Apply clang format as proposed in T53211. For details on usage and instructions for migrating branches without conflicts, see: https://wiki.blender.org/wiki/Tools/ClangFormat
108 lines
2.4 KiB
GLSL
108 lines
2.4 KiB
GLSL
|
|
uniform sampler1D texHammersley;
|
|
uniform sampler2D texJitter;
|
|
uniform float sampleCount;
|
|
uniform float invSampleCount;
|
|
|
|
vec2 jitternoise = vec2(0.0);
|
|
|
|
#ifndef UTIL_TEX
|
|
# define UTIL_TEX
|
|
uniform sampler2DArray utilTex;
|
|
# define texelfetch_noise_tex(coord) texelFetch(utilTex, ivec3(ivec2(coord) % LUT_SIZE, 2.0), 0)
|
|
#endif /* UTIL_TEX */
|
|
|
|
void setup_noise(void)
|
|
{
|
|
jitternoise = texelfetch_noise_tex(gl_FragCoord.xy).rg; /* Global variable */
|
|
}
|
|
|
|
#ifdef HAMMERSLEY_SIZE
|
|
vec3 hammersley_3d(float i, float invsamplenbr)
|
|
{
|
|
vec3 Xi; /* Theta, cos(Phi), sin(Phi) */
|
|
|
|
Xi.x = i * invsamplenbr; /* i/samples */
|
|
Xi.x = fract(Xi.x + jitternoise.x);
|
|
|
|
int u = int(mod(i + jitternoise.y * HAMMERSLEY_SIZE, HAMMERSLEY_SIZE));
|
|
|
|
Xi.yz = texelFetch(texHammersley, u, 0).rg;
|
|
|
|
return Xi;
|
|
}
|
|
|
|
vec3 hammersley_3d(float i)
|
|
{
|
|
return hammersley_3d(i, invSampleCount);
|
|
}
|
|
#endif
|
|
|
|
/* -------------- BSDFS -------------- */
|
|
|
|
float pdf_ggx_reflect(float NH, float a2)
|
|
{
|
|
return NH * a2 / D_ggx_opti(NH, a2);
|
|
}
|
|
|
|
float pdf_hemisphere()
|
|
{
|
|
return 0.5 * M_1_PI;
|
|
}
|
|
|
|
vec3 sample_ggx(vec3 rand, float a2)
|
|
{
|
|
/* Theta is the aperture angle of the cone */
|
|
float z = sqrt((1.0 - rand.x) / (1.0 + a2 * rand.x - rand.x)); /* cos theta */
|
|
float r = sqrt(max(0.0, 1.0f - z * z)); /* sin theta */
|
|
float x = r * rand.y;
|
|
float y = r * rand.z;
|
|
|
|
/* Microfacet Normal */
|
|
return vec3(x, y, z);
|
|
}
|
|
|
|
vec3 sample_ggx(vec3 rand, float a2, vec3 N, vec3 T, vec3 B, out float NH)
|
|
{
|
|
vec3 Ht = sample_ggx(rand, a2);
|
|
NH = Ht.z;
|
|
return tangent_to_world(Ht, N, T, B);
|
|
}
|
|
|
|
#ifdef HAMMERSLEY_SIZE
|
|
vec3 sample_ggx(float nsample, float a2, vec3 N, vec3 T, vec3 B)
|
|
{
|
|
vec3 Xi = hammersley_3d(nsample);
|
|
vec3 Ht = sample_ggx(Xi, a2);
|
|
return tangent_to_world(Ht, N, T, B);
|
|
}
|
|
|
|
vec3 sample_hemisphere(float nsample, vec3 N, vec3 T, vec3 B)
|
|
{
|
|
vec3 Xi = hammersley_3d(nsample);
|
|
|
|
float z = Xi.x; /* cos theta */
|
|
float r = sqrt(max(0.0, 1.0f - z * z)); /* sin theta */
|
|
float x = r * Xi.y;
|
|
float y = r * Xi.z;
|
|
|
|
vec3 Ht = vec3(x, y, z);
|
|
|
|
return tangent_to_world(Ht, N, T, B);
|
|
}
|
|
|
|
vec3 sample_cone(float nsample, float angle, vec3 N, vec3 T, vec3 B)
|
|
{
|
|
vec3 Xi = hammersley_3d(nsample);
|
|
|
|
float z = cos(angle * Xi.x); /* cos theta */
|
|
float r = sqrt(max(0.0, 1.0f - z * z)); /* sin theta */
|
|
float x = r * Xi.y;
|
|
float y = r * Xi.z;
|
|
|
|
vec3 Ht = vec3(x, y, z);
|
|
|
|
return tangent_to_world(Ht, N, T, B);
|
|
}
|
|
#endif
|