b_co->size, plane_b_no->size)) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "geometry.intersect_plane_plane(...): "
 | |
| 		                " can't use 2D Vectors");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	isect_plane_plane_v3(isect_co, isect_no,
 | |
| 	                     plane_a_co->vec, plane_a_no->vec,
 | |
| 	                     plane_b_co->vec, plane_b_no->vec);
 | |
| 
 | |
| 	normalize_v3(isect_no);
 | |
| 
 | |
| 	ret = PyTuple_New(2);
 | |
| 	PyTuple_SET_ITEM(ret, 0, Vector_CreatePyObject(isect_co, 3, Py_NEW, NULL));
 | |
| 	PyTuple_SET_ITEM(ret, 1, Vector_CreatePyObject(isect_no, 3, Py_NEW, NULL));
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_intersect_line_sphere_doc,
 | |
| ".. function:: intersect_line_sphere(line_a, line_b, sphere_co, sphere_radius, clip=True)\n"
 | |
| "\n"
 | |
| "   Takes a lines (as 2 vectors), a sphere as a point and a radius and\n"
 | |
| "   returns the intersection\n"
 | |
| "\n"
 | |
| "   :arg line_a: First point of the first line\n"
 | |
| "   :type line_a: :class:`mathutils.Vector`\n"
 | |
| "   :arg line_b: Second point of the first line\n"
 | |
| "   :type line_b: :class:`mathutils.Vector`\n"
 | |
| "   :arg sphere_co: The center of the sphere\n"
 | |
| "   :type sphere_co: :class:`mathutils.Vector`\n"
 | |
| "   :arg sphere_radius: Radius of the sphere\n"
 | |
| "   :type sphere_radius: sphere_radius\n"
 | |
| "   :return: The intersection points as a pair of vectors or None when there is no intersection\n"
 | |
| "   :rtype: A tuple pair containing :class:`mathutils.Vector` or None\n"
 | |
| );
 | |
| static PyObject *M_Geometry_intersect_line_sphere(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	VectorObject *line_a, *line_b, *sphere_co;
 | |
| 	float sphere_radius;
 | |
| 	int clip = TRUE;
 | |
| 
 | |
| 	float isect_a[3];
 | |
| 	float isect_b[3];
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(args, "O!O!O!f|i:intersect_line_sphere",
 | |
| 	                      &vector_Type, &line_a,
 | |
| 	                      &vector_Type, &line_b,
 | |
| 	                      &vector_Type, &sphere_co,
 | |
| 	                      &sphere_radius, &clip))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(line_a) == -1 ||
 | |
| 	    BaseMath_ReadCallback(line_b) == -1 ||
 | |
| 	    BaseMath_ReadCallback(sphere_co) == -1)
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (ELEM3(2, line_a->size, line_b->size, sphere_co->size)) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "geometry.intersect_line_sphere(...): "
 | |
| 		                " can't use 2D Vectors");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	else {
 | |
| 		short use_a = TRUE;
 | |
| 		short use_b = TRUE;
 | |
| 		float lambda;
 | |
| 
 | |
| 		PyObject *ret = PyTuple_New(2);
 | |
| 
 | |
| 		switch (isect_line_sphere_v3(line_a->vec, line_b->vec, sphere_co->vec, sphere_radius, isect_a, isect_b)) {
 | |
| 			case 1:
 | |
| 				if (!(!clip || (((lambda = line_point_factor_v3(isect_a, line_a->vec, line_b->vec)) >= 0.0f) && (lambda <= 1.0f)))) use_a = FALSE;
 | |
| 				use_b = FALSE;
 | |
| 				break;
 | |
| 			case 2:
 | |
| 				if (!(!clip || (((lambda = line_point_factor_v3(isect_a, line_a->vec, line_b->vec)) >= 0.0f) && (lambda <= 1.0f)))) use_a = FALSE;
 | |
| 				if (!(!clip || (((lambda = line_point_factor_v3(isect_b, line_a->vec, line_b->vec)) >= 0.0f) && (lambda <= 1.0f)))) use_b = FALSE;
 | |
| 				break;
 | |
| 			default:
 | |
| 				use_a = FALSE;
 | |
| 				use_b = FALSE;
 | |
| 		}
 | |
| 
 | |
| 		if (use_a) { PyTuple_SET_ITEM(ret, 0,  Vector_CreatePyObject(isect_a, 3, Py_NEW, NULL)); }
 | |
| 		else       { PyTuple_SET_ITEM(ret, 0,  Py_None); Py_INCREF(Py_None); }
 | |
| 
 | |
| 		if (use_b) { PyTuple_SET_ITEM(ret, 1,  Vector_CreatePyObject(isect_b, 3, Py_NEW, NULL)); }
 | |
| 		else       { PyTuple_SET_ITEM(ret, 1,  Py_None); Py_INCREF(Py_None); }
 | |
| 
 | |
| 		return ret;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* keep in sync with M_Geometry_intersect_line_sphere */
 | |
| PyDoc_STRVAR(M_Geometry_intersect_line_sphere_2d_doc,
 | |
| ".. function:: intersect_line_sphere_2d(line_a, line_b, sphere_co, sphere_radius, clip=True)\n"
 | |
| "\n"
 | |
| "   Takes a lines (as 2 vectors), a sphere as a point and a radius and\n"
 | |
| "   returns the intersection\n"
 | |
| "\n"
 | |
| "   :arg line_a: First point of the first line\n"
 | |
| "   :type line_a: :class:`mathutils.Vector`\n"
 | |
| "   :arg line_b: Second point of the first line\n"
 | |
| "   :type line_b: :class:`mathutils.Vector`\n"
 | |
| "   :arg sphere_co: The center of the sphere\n"
 | |
| "   :type sphere_co: :class:`mathutils.Vector`\n"
 | |
| "   :arg sphere_radius: Radius of the sphere\n"
 | |
| "   :type sphere_radius: sphere_radius\n"
 | |
| "   :return: The intersection points as a pair of vectors or None when there is no intersection\n"
 | |
| "   :rtype: A tuple pair containing :class:`mathutils.Vector` or None\n"
 | |
| );
 | |
| static PyObject *M_Geometry_intersect_line_sphere_2d(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	VectorObject *line_a, *line_b, *sphere_co;
 | |
| 	float sphere_radius;
 | |
| 	int clip = TRUE;
 | |
| 
 | |
| 	float isect_a[3];
 | |
| 	float isect_b[3];
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(args, "O!O!O!f|i:intersect_line_sphere_2d",
 | |
| 	                      &vector_Type, &line_a,
 | |
| 	                      &vector_Type, &line_b,
 | |
| 	                      &vector_Type, &sphere_co,
 | |
| 	                      &sphere_radius, &clip))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(line_a) == -1 ||
 | |
| 	    BaseMath_ReadCallback(line_b) == -1 ||
 | |
| 	    BaseMath_ReadCallback(sphere_co) == -1)
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	else {
 | |
| 		short use_a = TRUE;
 | |
| 		short use_b = TRUE;
 | |
| 		float lambda;
 | |
| 
 | |
| 		PyObject *ret = PyTuple_New(2);
 | |
| 
 | |
| 		switch (isect_line_sphere_v2(line_a->vec, line_b->vec, sphere_co->vec, sphere_radius, isect_a, isect_b)) {
 | |
| 			case 1:
 | |
| 				if (!(!clip || (((lambda = line_point_factor_v2(isect_a, line_a->vec, line_b->vec)) >= 0.0f) && (lambda <= 1.0f)))) use_a = FALSE;
 | |
| 				use_b = FALSE;
 | |
| 				break;
 | |
| 			case 2:
 | |
| 				if (!(!clip || (((lambda = line_point_factor_v2(isect_a, line_a->vec, line_b->vec)) >= 0.0f) && (lambda <= 1.0f)))) use_a = FALSE;
 | |
| 				if (!(!clip || (((lambda = line_point_factor_v2(isect_b, line_a->vec, line_b->vec)) >= 0.0f) && (lambda <= 1.0f)))) use_b = FALSE;
 | |
| 				break;
 | |
| 			default:
 | |
| 				use_a = FALSE;
 | |
| 				use_b = FALSE;
 | |
| 		}
 | |
| 
 | |
| 		if (use_a) { PyTuple_SET_ITEM(ret, 0,  Vector_CreatePyObject(isect_a, 2, Py_NEW, NULL)); }
 | |
| 		else       { PyTuple_SET_ITEM(ret, 0,  Py_None); Py_INCREF(Py_None); }
 | |
| 
 | |
| 		if (use_b) { PyTuple_SET_ITEM(ret, 1,  Vector_CreatePyObject(isect_b, 2, Py_NEW, NULL)); }
 | |
| 		else       { PyTuple_SET_ITEM(ret, 1,  Py_None); Py_INCREF(Py_None); }
 | |
| 
 | |
| 		return ret;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_intersect_point_line_doc,
 | |
| ".. function:: intersect_point_line(pt, line_p1, line_p2)\n"
 | |
| "\n"
 | |
| "   Takes a point and a line and returns a tuple with the closest point on the line and its distance from the first point of the line as a percentage of the length of the line.\n"
 | |
| "\n"
 | |
| "   :arg pt: Point\n"
 | |
| "   :type pt: :class:`mathutils.Vector`\n"
 | |
| "   :arg line_p1: First point of the line\n"
 | |
| "   :type line_p1: :class:`mathutils.Vector`\n"
 | |
| "   :arg line_p1: Second point of the line\n"
 | |
| "   :type line_p1: :class:`mathutils.Vector`\n"
 | |
| "   :rtype: (:class:`mathutils.Vector`, float)\n"
 | |
| );
 | |
| static PyObject *M_Geometry_intersect_point_line(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	VectorObject *pt, *line_1, *line_2;
 | |
| 	float pt_in[3], pt_out[3], l1[3], l2[3];
 | |
| 	float lambda;
 | |
| 	PyObject *ret;
 | |
| 	int size = 2;
 | |
| 	
 | |
| 	if (!PyArg_ParseTuple(args, "O!O!O!:intersect_point_line",
 | |
| 	                      &vector_Type, &pt,
 | |
| 	                      &vector_Type, &line_1,
 | |
| 	                      &vector_Type, &line_2))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(pt) == -1 ||
 | |
| 	    BaseMath_ReadCallback(line_1) == -1 ||
 | |
| 	    BaseMath_ReadCallback(line_2) == -1)
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* accept 2d verts */
 | |
| 	if (pt->size >= 3)     { copy_v3_v3(pt_in, pt->vec); size = 3; }
 | |
| 	else                   { copy_v2_v2(pt_in, pt->vec); pt_in[2] = 0.0f; }
 | |
| 	
 | |
| 	if (line_1->size >= 3) { copy_v3_v3(l1, line_1->vec); size = 3; }
 | |
| 	else                   { copy_v2_v2(l1, line_1->vec); l1[2] = 0.0f; }
 | |
| 	
 | |
| 	if (line_2->size >= 3) { copy_v3_v3(l2, line_2->vec); size = 3; }
 | |
| 	else                   { copy_v2_v2(l2, line_2->vec); l2[2] = 0.0f; }
 | |
| 	
 | |
| 	/* do the calculation */
 | |
| 	lambda = closest_to_line_v3(pt_out, pt_in, l1, l2);
 | |
| 	
 | |
| 	ret = PyTuple_New(2);
 | |
| 	PyTuple_SET_ITEM(ret, 0, Vector_CreatePyObject(pt_out, size, Py_NEW, NULL));
 | |
| 	PyTuple_SET_ITEM(ret, 1, PyFloat_FromDouble(lambda));
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_intersect_point_tri_2d_doc,
 | |
| ".. function:: intersect_point_tri_2d(pt, tri_p1, tri_p2, tri_p3)\n"
 | |
| "\n"
 | |
| "   Takes 4 vectors (using only the x and y coordinates): one is the point and the next 3 define the triangle. Returns 1 if the point is within the triangle, otherwise 0.\n"
 | |
| "\n"
 | |
| "   :arg pt: Point\n"
 | |
| "   :type v1: :class:`mathutils.Vector`\n"
 | |
| "   :arg tri_p1: First point of the triangle\n"
 | |
| "   :type tri_p1: :class:`mathutils.Vector`\n"
 | |
| "   :arg tri_p2: Second point of the triangle\n"
 | |
| "   :type tri_p2: :class:`mathutils.Vector`\n"
 | |
| "   :arg tri_p3: Third point of the triangle\n"
 | |
| "   :type tri_p3: :class:`mathutils.Vector`\n"
 | |
| "   :rtype: int\n"
 | |
| );
 | |
| static PyObject *M_Geometry_intersect_point_tri_2d(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	VectorObject *pt_vec, *tri_p1, *tri_p2, *tri_p3;
 | |
| 	
 | |
| 	if (!PyArg_ParseTuple(args, "O!O!O!O!:intersect_point_tri_2d",
 | |
| 	                      &vector_Type, &pt_vec,
 | |
| 	                      &vector_Type, &tri_p1,
 | |
| 	                      &vector_Type, &tri_p2,
 | |
| 	                      &vector_Type, &tri_p3))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	
 | |
| 	if (BaseMath_ReadCallback(pt_vec) == -1 ||
 | |
| 	    BaseMath_ReadCallback(tri_p1) == -1 ||
 | |
| 	    BaseMath_ReadCallback(tri_p2) == -1 ||
 | |
| 	    BaseMath_ReadCallback(tri_p3) == -1)
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return PyLong_FromLong(isect_point_tri_v2(pt_vec->vec, tri_p1->vec, tri_p2->vec, tri_p3->vec));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_intersect_point_quad_2d_doc,
 | |
| ".. function:: intersect_point_quad_2d(pt, quad_p1, quad_p2, quad_p3, quad_p4)\n"
 | |
| "\n"
 | |
| "   Takes 5 vectors (using only the x and y coordinates): one is the point and the next 4 define the quad, \n"
 | |
| "   only the x and y are used from the vectors. Returns 1 if the point is within the quad, otherwise 0.\n"
 | |
| "   Works only with convex quads without singular edges."
 | |
| "\n"
 | |
| "   :arg pt: Point\n"
 | |
| "   :type pt: :class:`mathutils.Vector`\n"
 | |
| "   :arg quad_p1: First point of the quad\n"
 | |
| "   :type quad_p1: :class:`mathutils.Vector`\n"
 | |
| "   :arg quad_p2: Second point of the quad\n"
 | |
| "   :type quad_p2: :class:`mathutils.Vector`\n"
 | |
| "   :arg quad_p3: Third point of the quad\n"
 | |
| "   :type quad_p3: :class:`mathutils.Vector`\n"
 | |
| "   :arg quad_p4: Forth point of the quad\n"
 | |
| "   :type quad_p4: :class:`mathutils.Vector`\n"
 | |
| "   :rtype: int\n"
 | |
| );
 | |
| static PyObject *M_Geometry_intersect_point_quad_2d(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	VectorObject *pt_vec, *quad_p1, *quad_p2, *quad_p3, *quad_p4;
 | |
| 	
 | |
| 	if (!PyArg_ParseTuple(args, "O!O!O!O!O!:intersect_point_quad_2d",
 | |
| 	                      &vector_Type, &pt_vec,
 | |
| 	                      &vector_Type, &quad_p1,
 | |
| 	                      &vector_Type, &quad_p2,
 | |
| 	                      &vector_Type, &quad_p3,
 | |
| 	                      &vector_Type, &quad_p4))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(pt_vec)  == -1 ||
 | |
| 	    BaseMath_ReadCallback(quad_p1) == -1 ||
 | |
| 	    BaseMath_ReadCallback(quad_p2) == -1 ||
 | |
| 	    BaseMath_ReadCallback(quad_p3) == -1 ||
 | |
| 	    BaseMath_ReadCallback(quad_p4) == -1)
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return PyLong_FromLong(isect_point_quad_v2(pt_vec->vec, quad_p1->vec, quad_p2->vec, quad_p3->vec, quad_p4->vec));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_distance_point_to_plane_doc,
 | |
| ".. function:: distance_point_to_plane(pt, plane_co, plane_no)\n"
 | |
| "\n"
 | |
| "   Returns the signed distance between a point and a plane "
 | |
| "   (negative when below the normal).\n"
 | |
| "\n"
 | |
| "   :arg pt: Point\n"
 | |
| "   :type pt: :class:`mathutils.Vector`\n"
 | |
| "   :arg plane_co: First point of the quad\n"
 | |
| "   :type plane_co: :class:`mathutils.Vector`\n"
 | |
| "   :arg plane_no: Second point of the quad\n"
 | |
| "   :type plane_no: :class:`mathutils.Vector`\n"
 | |
| "   :rtype: float\n"
 | |
| );
 | |
| static PyObject *M_Geometry_distance_point_to_plane(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	VectorObject *pt, *plene_co, *plane_no;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(args, "O!O!O!:distance_point_to_plane",
 | |
| 	                      &vector_Type, &pt,
 | |
| 	                      &vector_Type, &plene_co,
 | |
| 	                      &vector_Type, &plane_no))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(pt) == -1 ||
 | |
| 	    BaseMath_ReadCallback(plene_co) == -1 ||
 | |
| 	    BaseMath_ReadCallback(plane_no) == -1)
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return PyFloat_FromDouble(dist_to_plane_v3(pt->vec, plene_co->vec, plane_no->vec));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_barycentric_transform_doc,
 | |
| ".. function:: barycentric_transform(point, tri_a1, tri_a2, tri_a3, tri_b1, tri_b2, tri_b3)\n"
 | |
| "\n"
 | |
| "   Return a transformed point, the transformation is defined by 2 triangles.\n"
 | |
| "\n"
 | |
| "   :arg point: The point to transform.\n"
 | |
| "   :type point: :class:`mathutils.Vector`\n"
 | |
| "   :arg tri_a1: source triangle vertex.\n"
 | |
| "   :type tri_a1: :class:`mathutils.Vector`\n"
 | |
| "   :arg tri_a2: source triangle vertex.\n"
 | |
| "   :type tri_a2: :class:`mathutils.Vector`\n"
 | |
| "   :arg tri_a3: source triangle vertex.\n"
 | |
| "   :type tri_a3: :class:`mathutils.Vector`\n"
 | |
| "   :arg tri_a1: target triangle vertex.\n"
 | |
| "   :type tri_a1: :class:`mathutils.Vector`\n"
 | |
| "   :arg tri_a2: target triangle vertex.\n"
 | |
| "   :type tri_a2: :class:`mathutils.Vector`\n"
 | |
| "   :arg tri_a3: target triangle vertex.\n"
 | |
| "   :type tri_a3: :class:`mathutils.Vector`\n"
 | |
| "   :return: The transformed point\n"
 | |
| "   :rtype: :class:`mathutils.Vector`'s\n"
 | |
| );
 | |
| static PyObject *M_Geometry_barycentric_transform(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	VectorObject *vec_pt;
 | |
| 	VectorObject *vec_t1_tar, *vec_t2_tar, *vec_t3_tar;
 | |
| 	VectorObject *vec_t1_src, *vec_t2_src, *vec_t3_src;
 | |
| 	float vec[3];
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(args, "O!O!O!O!O!O!O!:barycentric_transform",
 | |
| 	                      &vector_Type, &vec_pt,
 | |
| 	                      &vector_Type, &vec_t1_src,
 | |
| 	                      &vector_Type, &vec_t2_src,
 | |
| 	                      &vector_Type, &vec_t3_src,
 | |
| 	                      &vector_Type, &vec_t1_tar,
 | |
| 	                      &vector_Type, &vec_t2_tar,
 | |
| 	                      &vector_Type, &vec_t3_tar))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (vec_pt->size != 3 ||
 | |
| 	    vec_t1_src->size != 3 ||
 | |
| 	    vec_t2_src->size != 3 ||
 | |
| 	    vec_t3_src->size != 3 ||
 | |
| 	    vec_t1_tar->size != 3 ||
 | |
| 	    vec_t2_tar->size != 3 ||
 | |
| 	    vec_t3_tar->size != 3)
 | |
| 	{
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "One of more of the vector arguments wasn't a 3D vector");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	barycentric_transform(vec, vec_pt->vec,
 | |
| 	                      vec_t1_tar->vec, vec_t2_tar->vec, vec_t3_tar->vec,
 | |
| 	                      vec_t1_src->vec, vec_t2_src->vec, vec_t3_src->vec);
 | |
| 
 | |
| 	return Vector_CreatePyObject(vec, 3, Py_NEW, NULL);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_points_in_planes_doc,
 | |
| ".. function:: points_in_planes(planes)\n"
 | |
| "\n"
 | |
| "   Returns a list of points inside all planes given and a list of index values for the planes used.\n"
 | |
| "\n"
 | |
| "   :arg planes: List of planes (4D vectors).\n"
 | |
| "   :type planes: list of :class:`mathutils.Vector`\n"
 | |
| "   :return: two lists, once containing the vertices inside the planes, another containing the plane indicies used\n"
 | |
| "   :rtype: pair of lists\n"
 | |
| );
 | |
| /* note: this function could be optimized by some spatial structure */
 | |
| static PyObject *M_Geometry_points_in_planes(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	PyObject *py_planes;
 | |
| 	float (*planes)[4];
 | |
| 	unsigned int planes_len;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(args, "O:points_in_planes",
 | |
| 	                      &py_planes))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if ((planes_len = mathutils_array_parse_alloc_v((float **)&planes, 4, py_planes, "points_in_planes")) == -1) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	else {
 | |
| 		/* note, this could be refactored into plain C easy - py bits are noted */
 | |
| 		const float eps = 0.0001f;
 | |
| 		const unsigned int len = (unsigned int)planes_len;
 | |
| 		unsigned int i, j, k, l;
 | |
| 
 | |
| 		float n1n2[3], n2n3[3], n3n1[3];
 | |
| 		float potentialVertex[3];
 | |
| 		char *planes_used = MEM_callocN(sizeof(char) * len, __func__);
 | |
| 
 | |
| 		/* python */
 | |
| 		PyObject *py_verts = PyList_New(0);
 | |
| 		PyObject *py_plene_index = PyList_New(0);
 | |
| 
 | |
| 		for (i = 0; i < len; i++) {
 | |
| 			const float *N1 = planes[i];
 | |
| 			for (j = i + 1; j < len; j++) {
 | |
| 				const float *N2 = planes[j];
 | |
| 				cross_v3_v3v3(n1n2, N1, N2);
 | |
| 				if (len_squared_v3(n1n2) > eps) {
 | |
| 					for (k = j + 1; k < len; k++) {
 | |
| 						const float *N3 = planes[k];
 | |
| 						cross_v3_v3v3(n2n3, N2, N3);
 | |
| 						if (len_squared_v3(n2n3) > eps) {
 | |
| 							cross_v3_v3v3(n3n1, N3, N1);
 | |
| 							if (len_squared_v3(n3n1) > eps) {
 | |
| 								const float quotient = dot_v3v3(N1, n2n3);
 | |
| 								if (fabsf(quotient) > eps) {
 | |
| 									/* potentialVertex = (n2n3 * N1[3] + n3n1 * N2[3] + n1n2 * N3[3]) * (-1.0 / quotient); */
 | |
| 									const float quotient_ninv = -1.0f / quotient;
 | |
| 									potentialVertex[0] = ((n2n3[0] * N1[3]) + (n3n1[0] * N2[3]) + (n1n2[0] * N3[3])) * quotient_ninv;
 | |
| 									potentialVertex[1] = ((n2n3[1] * N1[3]) + (n3n1[1] * N2[3]) + (n1n2[1] * N3[3])) * quotient_ninv;
 | |
| 									potentialVertex[2] = ((n2n3[2] * N1[3]) + (n3n1[2] * N2[3]) + (n1n2[2] * N3[3])) * quotient_ninv;
 | |
| 									for (l = 0; l < len; l++) {
 | |
| 										const float *NP = planes[l];
 | |
| 										if ((dot_v3v3(NP, potentialVertex) + NP[3]) > 0.000001f) {
 | |
| 											break;
 | |
| 										}
 | |
| 									}
 | |
| 
 | |
| 									if (l == len) { /* ok */
 | |
| 										/* python */
 | |
| 										PyObject *item = Vector_CreatePyObject(potentialVertex, 3, Py_NEW, NULL);
 | |
| 										PyList_Append(py_verts, item);
 | |
| 										Py_DECREF(item);
 | |
| 
 | |
| 										planes_used[i] = planes_used[j] = planes_used[k] = TRUE;
 | |
| 									}
 | |
| 								}
 | |
| 							}
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		PyMem_Free(planes);
 | |
| 
 | |
| 		/* now make a list of used planes */
 | |
| 		for (i = 0; i < len; i++) {
 | |
| 			if (planes_used[i]) {
 | |
| 				PyObject *item = PyLong_FromLong(i);
 | |
| 				PyList_Append(py_plene_index, item);
 | |
| 				Py_DECREF(item);
 | |
| 			}
 | |
| 		}
 | |
| 		MEM_freeN(planes_used);
 | |
| 
 | |
| 		{
 | |
| 			PyObject *ret = PyTuple_New(2);
 | |
| 			PyTuple_SET_ITEM(ret, 0, py_verts);
 | |
| 			PyTuple_SET_ITEM(ret, 1, py_plene_index);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifndef MATH_STANDALONE
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_interpolate_bezier_doc,
 | |
| ".. function:: interpolate_bezier(knot1, handle1, handle2, knot2, resolution)\n"
 | |
| "\n"
 | |
| "   Interpolate a bezier spline segment.\n"
 | |
| "\n"
 | |
| "   :arg knot1: First bezier spline point.\n"
 | |
| "   :type knot1: :class:`mathutils.Vector`\n"
 | |
| "   :arg handle1: First bezier spline handle.\n"
 | |
| "   :type handle1: :class:`mathutils.Vector`\n"
 | |
| "   :arg handle2: Second bezier spline handle.\n"
 | |
| "   :type handle2: :class:`mathutils.Vector`\n"
 | |
| "   :arg knot2: Second bezier spline point.\n"
 | |
| "   :type knot2: :class:`mathutils.Vector`\n"
 | |
| "   :arg resolution: Number of points to return.\n"
 | |
| "   :type resolution: int\n"
 | |
| "   :return: The interpolated points\n"
 | |
| "   :rtype: list of :class:`mathutils.Vector`'s\n"
 | |
| );
 | |
| static PyObject *M_Geometry_interpolate_bezier(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	VectorObject *vec_k1, *vec_h1, *vec_k2, *vec_h2;
 | |
| 	int resolu;
 | |
| 	int dims;
 | |
| 	int i;
 | |
| 	float *coord_array, *fp;
 | |
| 	PyObject *list;
 | |
| 
 | |
| 	float k1[4] = {0.0, 0.0, 0.0, 0.0};
 | |
| 	float h1[4] = {0.0, 0.0, 0.0, 0.0};
 | |
| 	float k2[4] = {0.0, 0.0, 0.0, 0.0};
 | |
| 	float h2[4] = {0.0, 0.0, 0.0, 0.0};
 | |
| 
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(args, "O!O!O!O!i:interpolate_bezier",
 | |
| 	                      &vector_Type, &vec_k1,
 | |
| 	                      &vector_Type, &vec_h1,
 | |
| 	                      &vector_Type, &vec_h2,
 | |
| 	                      &vector_Type, &vec_k2, &resolu))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (resolu <= 1) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "resolution must be 2 or over");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(vec_k1) == -1 ||
 | |
| 	    BaseMath_ReadCallback(vec_h1) == -1 ||
 | |
| 	    BaseMath_ReadCallback(vec_k2) == -1 ||
 | |
| 	    BaseMath_ReadCallback(vec_h2) == -1)
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	dims = MAX4(vec_k1->size, vec_h1->size, vec_h2->size, vec_k2->size);
 | |
| 
 | |
| 	for (i = 0; i < vec_k1->size; i++) k1[i] = vec_k1->vec[i];
 | |
| 	for (i = 0; i < vec_h1->size; i++) h1[i] = vec_h1->vec[i];
 | |
| 	for (i = 0; i < vec_k2->size; i++) k2[i] = vec_k2->vec[i];
 | |
| 	for (i = 0; i < vec_h2->size; i++) h2[i] = vec_h2->vec[i];
 | |
| 
 | |
| 	coord_array = MEM_callocN(dims * (resolu) * sizeof(float), "interpolate_bezier");
 | |
| 	for (i = 0; i < dims; i++) {
 | |
| 		BKE_curve_forward_diff_bezier(k1[i], h1[i], h2[i], k2[i], coord_array + i, resolu - 1, sizeof(float) * dims);
 | |
| 	}
 | |
| 
 | |
| 	list = PyList_New(resolu);
 | |
| 	fp = coord_array;
 | |
| 	for (i = 0; i < resolu; i++, fp = fp + dims) {
 | |
| 		PyList_SET_ITEM(list, i, Vector_CreatePyObject(fp, dims, Py_NEW, NULL));
 | |
| 	}
 | |
| 	MEM_freeN(coord_array);
 | |
| 	return list;
 | |
| }
 | |
| 
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_tessellate_polygon_doc,
 | |
| ".. function:: tessellate_polygon(veclist_list)\n"
 | |
| "\n"
 | |
| "   Takes a list of polylines (each point a vector) and returns the point indices for a polyline filled with triangles.\n"
 | |
| "\n"
 | |
| "   :arg veclist_list: list of polylines\n"
 | |
| "   :rtype: list\n"
 | |
| );
 | |
| /* PolyFill function, uses Blenders scanfill to fill multiple poly lines */
 | |
| static PyObject *M_Geometry_tessellate_polygon(PyObject *UNUSED(self), PyObject *polyLineSeq)
 | |
| {
 | |
| 	PyObject *tri_list; /*return this list of tri's */
 | |
| 	PyObject *polyLine, *polyVec;
 | |
| 	int i, len_polylines, len_polypoints, ls_error = 0;
 | |
| 
 | |
| 	/* display listbase */
 | |
| 	ListBase dispbase = {NULL, NULL};
 | |
| 	DispList *dl;
 | |
| 	float *fp; /*pointer to the array of malloced dl->verts to set the points from the vectors */
 | |
| 	int index, *dl_face, totpoints = 0;
 | |
| 
 | |
| 	if (!PySequence_Check(polyLineSeq)) {
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 		                "expected a sequence of poly lines");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	len_polylines = PySequence_Size(polyLineSeq);
 | |
| 
 | |
| 	for (i = 0; i < len_polylines; i++) {
 | |
| 		polyLine = PySequence_GetItem(polyLineSeq, i);
 | |
| 		if (!PySequence_Check(polyLine)) {
 | |
| 			BKE_displist_free(&dispbase);
 | |
| 			Py_XDECREF(polyLine); /* may be null so use Py_XDECREF*/
 | |
| 			PyErr_SetString(PyExc_TypeError,
 | |
| 			                "One or more of the polylines is not a sequence of mathutils.Vector's");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		len_polypoints = PySequence_Size(polyLine);
 | |
| 		if (len_polypoints > 0) { /* don't bother adding edges as polylines */
 | |
| #if 0
 | |
| 			if (EXPP_check_sequence_consistency(polyLine, &vector_Type) != 1) {
 | |
| 				freedisplist(&dispbase);
 | |
| 				Py_DECREF(polyLine);
 | |
| 				PyErr_SetString(PyExc_TypeError,
 | |
| 				                "A point in one of the polylines is not a mathutils.Vector type");
 | |
| 				return NULL;
 | |
| 			}
 | |
| #endif
 | |
| 			dl = MEM_callocN(sizeof(DispList), "poly disp");
 | |
| 			BLI_addtail(&dispbase, dl);
 | |
| 			dl->type = DL_INDEX3;
 | |
| 			dl->nr = len_polypoints;
 | |
| 			dl->type = DL_POLY;
 | |
| 			dl->parts = 1; /* no faces, 1 edge loop */
 | |
| 			dl->col = 0; /* no material */
 | |
| 			dl->verts = fp = MEM_callocN(sizeof(float) * 3 * len_polypoints, "dl verts");
 | |
| 			dl->index = MEM_callocN(sizeof(int) * 3 * len_polypoints, "dl index");
 | |
| 
 | |
| 			for (index = 0; index < len_polypoints; index++, fp += 3) {
 | |
| 				polyVec = PySequence_GetItem(polyLine, index);
 | |
| 				if (VectorObject_Check(polyVec)) {
 | |
| 
 | |
| 					if (BaseMath_ReadCallback((VectorObject *)polyVec) == -1)
 | |
| 						ls_error = 1;
 | |
| 
 | |
| 					fp[0] = ((VectorObject *)polyVec)->vec[0];
 | |
| 					fp[1] = ((VectorObject *)polyVec)->vec[1];
 | |
| 					if (((VectorObject *)polyVec)->size > 2)
 | |
| 						fp[2] = ((VectorObject *)polyVec)->vec[2];
 | |
| 					else
 | |
| 						fp[2] = 0.0f;  /* if its a 2d vector then set the z to be zero */
 | |
| 				}
 | |
| 				else {
 | |
| 					ls_error = 1;
 | |
| 				}
 | |
| 
 | |
| 				totpoints++;
 | |
| 				Py_DECREF(polyVec);
 | |
| 			}
 | |
| 		}
 | |
| 		Py_DECREF(polyLine);
 | |
| 	}
 | |
| 
 | |
| 	if (ls_error) {
 | |
| 		BKE_displist_free(&dispbase); /* possible some dl was allocated */
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 		                "A point in one of the polylines "
 | |
| 		                "is not a mathutils.Vector type");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	else if (totpoints) {
 | |
| 		/* now make the list to return */
 | |
| 		BKE_displist_fill(&dispbase, &dispbase, 0);
 | |
| 
 | |
| 		/* The faces are stored in a new DisplayList
 | |
| 		 * thats added to the head of the listbase */
 | |
| 		dl = dispbase.first;
 | |
| 
 | |
| 		tri_list = PyList_New(dl->parts);
 | |
| 		if (!tri_list) {
 | |
| 			BKE_displist_free(&dispbase);
 | |
| 			PyErr_SetString(PyExc_RuntimeError,
 | |
| 			                "failed to make a new list");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		index = 0;
 | |
| 		dl_face = dl->index;
 | |
| 		while (index < dl->parts) {
 | |
| 			PyList_SET_ITEM(tri_list, index, Py_BuildValue("iii", dl_face[0], dl_face[1], dl_face[2]));
 | |
| 			dl_face += 3;
 | |
| 			index++;
 | |
| 		}
 | |
| 		BKE_displist_free(&dispbase);
 | |
| 	}
 | |
| 	else {
 | |
| 		/* no points, do this so scripts don't barf */
 | |
| 		BKE_displist_free(&dispbase); /* possible some dl was allocated */
 | |
| 		tri_list = PyList_New(0);
 | |
| 	}
 | |
| 
 | |
| 	return tri_list;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int boxPack_FromPyObject(PyObject *value, BoxPack **boxarray)
 | |
| {
 | |
| 	Py_ssize_t len, i;
 | |
| 	PyObject *list_item, *item_1, *item_2;
 | |
| 	BoxPack *box;
 | |
| 
 | |
| 
 | |
| 	/* Error checking must already be done */
 | |
| 	if (!PyList_Check(value)) {
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 		                "can only back a list of [x, y, w, h]");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	len = PyList_GET_SIZE(value);
 | |
| 
 | |
| 	*boxarray = MEM_mallocN(len * sizeof(BoxPack), "BoxPack box");
 | |
| 
 | |
| 
 | |
| 	for (i = 0; i < len; i++) {
 | |
| 		list_item = PyList_GET_ITEM(value, i);
 | |
| 		if (!PyList_Check(list_item) || PyList_GET_SIZE(list_item) < 4) {
 | |
| 			MEM_freeN(*boxarray);
 | |
| 			PyErr_SetString(PyExc_TypeError,
 | |
| 			                "can only pack a list of [x, y, w, h]");
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		box = (*boxarray) + i;
 | |
| 
 | |
| 		item_1 = PyList_GET_ITEM(list_item, 2);
 | |
| 		item_2 = PyList_GET_ITEM(list_item, 3);
 | |
| 
 | |
| 		box->w =  (float)PyFloat_AsDouble(item_1);
 | |
| 		box->h =  (float)PyFloat_AsDouble(item_2);
 | |
| 		box->index = i;
 | |
| 
 | |
| 		/* accounts for error case too and overwrites with own error */
 | |
| 		if (box->w < 0.0f || box->h < 0.0f) {
 | |
| 			MEM_freeN(*boxarray);
 | |
| 			PyErr_SetString(PyExc_TypeError,
 | |
| 			                "error parsing width and height values from list: "
 | |
| 			                "[x, y, w, h], not numbers or below zero");
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		/* verts will be added later */
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void boxPack_ToPyObject(PyObject *value, BoxPack **boxarray)
 | |
| {
 | |
| 	Py_ssize_t len, i;
 | |
| 	PyObject *list_item;
 | |
| 	BoxPack *box;
 | |
| 
 | |
| 	len = PyList_GET_SIZE(value);
 | |
| 
 | |
| 	for (i = 0; i < len; i++) {
 | |
| 		box = (*boxarray) + i;
 | |
| 		list_item = PyList_GET_ITEM(value, box->index);
 | |
| 		PyList_SET_ITEM(list_item, 0, PyFloat_FromDouble(box->x));
 | |
| 		PyList_SET_ITEM(list_item, 1, PyFloat_FromDouble(box->y));
 | |
| 	}
 | |
| 	MEM_freeN(*boxarray);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_box_pack_2d_doc,
 | |
| ".. function:: box_pack_2d(boxes)\n"
 | |
| "\n"
 | |
| "   Returns the normal of the 3D tri or quad.\n"
 | |
| "\n"
 | |
| "   :arg boxes: list of boxes, each box is a list where the first 4 items are [x, y, width, height, ...] other items are ignored.\n"
 | |
| "   :type boxes: list\n"
 | |
| "   :return: the width and height of the packed bounding box\n"
 | |
| "   :rtype: tuple, pair of floats\n"
 | |
| );
 | |
| static PyObject *M_Geometry_box_pack_2d(PyObject *UNUSED(self), PyObject *boxlist)
 | |
| {
 | |
| 	float tot_width = 0.0f, tot_height = 0.0f;
 | |
| 	Py_ssize_t len;
 | |
| 
 | |
| 	PyObject *ret;
 | |
| 
 | |
| 	if (!PyList_Check(boxlist)) {
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 		                "expected a list of boxes [[x, y, w, h], ... ]");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	len = PyList_GET_SIZE(boxlist);
 | |
| 	if (len) {
 | |
| 		BoxPack *boxarray = NULL;
 | |
| 		if (boxPack_FromPyObject(boxlist, &boxarray) == -1) {
 | |
| 			return NULL; /* exception set */
 | |
| 		}
 | |
| 
 | |
| 		/* Non Python function */
 | |
| 		BLI_box_pack_2D(boxarray, len, &tot_width, &tot_height);
 | |
| 
 | |
| 		boxPack_ToPyObject(boxlist, &boxarray);
 | |
| 	}
 | |
| 
 | |
| 	ret = PyTuple_New(2);
 | |
| 	PyTuple_SET_ITEM(ret, 0, PyFloat_FromDouble(tot_width));
 | |
| 	PyTuple_SET_ITEM(ret, 1, PyFloat_FromDouble(tot_width));
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #endif /* MATH_STANDALONE */
 | |
| 
 | |
| 
 | |
| static PyMethodDef M_Geometry_methods[] = {
 | |
| 	{"intersect_ray_tri", (PyCFunction) M_Geometry_intersect_ray_tri, METH_VARARGS, M_Geometry_intersect_ray_tri_doc},
 | |
| 	{"intersect_point_line", (PyCFunction) M_Geometry_intersect_point_line, METH_VARARGS, M_Geometry_intersect_point_line_doc},
 | |
| 	{"intersect_point_tri_2d", (PyCFunction) M_Geometry_intersect_point_tri_2d, METH_VARARGS, M_Geometry_intersect_point_tri_2d_doc},
 | |
| 	{"intersect_point_quad_2d", (PyCFunction) M_Geometry_intersect_point_quad_2d, METH_VARARGS, M_Geometry_intersect_point_quad_2d_doc},
 | |
| 	{"intersect_line_line", (PyCFunction) M_Geometry_intersect_line_line, METH_VARARGS, M_Geometry_intersect_line_line_doc},
 | |
| 	{"intersect_line_line_2d", (PyCFunction) M_Geometry_intersect_line_line_2d, METH_VARARGS, M_Geometry_intersect_line_line_2d_doc},
 | |
| 	{"intersect_line_plane", (PyCFunction) M_Geometry_intersect_line_plane, METH_VARARGS, M_Geometry_intersect_line_plane_doc},
 | |
| 	{"intersect_plane_plane", (PyCFunction) M_Geometry_intersect_plane_plane, METH_VARARGS, M_Geometry_intersect_plane_plane_doc},
 | |
| 	{"intersect_line_sphere", (PyCFunction) M_Geometry_intersect_line_sphere, METH_VARARGS, M_Geometry_intersect_line_sphere_doc},
 | |
| 	{"intersect_line_sphere_2d", (PyCFunction) M_Geometry_intersect_line_sphere_2d, METH_VARARGS, M_Geometry_intersect_line_sphere_2d_doc},
 | |
| 	{"distance_point_to_plane", (PyCFunction) M_Geometry_distance_point_to_plane, METH_VARARGS, M_Geometry_distance_point_to_plane_doc},
 | |
| 	{"area_tri", (PyCFunction) M_Geometry_area_tri, METH_VARARGS, M_Geometry_area_tri_doc},
 | |
| 	{"normal", (PyCFunction) M_Geometry_normal, METH_VARARGS, M_Geometry_normal_doc},
 | |
| 	{"barycentric_transform", (PyCFunction) M_Geometry_barycentric_transform, METH_VARARGS, M_Geometry_barycentric_transform_doc},
 | |
| 	{"points_in_planes", (PyCFunction) M_Geometry_points_in_planes, METH_VARARGS, M_Geometry_points_in_planes_doc},
 | |
| #ifndef MATH_STANDALONE
 | |
| 	{"interpolate_bezier", (PyCFunction) M_Geometry_interpolate_bezier, METH_VARARGS, M_Geometry_interpolate_bezier_doc},
 | |
| 	{"tessellate_polygon", (PyCFunction) M_Geometry_tessellate_polygon, METH_O, M_Geometry_tessellate_polygon_doc},
 | |
| 	{"box_pack_2d", (PyCFunction) M_Geometry_box_pack_2d, METH_O, M_Geometry_box_pack_2d_doc},
 | |
| #endif
 | |
| 	{NULL, NULL, 0, NULL}
 | |
| };
 | |
| 
 | |
| static struct PyModuleDef M_Geometry_module_def = {
 | |
| 	PyModuleDef_HEAD_INIT,
 | |
| 	"mathutils.geometry",  /* m_name */
 | |
| 	M_Geometry_doc,  /* m_doc */
 | |
| 	0,  /* m_size */
 | |
| 	M_Geometry_methods,  /* m_methods */
 | |
| 	NULL,  /* m_reload */
 | |
| 	NULL,  /* m_traverse */
 | |
| 	NULL,  /* m_clear */
 | |
| 	NULL,  /* m_free */
 | |
| };
 | |
| 
 | |
| /*----------------------------MODULE INIT-------------------------*/
 | |
| PyMODINIT_FUNC PyInit_mathutils_geometry(void)
 | |
| {
 | |
| 	PyObject *submodule = PyModule_Create(&M_Geometry_module_def);
 | |
| 	return submodule;
 | |
| }
 |