This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/draw/engines/eevee/shaders/bsdf_common_lib.glsl
Brecht Van Lommel c8fc23fdbe Fix T63698: Eevee crash after recent clang-format changes
Some GLSL compilers seem to not have problems with \ to break preprocessor
directives. I couldn't find other places with similar code, but fixing this
case by case is not ideal and the same issue may come up again.
2019-04-21 11:39:04 +02:00

949 lines
25 KiB
GLSL

#define M_PI 3.14159265358979323846 /* pi */
#define M_2PI 6.28318530717958647692 /* 2*pi */
#define M_PI_2 1.57079632679489661923 /* pi/2 */
#define M_1_PI 0.318309886183790671538 /* 1/pi */
#define M_1_2PI 0.159154943091895335768 /* 1/(2*pi) */
#define M_1_PI2 0.101321183642337771443 /* 1/(pi^2) */
#define LUT_SIZE 64
/* Buffers */
uniform sampler2D colorBuffer;
uniform sampler2D depthBuffer;
uniform sampler2D maxzBuffer;
uniform sampler2D minzBuffer;
uniform sampler2DArray planarDepth;
#define cameraForward normalize(ViewMatrixInverse[2].xyz)
#define cameraPos ViewMatrixInverse[3].xyz
#define cameraVec \
((ProjectionMatrix[3][3] == 0.0) ? normalize(cameraPos - worldPosition) : cameraForward)
#define viewCameraVec \
((ProjectionMatrix[3][3] == 0.0) ? normalize(-viewPosition) : vec3(0.0, 0.0, 1.0))
/* ------- Structures -------- */
/* ------ Lights ----- */
struct LightData {
vec4 position_influence; /* w : InfluenceRadius (inversed and squared) */
vec4 color_spec; /* w : Spec Intensity */
vec4 spotdata_radius_shadow; /* x : spot size, y : spot blend, z : radius, w: shadow id */
vec4 rightvec_sizex; /* xyz: Normalized up vector, w: area size X or spot scale X */
vec4 upvec_sizey; /* xyz: Normalized right vector, w: area size Y or spot scale Y */
vec4 forwardvec_type; /* xyz: Normalized forward vector, w: Light Type */
};
/* convenience aliases */
#define l_color color_spec.rgb
#define l_spec color_spec.a
#define l_position position_influence.xyz
#define l_influence position_influence.w
#define l_sizex rightvec_sizex.w
#define l_sizey upvec_sizey.w
#define l_right rightvec_sizex.xyz
#define l_up upvec_sizey.xyz
#define l_forward forwardvec_type.xyz
#define l_type forwardvec_type.w
#define l_spot_size spotdata_radius_shadow.x
#define l_spot_blend spotdata_radius_shadow.y
#define l_radius spotdata_radius_shadow.z
#define l_shadowid spotdata_radius_shadow.w
/* ------ Shadows ----- */
#ifndef MAX_CASCADE_NUM
# define MAX_CASCADE_NUM 4
#endif
struct ShadowData {
vec4 near_far_bias_exp;
vec4 shadow_data_start_end;
vec4 contact_shadow_data;
};
struct ShadowCubeData {
vec4 position;
};
struct ShadowCascadeData {
mat4 shadowmat[MAX_CASCADE_NUM];
vec4 split_start_distances;
vec4 split_end_distances;
};
/* convenience aliases */
#define sh_near near_far_bias_exp.x
#define sh_far near_far_bias_exp.y
#define sh_bias near_far_bias_exp.z
#define sh_exp near_far_bias_exp.w
#define sh_bleed near_far_bias_exp.w
#define sh_tex_start shadow_data_start_end.x
#define sh_data_start shadow_data_start_end.y
#define sh_multi_nbr shadow_data_start_end.z
#define sh_blur shadow_data_start_end.w
#define sh_contact_dist contact_shadow_data.x
#define sh_contact_offset contact_shadow_data.y
#define sh_contact_spread contact_shadow_data.z
#define sh_contact_thickness contact_shadow_data.w
/* ------- Convenience functions --------- */
vec3 mul(mat3 m, vec3 v)
{
return m * v;
}
mat3 mul(mat3 m1, mat3 m2)
{
return m1 * m2;
}
vec3 transform_direction(mat4 m, vec3 v)
{
return mat3(m) * v;
}
vec3 transform_point(mat4 m, vec3 v)
{
return (m * vec4(v, 1.0)).xyz;
}
vec3 project_point(mat4 m, vec3 v)
{
vec4 tmp = m * vec4(v, 1.0);
return tmp.xyz / tmp.w;
}
#define min3(a, b, c) min(a, min(b, c))
#define min4(a, b, c, d) min(a, min3(b, c, d))
#define min5(a, b, c, d, e) min(a, min4(b, c, d, e))
#define min6(a, b, c, d, e, f) min(a, min5(b, c, d, e, f))
#define min7(a, b, c, d, e, f, g) min(a, min6(b, c, d, e, f, g))
#define min8(a, b, c, d, e, f, g, h) min(a, min7(b, c, d, e, f, g, h))
#define min9(a, b, c, d, e, f, g, h, i) min(a, min8(b, c, d, e, f, g, h, i))
#define max3(a, b, c) max(a, max(b, c))
#define max4(a, b, c, d) max(a, max3(b, c, d))
#define max5(a, b, c, d, e) max(a, max4(b, c, d, e))
#define max6(a, b, c, d, e, f) max(a, max5(b, c, d, e, f))
#define max7(a, b, c, d, e, f, g) max(a, max6(b, c, d, e, f, g))
#define max8(a, b, c, d, e, f, g, h) max(a, max7(b, c, d, e, f, g, h))
#define max9(a, b, c, d, e, f, g, h, i) max(a, max8(b, c, d, e, f, g, h, i))
#define avg3(a, b, c) (a + b + c) * (1.0 / 3.0)
#define avg4(a, b, c, d) (a + b + c + d) * (1.0 / 4.0)
#define avg5(a, b, c, d, e) (a + b + c + d + e) * (1.0 / 5.0)
#define avg6(a, b, c, d, e, f) (a + b + c + d + e + f) * (1.0 / 6.0)
#define avg7(a, b, c, d, e, f, g) (a + b + c + d + e + f + g) * (1.0 / 7.0)
#define avg8(a, b, c, d, e, f, g, h) (a + b + c + d + e + f + g + h) * (1.0 / 8.0)
#define avg9(a, b, c, d, e, f, g, h, i) (a + b + c + d + e + f + g + h + i) * (1.0 / 9.0)
float min_v2(vec2 v)
{
return min(v.x, v.y);
}
float min_v3(vec3 v)
{
return min(v.x, min(v.y, v.z));
}
float max_v2(vec2 v)
{
return max(v.x, v.y);
}
float max_v3(vec3 v)
{
return max(v.x, max(v.y, v.z));
}
float sum(vec2 v)
{
return dot(vec2(1.0), v);
}
float sum(vec3 v)
{
return dot(vec3(1.0), v);
}
float sum(vec4 v)
{
return dot(vec4(1.0), v);
}
float saturate(float a)
{
return clamp(a, 0.0, 1.0);
}
vec2 saturate(vec2 a)
{
return clamp(a, 0.0, 1.0);
}
vec3 saturate(vec3 a)
{
return clamp(a, 0.0, 1.0);
}
vec4 saturate(vec4 a)
{
return clamp(a, 0.0, 1.0);
}
float distance_squared(vec2 a, vec2 b)
{
a -= b;
return dot(a, a);
}
float distance_squared(vec3 a, vec3 b)
{
a -= b;
return dot(a, a);
}
float len_squared(vec3 a)
{
return dot(a, a);
}
float inverse_distance(vec3 V)
{
return max(1 / length(V), 1e-8);
}
vec2 mip_ratio_interp(float mip)
{
float low_mip = floor(mip);
return mix(mipRatio[int(low_mip)], mipRatio[int(low_mip + 1.0)], mip - low_mip);
}
/* ------- RNG ------- */
float wang_hash_noise(uint s)
{
s = (s ^ 61u) ^ (s >> 16u);
s *= 9u;
s = s ^ (s >> 4u);
s *= 0x27d4eb2du;
s = s ^ (s >> 15u);
return fract(float(s) / 4294967296.0);
}
/* ------- Fast Math ------- */
/* [Drobot2014a] Low Level Optimizations for GCN */
float fast_sqrt(float v)
{
return intBitsToFloat(0x1fbd1df5 + (floatBitsToInt(v) >> 1));
}
vec2 fast_sqrt(vec2 v)
{
return intBitsToFloat(0x1fbd1df5 + (floatBitsToInt(v) >> 1));
}
/* [Eberly2014] GPGPU Programming for Games and Science */
float fast_acos(float v)
{
float res = -0.156583 * abs(v) + M_PI_2;
res *= fast_sqrt(1.0 - abs(v));
return (v >= 0) ? res : M_PI - res;
}
vec2 fast_acos(vec2 v)
{
vec2 res = -0.156583 * abs(v) + M_PI_2;
res *= fast_sqrt(1.0 - abs(v));
v.x = (v.x >= 0) ? res.x : M_PI - res.x;
v.y = (v.y >= 0) ? res.y : M_PI - res.y;
return v;
}
float point_plane_projection_dist(vec3 lineorigin, vec3 planeorigin, vec3 planenormal)
{
return dot(planenormal, planeorigin - lineorigin);
}
float line_plane_intersect_dist(vec3 lineorigin,
vec3 linedirection,
vec3 planeorigin,
vec3 planenormal)
{
return dot(planenormal, planeorigin - lineorigin) / dot(planenormal, linedirection);
}
float line_plane_intersect_dist(vec3 lineorigin, vec3 linedirection, vec4 plane)
{
vec3 plane_co = plane.xyz * (-plane.w / len_squared(plane.xyz));
vec3 h = lineorigin - plane_co;
return -dot(plane.xyz, h) / dot(plane.xyz, linedirection);
}
vec3 line_plane_intersect(vec3 lineorigin, vec3 linedirection, vec3 planeorigin, vec3 planenormal)
{
float dist = line_plane_intersect_dist(lineorigin, linedirection, planeorigin, planenormal);
return lineorigin + linedirection * dist;
}
vec3 line_plane_intersect(vec3 lineorigin, vec3 linedirection, vec4 plane)
{
float dist = line_plane_intersect_dist(lineorigin, linedirection, plane);
return lineorigin + linedirection * dist;
}
float line_aligned_plane_intersect_dist(vec3 lineorigin, vec3 linedirection, vec3 planeorigin)
{
/* aligned plane normal */
vec3 L = planeorigin - lineorigin;
float diskdist = length(L);
vec3 planenormal = -normalize(L);
return -diskdist / dot(planenormal, linedirection);
}
vec3 line_aligned_plane_intersect(vec3 lineorigin, vec3 linedirection, vec3 planeorigin)
{
float dist = line_aligned_plane_intersect_dist(lineorigin, linedirection, planeorigin);
if (dist < 0) {
/* if intersection is behind we fake the intersection to be
* really far and (hopefully) not inside the radius of interest */
dist = 1e16;
}
return lineorigin + linedirection * dist;
}
float line_unit_sphere_intersect_dist(vec3 lineorigin, vec3 linedirection)
{
float a = dot(linedirection, linedirection);
float b = dot(linedirection, lineorigin);
float c = dot(lineorigin, lineorigin) - 1;
float dist = 1e15;
float determinant = b * b - a * c;
if (determinant >= 0) {
dist = (sqrt(determinant) - b) / a;
}
return dist;
}
float line_unit_box_intersect_dist(vec3 lineorigin, vec3 linedirection)
{
/* https://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/ */
vec3 firstplane = (vec3(1.0) - lineorigin) / linedirection;
vec3 secondplane = (vec3(-1.0) - lineorigin) / linedirection;
vec3 furthestplane = max(firstplane, secondplane);
return min_v3(furthestplane);
}
/* Return texture coordinates to sample Surface LUT */
vec2 lut_coords(float cosTheta, float roughness)
{
float theta = acos(cosTheta);
vec2 coords = vec2(roughness, theta / M_PI_2);
/* scale and bias coordinates, for correct filtered lookup */
return coords * (LUT_SIZE - 1.0) / LUT_SIZE + 0.5 / LUT_SIZE;
}
vec2 lut_coords_ltc(float cosTheta, float roughness)
{
vec2 coords = vec2(roughness, sqrt(1.0 - cosTheta));
/* scale and bias coordinates, for correct filtered lookup */
return coords * (LUT_SIZE - 1.0) / LUT_SIZE + 0.5 / LUT_SIZE;
}
/* -- Tangent Space conversion -- */
vec3 tangent_to_world(vec3 vector, vec3 N, vec3 T, vec3 B)
{
return T * vector.x + B * vector.y + N * vector.z;
}
vec3 world_to_tangent(vec3 vector, vec3 N, vec3 T, vec3 B)
{
return vec3(dot(T, vector), dot(B, vector), dot(N, vector));
}
void make_orthonormal_basis(vec3 N, out vec3 T, out vec3 B)
{
vec3 UpVector = abs(N.z) < 0.99999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0);
T = normalize(cross(UpVector, N));
B = cross(N, T);
}
/* ---- Opengl Depth conversion ---- */
float linear_depth(bool is_persp, float z, float zf, float zn)
{
if (is_persp) {
return (zn * zf) / (z * (zn - zf) + zf);
}
else {
return (z * 2.0 - 1.0) * zf;
}
}
float buffer_depth(bool is_persp, float z, float zf, float zn)
{
if (is_persp) {
return (zf * (zn - z)) / (z * (zn - zf));
}
else {
return (z / (zf * 2.0)) + 0.5;
}
}
float get_view_z_from_depth(float depth)
{
if (ProjectionMatrix[3][3] == 0.0) {
float d = 2.0 * depth - 1.0;
return -ProjectionMatrix[3][2] / (d + ProjectionMatrix[2][2]);
}
else {
return viewVecs[0].z + depth * viewVecs[1].z;
}
}
float get_depth_from_view_z(float z)
{
if (ProjectionMatrix[3][3] == 0.0) {
float d = (-ProjectionMatrix[3][2] / z) - ProjectionMatrix[2][2];
return d * 0.5 + 0.5;
}
else {
return (z - viewVecs[0].z) / viewVecs[1].z;
}
}
vec2 get_uvs_from_view(vec3 view)
{
vec3 ndc = project_point(ProjectionMatrix, view);
return ndc.xy * 0.5 + 0.5;
}
vec3 get_view_space_from_depth(vec2 uvcoords, float depth)
{
if (ProjectionMatrix[3][3] == 0.0) {
return vec3(viewVecs[0].xy + uvcoords * viewVecs[1].xy, 1.0) * get_view_z_from_depth(depth);
}
else {
return viewVecs[0].xyz + vec3(uvcoords, depth) * viewVecs[1].xyz;
}
}
vec3 get_world_space_from_depth(vec2 uvcoords, float depth)
{
return (ViewMatrixInverse * vec4(get_view_space_from_depth(uvcoords, depth), 1.0)).xyz;
}
vec3 get_specular_reflection_dominant_dir(vec3 N, vec3 V, float roughness)
{
vec3 R = -reflect(V, N);
float smoothness = 1.0 - roughness;
float fac = smoothness * (sqrt(smoothness) + roughness);
return normalize(mix(N, R, fac));
}
float specular_occlusion(float NV, float AO, float roughness)
{
return saturate(pow(NV + AO, roughness) - 1.0 + AO);
}
/* --- Refraction utils --- */
float ior_from_f0(float f0)
{
float f = sqrt(f0);
return (-f - 1.0) / (f - 1.0);
}
float f0_from_ior(float eta)
{
float A = (eta - 1.0) / (eta + 1.0);
return A * A;
}
vec3 get_specular_refraction_dominant_dir(vec3 N, vec3 V, float roughness, float ior)
{
/* TODO: This a bad approximation. Better approximation should fit
* the refracted vector and roughness into the best prefiltered reflection
* lobe. */
/* Correct the IOR for ior < 1.0 to not see the abrupt delimitation or the TIR */
ior = (ior < 1.0) ? mix(ior, 1.0, roughness) : ior;
float eta = 1.0 / ior;
float NV = dot(N, -V);
/* Custom Refraction. */
float k = 1.0 - eta * eta * (1.0 - NV * NV);
k = max(0.0, k); /* Only this changes. */
vec3 R = eta * -V - (eta * NV + sqrt(k)) * N;
return R;
}
float get_btdf_lut(sampler2DArray btdf_lut_tex, float NV, float roughness, float ior)
{
const vec3 lut_scale_bias_texel_size = vec3((LUT_SIZE - 1.0), 0.5, 1.5) / LUT_SIZE;
vec3 coords;
/* Try to compensate for the low resolution and interpolation error. */
coords.x = (ior > 1.0) ? (0.9 + lut_scale_bias_texel_size.z) +
(0.1 - lut_scale_bias_texel_size.z) * f0_from_ior(ior) :
(0.9 + lut_scale_bias_texel_size.z) * ior * ior;
coords.y = 1.0 - saturate(NV);
coords.xy *= lut_scale_bias_texel_size.x;
coords.xy += lut_scale_bias_texel_size.y;
const float lut_lvl_ofs = 4.0; /* First texture lvl of roughness. */
const float lut_lvl_scale = 16.0; /* How many lvl of roughness in the lut. */
float mip = roughness * lut_lvl_scale;
float mip_floor = floor(mip);
coords.z = lut_lvl_ofs + mip_floor + 1.0;
float btdf_high = textureLod(btdf_lut_tex, coords, 0.0).r;
coords.z -= 1.0;
float btdf_low = textureLod(btdf_lut_tex, coords, 0.0).r;
float btdf = (ior == 1.0) ? 1.0 : mix(btdf_low, btdf_high, mip - coords.z);
return btdf;
}
/* ---- Encode / Decode Normal buffer data ---- */
/* From http://aras-p.info/texts/CompactNormalStorage.html
* Using Method #4: Spheremap Transform */
vec2 normal_encode(vec3 n, vec3 view)
{
float p = sqrt(n.z * 8.0 + 8.0);
return n.xy / p + 0.5;
}
vec3 normal_decode(vec2 enc, vec3 view)
{
vec2 fenc = enc * 4.0 - 2.0;
float f = dot(fenc, fenc);
float g = sqrt(1.0 - f / 4.0);
vec3 n;
n.xy = fenc * g;
n.z = 1 - f / 2;
return n;
}
/* ---- RGBM (shared multiplier) encoding ---- */
/* From http://iwasbeingirony.blogspot.fr/2010/06/difference-between-rgbm-and-rgbd.html */
/* Higher RGBM_MAX_RANGE gives imprecision issues in low intensity. */
#define RGBM_MAX_RANGE 512.0
vec4 rgbm_encode(vec3 rgb)
{
float maxRGB = max_v3(rgb);
float M = maxRGB / RGBM_MAX_RANGE;
M = ceil(M * 255.0) / 255.0;
return vec4(rgb / (M * RGBM_MAX_RANGE), M);
}
vec3 rgbm_decode(vec4 data)
{
return data.rgb * (data.a * RGBM_MAX_RANGE);
}
/* ---- RGBE (shared exponent) encoding ---- */
vec4 rgbe_encode(vec3 rgb)
{
float maxRGB = max_v3(rgb);
float fexp = ceil(log2(maxRGB));
return vec4(rgb / exp2(fexp), (fexp + 128.0) / 255.0);
}
vec3 rgbe_decode(vec4 data)
{
float fexp = data.a * 255.0 - 128.0;
return data.rgb * exp2(fexp);
}
#if 1
# define irradiance_encode rgbe_encode
# define irradiance_decode rgbe_decode
#else /* No ecoding (when using floating point format) */
# define irradiance_encode(X) (X).rgbb
# define irradiance_decode(X) (X).rgb
#endif
/* Irradiance Visibility Encoding */
#if 1
vec4 visibility_encode(vec2 accum, float range)
{
accum /= range;
vec4 data;
data.x = fract(accum.x);
data.y = floor(accum.x) / 255.0;
data.z = fract(accum.y);
data.w = floor(accum.y) / 255.0;
return data;
}
vec2 visibility_decode(vec4 data, float range)
{
return (data.xz + data.yw * 255.0) * range;
}
#else /* No ecoding (when using floating point format) */
vec4 visibility_encode(vec2 accum, float range)
{
return accum.xyxy;
}
vec2 visibility_decode(vec4 data, float range)
{
return data.xy;
}
#endif
/* Fresnel monochromatic, perfect mirror */
float F_eta(float eta, float cos_theta)
{
/* compute fresnel reflectance without explicitly computing
* the refracted direction */
float c = abs(cos_theta);
float g = eta * eta - 1.0 + c * c;
float result;
if (g > 0.0) {
g = sqrt(g);
vec2 g_c = vec2(g) + vec2(c, -c);
float A = g_c.y / g_c.x;
A *= A;
g_c *= c;
float B = (g_c.y - 1.0) / (g_c.x + 1.0);
B *= B;
result = 0.5 * A * (1.0 + B);
}
else {
result = 1.0; /* TIR (no refracted component) */
}
return result;
}
/* Fresnel color blend base on fresnel factor */
vec3 F_color_blend(float eta, float fresnel, vec3 f0_color)
{
float f0 = F_eta(eta, 1.0);
float fac = saturate((fresnel - f0) / max(1e-8, 1.0 - f0));
return mix(f0_color, vec3(1.0), fac);
}
/* Fresnel */
vec3 F_schlick(vec3 f0, float cos_theta)
{
float fac = 1.0 - cos_theta;
float fac2 = fac * fac;
fac = fac2 * fac2 * fac;
/* Unreal specular matching : if specular color is below 2% intensity,
* (using green channel for intensity) treat as shadowning */
return saturate(50.0 * dot(f0, vec3(0.3, 0.6, 0.1))) * fac + (1.0 - fac) * f0;
}
/* Fresnel approximation for LTC area lights (not MRP) */
vec3 F_area(vec3 f0, vec2 lut)
{
/* Unreal specular matching : if specular color is below 2% intensity,
* treat as shadowning */
return saturate(50.0 * dot(f0, vec3(0.3, 0.6, 0.1))) * lut.y + lut.x * f0;
}
/* Fresnel approximation for IBL */
vec3 F_ibl(vec3 f0, vec2 lut)
{
/* Unreal specular matching : if specular color is below 2% intensity,
* treat as shadowning */
return saturate(50.0 * dot(f0, vec3(0.3, 0.6, 0.1))) * lut.y + lut.x * f0;
}
/* GGX */
float D_ggx_opti(float NH, float a2)
{
float tmp = (NH * a2 - NH) * NH + 1.0;
return M_PI * tmp * tmp; /* Doing RCP and mul a2 at the end */
}
float G1_Smith_GGX(float NX, float a2)
{
/* Using Brian Karis approach and refactoring by NX/NX
* this way the (2*NL)*(2*NV) in G = G1(V) * G1(L) gets canceled by the brdf denominator 4*NL*NV
* Rcp is done on the whole G later
* Note that this is not convenient for the transmission formula */
return NX + sqrt(NX * (NX - NX * a2) + a2);
/* return 2 / (1 + sqrt(1 + a2 * (1 - NX*NX) / (NX*NX) ) ); /* Reference function */
}
float bsdf_ggx(vec3 N, vec3 L, vec3 V, float roughness)
{
float a = roughness;
float a2 = a * a;
vec3 H = normalize(L + V);
float NH = max(dot(N, H), 1e-8);
float NL = max(dot(N, L), 1e-8);
float NV = max(dot(N, V), 1e-8);
float G = G1_Smith_GGX(NV, a2) * G1_Smith_GGX(NL, a2); /* Doing RCP at the end */
float D = D_ggx_opti(NH, a2);
/* Denominator is canceled by G1_Smith */
/* bsdf = D * G / (4.0 * NL * NV); /* Reference function */
return NL * a2 / (D * G); /* NL to Fit cycles Equation : line. 345 in bsdf_microfacet.h */
}
void accumulate_light(vec3 light, float fac, inout vec4 accum)
{
accum += vec4(light, 1.0) * min(fac, (1.0 - accum.a));
}
/* ----------- Cone Aperture Approximation --------- */
/* Return a fitted cone angle given the input roughness */
float cone_cosine(float r)
{
/* Using phong gloss
* roughness = sqrt(2/(gloss+2)) */
float gloss = -2 + 2 / (r * r);
/* Drobot 2014 in GPUPro5 */
// return cos(2.0 * sqrt(2.0 / (gloss + 2)));
/* Uludag 2014 in GPUPro5 */
// return pow(0.244, 1 / (gloss + 1));
/* Jimenez 2016 in Practical Realtime Strategies for Accurate Indirect Occlusion*/
return exp2(-3.32193 * r * r);
}
/* --------- Closure ---------- */
#ifdef VOLUMETRICS
struct Closure {
vec3 absorption;
vec3 scatter;
vec3 emission;
float anisotropy;
};
# define CLOSURE_DEFAULT Closure(vec3(0.0), vec3(0.0), vec3(0.0), 0.0)
Closure closure_mix(Closure cl1, Closure cl2, float fac)
{
Closure cl;
cl.absorption = mix(cl1.absorption, cl2.absorption, fac);
cl.scatter = mix(cl1.scatter, cl2.scatter, fac);
cl.emission = mix(cl1.emission, cl2.emission, fac);
cl.anisotropy = mix(cl1.anisotropy, cl2.anisotropy, fac);
return cl;
}
Closure closure_add(Closure cl1, Closure cl2)
{
Closure cl;
cl.absorption = cl1.absorption + cl2.absorption;
cl.scatter = cl1.scatter + cl2.scatter;
cl.emission = cl1.emission + cl2.emission;
cl.anisotropy = (cl1.anisotropy + cl2.anisotropy) / 2.0; /* Average phase (no multi lobe) */
return cl;
}
Closure closure_emission(vec3 rgb)
{
Closure cl = CLOSURE_DEFAULT;
cl.emission = rgb;
return cl;
}
#else /* VOLUMETRICS */
struct Closure {
vec3 radiance;
float opacity;
# ifdef USE_SSS
vec4 sss_data;
# ifdef USE_SSS_ALBEDO
vec3 sss_albedo;
# endif
# endif
vec4 ssr_data;
vec2 ssr_normal;
int ssr_id;
};
/* This is hacking ssr_id to tag transparent bsdf */
# define TRANSPARENT_CLOSURE_FLAG -2
# define REFRACT_CLOSURE_FLAG -3
# define NO_SSR -999
# ifdef USE_SSS
# ifdef USE_SSS_ALBEDO
# define CLOSURE_DEFAULT \
Closure(vec3(0.0), 1.0, vec4(0.0), vec3(0.0), vec4(0.0), vec2(0.0), -1)
# else
# define CLOSURE_DEFAULT Closure(vec3(0.0), 1.0, vec4(0.0), vec4(0.0), vec2(0.0), -1)
# endif
# else
# define CLOSURE_DEFAULT Closure(vec3(0.0), 1.0, vec4(0.0), vec2(0.0), -1)
# endif
uniform int outputSsrId;
Closure closure_mix(Closure cl1, Closure cl2, float fac)
{
Closure cl;
if (cl1.ssr_id == TRANSPARENT_CLOSURE_FLAG) {
cl1.ssr_normal = cl2.ssr_normal;
cl1.ssr_data = cl2.ssr_data;
cl1.ssr_id = cl2.ssr_id;
# ifdef USE_SSS
cl1.sss_data = cl2.sss_data;
# ifdef USE_SSS_ALBEDO
cl1.sss_albedo = cl2.sss_albedo;
# endif
# endif
}
if (cl2.ssr_id == TRANSPARENT_CLOSURE_FLAG) {
cl2.ssr_normal = cl1.ssr_normal;
cl2.ssr_data = cl1.ssr_data;
cl2.ssr_id = cl1.ssr_id;
# ifdef USE_SSS
cl2.sss_data = cl1.sss_data;
# ifdef USE_SSS_ALBEDO
cl2.sss_albedo = cl1.sss_albedo;
# endif
# endif
}
/* When mixing SSR don't blend roughness.
*
* It makes no sense to mix them really, so we take either one of them and
* tone down its specularity (ssr_data.xyz) while keeping its roughness (ssr_data.w).
*/
if (cl1.ssr_id == outputSsrId) {
cl.ssr_data = mix(cl1.ssr_data.xyzw, vec4(vec3(0.0), cl1.ssr_data.w), fac);
cl.ssr_normal = cl1.ssr_normal;
cl.ssr_id = cl1.ssr_id;
}
else {
cl.ssr_data = mix(vec4(vec3(0.0), cl2.ssr_data.w), cl2.ssr_data.xyzw, fac);
cl.ssr_normal = cl2.ssr_normal;
cl.ssr_id = cl2.ssr_id;
}
cl.opacity = mix(cl1.opacity, cl2.opacity, fac);
cl.radiance = mix(cl1.radiance * cl1.opacity, cl2.radiance * cl2.opacity, fac);
cl.radiance /= max(1e-8, cl.opacity);
# ifdef USE_SSS
cl.sss_data.rgb = mix(cl1.sss_data.rgb, cl2.sss_data.rgb, fac);
cl.sss_data.a = (cl1.sss_data.a > 0.0) ? cl1.sss_data.a : cl2.sss_data.a;
# ifdef USE_SSS_ALBEDO
/* TODO Find a solution to this. Dither? */
cl.sss_albedo = (cl1.sss_data.a > 0.0) ? cl1.sss_albedo : cl2.sss_albedo;
# endif
# endif
return cl;
}
Closure closure_add(Closure cl1, Closure cl2)
{
Closure cl = (cl1.ssr_id == outputSsrId) ? cl1 : cl2;
cl.radiance = cl1.radiance + cl2.radiance;
# ifdef USE_SSS
cl.sss_data = (cl1.sss_data.a > 0.0) ? cl1.sss_data : cl2.sss_data;
/* Add radiance that was supposed to be filtered but was rejected. */
cl.radiance += (cl1.sss_data.a > 0.0) ? cl2.sss_data.rgb : cl1.sss_data.rgb;
# ifdef USE_SSS_ALBEDO
/* TODO Find a solution to this. Dither? */
cl.sss_albedo = (cl1.sss_data.a > 0.0) ? cl1.sss_albedo : cl2.sss_albedo;
# endif
# endif
cl.opacity = saturate(cl1.opacity + cl2.opacity);
return cl;
}
Closure closure_emission(vec3 rgb)
{
Closure cl = CLOSURE_DEFAULT;
cl.radiance = rgb;
return cl;
}
/* Breaking this across multiple lines causes issues for some older GLSL compilers. */
/* clang-format off */
# if defined(MESH_SHADER) && !defined(USE_ALPHA_HASH) && !defined(USE_ALPHA_CLIP) && !defined(SHADOW_SHADER) && !defined(USE_MULTIPLY)
/* clang-format on */
layout(location = 0) out vec4 fragColor;
layout(location = 1) out vec4 ssrNormals;
layout(location = 2) out vec4 ssrData;
# ifdef USE_SSS
layout(location = 3) out vec4 sssData;
# ifdef USE_SSS_ALBEDO
layout(location = 4) out vec4 sssAlbedo;
# endif /* USE_SSS_ALBEDO */
# endif /* USE_SSS */
Closure nodetree_exec(void); /* Prototype */
# if defined(USE_ALPHA_BLEND_VOLUMETRICS)
/* Prototype because this file is included before volumetric_lib.glsl */
vec4 volumetric_resolve(vec4 scene_color, vec2 frag_uvs, float frag_depth);
# endif
# define NODETREE_EXEC
void main()
{
Closure cl = nodetree_exec();
# ifndef USE_ALPHA_BLEND
/* Prevent alpha hash material writing into alpha channel. */
cl.opacity = 1.0;
# endif
# if defined(USE_ALPHA_BLEND_VOLUMETRICS)
/* XXX fragile, better use real viewport resolution */
vec2 uvs = gl_FragCoord.xy / vec2(2 * textureSize(maxzBuffer, 0).xy);
fragColor.rgb = volumetric_resolve(vec4(cl.radiance, cl.opacity), uvs, gl_FragCoord.z).rgb;
fragColor.a = cl.opacity;
# else
fragColor = vec4(cl.radiance, cl.opacity);
# endif
ssrNormals = cl.ssr_normal.xyyy;
ssrData = cl.ssr_data;
# ifdef USE_SSS
sssData = cl.sss_data;
# ifdef USE_SSS_ALBEDO
sssAlbedo = cl.sss_albedo.rgbb;
# endif
# endif
/* For Probe capture */
# ifdef USE_SSS
# ifdef USE_SSS_ALBEDO
fragColor.rgb += cl.sss_data.rgb * cl.sss_albedo.rgb * float(!sssToggle);
# else
fragColor.rgb += cl.sss_data.rgb * float(!sssToggle);
# endif
# endif
}
# endif /* MESH_SHADER && !SHADOW_SHADER */
#endif /* VOLUMETRICS */
Closure nodetree_exec(void); /* Prototype */
/* TODO find a better place */
#ifdef USE_MULTIPLY
out vec4 fragColor;
# define NODETREE_EXEC
void main()
{
Closure cl = nodetree_exec();
fragColor = vec4(mix(vec3(1.0), cl.radiance, cl.opacity), 1.0);
}
#endif