This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/mesh.c
2014-05-09 12:19:27 +09:00

2308 lines
57 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributor(s): Blender Foundation
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/mesh.c
* \ingroup bke
*/
#include "MEM_guardedalloc.h"
#include "DNA_scene_types.h"
#include "DNA_material_types.h"
#include "DNA_object_types.h"
#include "DNA_key_types.h"
#include "DNA_mesh_types.h"
#include "DNA_ipo_types.h"
#include "BLI_utildefines.h"
#include "BLI_math.h"
#include "BLI_listbase.h"
#include "BLI_edgehash.h"
#include "BLI_string.h"
#include "BKE_animsys.h"
#include "BKE_main.h"
#include "BKE_DerivedMesh.h"
#include "BKE_global.h"
#include "BKE_mesh.h"
#include "BKE_displist.h"
#include "BKE_library.h"
#include "BKE_material.h"
#include "BKE_modifier.h"
#include "BKE_multires.h"
#include "BKE_key.h"
#include "BKE_mball.h"
#include "BKE_depsgraph.h"
/* these 2 are only used by conversion functions */
#include "BKE_curve.h"
/* -- */
#include "BKE_object.h"
#include "BKE_editmesh.h"
enum {
MESHCMP_DVERT_WEIGHTMISMATCH = 1,
MESHCMP_DVERT_GROUPMISMATCH,
MESHCMP_DVERT_TOTGROUPMISMATCH,
MESHCMP_LOOPCOLMISMATCH,
MESHCMP_LOOPUVMISMATCH,
MESHCMP_LOOPMISMATCH,
MESHCMP_POLYVERTMISMATCH,
MESHCMP_POLYMISMATCH,
MESHCMP_EDGEUNKNOWN,
MESHCMP_VERTCOMISMATCH,
MESHCMP_CDLAYERS_MISMATCH
};
static const char *cmpcode_to_str(int code)
{
switch (code) {
case MESHCMP_DVERT_WEIGHTMISMATCH:
return "Vertex Weight Mismatch";
case MESHCMP_DVERT_GROUPMISMATCH:
return "Vertex Group Mismatch";
case MESHCMP_DVERT_TOTGROUPMISMATCH:
return "Vertex Doesn't Belong To Same Number Of Groups";
case MESHCMP_LOOPCOLMISMATCH:
return "Vertex Color Mismatch";
case MESHCMP_LOOPUVMISMATCH:
return "UV Mismatch";
case MESHCMP_LOOPMISMATCH:
return "Loop Mismatch";
case MESHCMP_POLYVERTMISMATCH:
return "Loop Vert Mismatch In Poly Test";
case MESHCMP_POLYMISMATCH:
return "Loop Vert Mismatch";
case MESHCMP_EDGEUNKNOWN:
return "Edge Mismatch";
case MESHCMP_VERTCOMISMATCH:
return "Vertex Coordinate Mismatch";
case MESHCMP_CDLAYERS_MISMATCH:
return "CustomData Layer Count Mismatch";
default:
return "Mesh Comparison Code Unknown";
}
}
/* thresh is threshold for comparing vertices, uvs, vertex colors,
* weights, etc.*/
static int customdata_compare(CustomData *c1, CustomData *c2, Mesh *m1, Mesh *m2, const float thresh)
{
const float thresh_sq = thresh * thresh;
CustomDataLayer *l1, *l2;
int i, i1 = 0, i2 = 0, tot, j;
for (i = 0; i < c1->totlayer; i++) {
if (ELEM7(c1->layers[i].type, CD_MVERT, CD_MEDGE, CD_MPOLY,
CD_MLOOPUV, CD_MLOOPCOL, CD_MTEXPOLY, CD_MDEFORMVERT))
{
i1++;
}
}
for (i = 0; i < c2->totlayer; i++) {
if (ELEM7(c2->layers[i].type, CD_MVERT, CD_MEDGE, CD_MPOLY,
CD_MLOOPUV, CD_MLOOPCOL, CD_MTEXPOLY, CD_MDEFORMVERT))
{
i2++;
}
}
if (i1 != i2)
return MESHCMP_CDLAYERS_MISMATCH;
l1 = c1->layers; l2 = c2->layers;
tot = i1;
i1 = 0; i2 = 0;
for (i = 0; i < tot; i++) {
while (i1 < c1->totlayer && !ELEM7(l1->type, CD_MVERT, CD_MEDGE, CD_MPOLY,
CD_MLOOPUV, CD_MLOOPCOL, CD_MTEXPOLY, CD_MDEFORMVERT))
{
i1++, l1++;
}
while (i2 < c2->totlayer && !ELEM7(l2->type, CD_MVERT, CD_MEDGE, CD_MPOLY,
CD_MLOOPUV, CD_MLOOPCOL, CD_MTEXPOLY, CD_MDEFORMVERT))
{
i2++, l2++;
}
if (l1->type == CD_MVERT) {
MVert *v1 = l1->data;
MVert *v2 = l2->data;
int vtot = m1->totvert;
for (j = 0; j < vtot; j++, v1++, v2++) {
if (len_squared_v3v3(v1->co, v2->co) > thresh_sq)
return MESHCMP_VERTCOMISMATCH;
/* I don't care about normals, let's just do coodinates */
}
}
/*we're order-agnostic for edges here*/
if (l1->type == CD_MEDGE) {
MEdge *e1 = l1->data;
MEdge *e2 = l2->data;
int etot = m1->totedge;
EdgeHash *eh = BLI_edgehash_new_ex(__func__, etot);
for (j = 0; j < etot; j++, e1++) {
BLI_edgehash_insert(eh, e1->v1, e1->v2, e1);
}
for (j = 0; j < etot; j++, e2++) {
if (!BLI_edgehash_lookup(eh, e2->v1, e2->v2))
return MESHCMP_EDGEUNKNOWN;
}
BLI_edgehash_free(eh, NULL);
}
if (l1->type == CD_MPOLY) {
MPoly *p1 = l1->data;
MPoly *p2 = l2->data;
int ptot = m1->totpoly;
for (j = 0; j < ptot; j++, p1++, p2++) {
MLoop *lp1, *lp2;
int k;
if (p1->totloop != p2->totloop)
return MESHCMP_POLYMISMATCH;
lp1 = m1->mloop + p1->loopstart;
lp2 = m2->mloop + p2->loopstart;
for (k = 0; k < p1->totloop; k++, lp1++, lp2++) {
if (lp1->v != lp2->v)
return MESHCMP_POLYVERTMISMATCH;
}
}
}
if (l1->type == CD_MLOOP) {
MLoop *lp1 = l1->data;
MLoop *lp2 = l2->data;
int ltot = m1->totloop;
for (j = 0; j < ltot; j++, lp1++, lp2++) {
if (lp1->v != lp2->v)
return MESHCMP_LOOPMISMATCH;
}
}
if (l1->type == CD_MLOOPUV) {
MLoopUV *lp1 = l1->data;
MLoopUV *lp2 = l2->data;
int ltot = m1->totloop;
for (j = 0; j < ltot; j++, lp1++, lp2++) {
if (len_squared_v2v2(lp1->uv, lp2->uv) > thresh_sq)
return MESHCMP_LOOPUVMISMATCH;
}
}
if (l1->type == CD_MLOOPCOL) {
MLoopCol *lp1 = l1->data;
MLoopCol *lp2 = l2->data;
int ltot = m1->totloop;
for (j = 0; j < ltot; j++, lp1++, lp2++) {
if (ABS(lp1->r - lp2->r) > thresh ||
ABS(lp1->g - lp2->g) > thresh ||
ABS(lp1->b - lp2->b) > thresh ||
ABS(lp1->a - lp2->a) > thresh)
{
return MESHCMP_LOOPCOLMISMATCH;
}
}
}
if (l1->type == CD_MDEFORMVERT) {
MDeformVert *dv1 = l1->data;
MDeformVert *dv2 = l2->data;
int dvtot = m1->totvert;
for (j = 0; j < dvtot; j++, dv1++, dv2++) {
int k;
MDeformWeight *dw1 = dv1->dw, *dw2 = dv2->dw;
if (dv1->totweight != dv2->totweight)
return MESHCMP_DVERT_TOTGROUPMISMATCH;
for (k = 0; k < dv1->totweight; k++, dw1++, dw2++) {
if (dw1->def_nr != dw2->def_nr)
return MESHCMP_DVERT_GROUPMISMATCH;
if (fabsf(dw1->weight - dw2->weight) > thresh)
return MESHCMP_DVERT_WEIGHTMISMATCH;
}
}
}
}
return 0;
}
/**
* Used for unit testing; compares two meshes, checking only
* differences we care about. should be usable with leaf's
* testing framework I get RNA work done, will use hackish
* testing code for now.
*/
const char *BKE_mesh_cmp(Mesh *me1, Mesh *me2, float thresh)
{
int c;
if (!me1 || !me2)
return "Requires two input meshes";
if (me1->totvert != me2->totvert)
return "Number of verts don't match";
if (me1->totedge != me2->totedge)
return "Number of edges don't match";
if (me1->totpoly != me2->totpoly)
return "Number of faces don't match";
if (me1->totloop != me2->totloop)
return "Number of loops don't match";
if ((c = customdata_compare(&me1->vdata, &me2->vdata, me1, me2, thresh)))
return cmpcode_to_str(c);
if ((c = customdata_compare(&me1->edata, &me2->edata, me1, me2, thresh)))
return cmpcode_to_str(c);
if ((c = customdata_compare(&me1->ldata, &me2->ldata, me1, me2, thresh)))
return cmpcode_to_str(c);
if ((c = customdata_compare(&me1->pdata, &me2->pdata, me1, me2, thresh)))
return cmpcode_to_str(c);
return NULL;
}
static void mesh_ensure_tessellation_customdata(Mesh *me)
{
if (UNLIKELY((me->totface != 0) && (me->totpoly == 0))) {
/* Pass, otherwise this function clears 'mface' before
* versioning 'mface -> mpoly' code kicks in [#30583]
*
* Callers could also check but safer to do here - campbell */
}
else {
const int tottex_original = CustomData_number_of_layers(&me->pdata, CD_MTEXPOLY);
const int totcol_original = CustomData_number_of_layers(&me->ldata, CD_MLOOPCOL);
const int tottex_tessface = CustomData_number_of_layers(&me->fdata, CD_MTFACE);
const int totcol_tessface = CustomData_number_of_layers(&me->fdata, CD_MCOL);
if (tottex_tessface != tottex_original ||
totcol_tessface != totcol_original)
{
BKE_mesh_tessface_clear(me);
CustomData_from_bmeshpoly(&me->fdata, &me->pdata, &me->ldata, me->totface);
/* TODO - add some --debug-mesh option */
if (G.debug & G_DEBUG) {
/* note: this warning may be un-called for if we are initializing the mesh for the
* first time from bmesh, rather then giving a warning about this we could be smarter
* and check if there was any data to begin with, for now just print the warning with
* some info to help troubleshoot whats going on - campbell */
printf("%s: warning! Tessellation uvs or vcol data got out of sync, "
"had to reset!\n CD_MTFACE: %d != CD_MTEXPOLY: %d || CD_MCOL: %d != CD_MLOOPCOL: %d\n",
__func__, tottex_tessface, tottex_original, totcol_tessface, totcol_original);
}
}
}
}
void BKE_mesh_ensure_skin_customdata(Mesh *me)
{
BMesh *bm = me->edit_btmesh ? me->edit_btmesh->bm : NULL;
MVertSkin *vs;
if (bm) {
if (!CustomData_has_layer(&bm->vdata, CD_MVERT_SKIN)) {
BMVert *v;
BMIter iter;
BM_data_layer_add(bm, &bm->vdata, CD_MVERT_SKIN);
/* Mark an arbitrary vertex as root */
BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) {
vs = CustomData_bmesh_get(&bm->vdata, v->head.data,
CD_MVERT_SKIN);
vs->flag |= MVERT_SKIN_ROOT;
break;
}
}
}
else {
if (!CustomData_has_layer(&me->vdata, CD_MVERT_SKIN)) {
vs = CustomData_add_layer(&me->vdata,
CD_MVERT_SKIN,
CD_DEFAULT,
NULL,
me->totvert);
/* Mark an arbitrary vertex as root */
if (vs) {
vs->flag |= MVERT_SKIN_ROOT;
}
}
}
}
/* this ensures grouped customdata (e.g. mtexpoly and mloopuv and mtface, or
* mloopcol and mcol) have the same relative active/render/clone/mask indices.
*
* note that for undo mesh data we want to skip 'ensure_tess_cd' call since
* we don't want to store memory for tessface when its only used for older
* versions of the mesh. - campbell*/
static void mesh_update_linked_customdata(Mesh *me, const bool do_ensure_tess_cd)
{
if (me->edit_btmesh)
BKE_editmesh_update_linked_customdata(me->edit_btmesh);
if (do_ensure_tess_cd) {
mesh_ensure_tessellation_customdata(me);
}
CustomData_bmesh_update_active_layers(&me->fdata, &me->pdata, &me->ldata);
}
void BKE_mesh_update_customdata_pointers(Mesh *me, const bool do_ensure_tess_cd)
{
mesh_update_linked_customdata(me, do_ensure_tess_cd);
me->mvert = CustomData_get_layer(&me->vdata, CD_MVERT);
me->dvert = CustomData_get_layer(&me->vdata, CD_MDEFORMVERT);
me->medge = CustomData_get_layer(&me->edata, CD_MEDGE);
me->mface = CustomData_get_layer(&me->fdata, CD_MFACE);
me->mcol = CustomData_get_layer(&me->fdata, CD_MCOL);
me->mtface = CustomData_get_layer(&me->fdata, CD_MTFACE);
me->mpoly = CustomData_get_layer(&me->pdata, CD_MPOLY);
me->mloop = CustomData_get_layer(&me->ldata, CD_MLOOP);
me->mtpoly = CustomData_get_layer(&me->pdata, CD_MTEXPOLY);
me->mloopcol = CustomData_get_layer(&me->ldata, CD_MLOOPCOL);
me->mloopuv = CustomData_get_layer(&me->ldata, CD_MLOOPUV);
}
/* Note: unlinking is called when me->id.us is 0, question remains how
* much unlinking of Library data in Mesh should be done... probably
* we need a more generic method, like the expand() functions in
* readfile.c */
void BKE_mesh_unlink(Mesh *me)
{
int a;
if (me == NULL) return;
if (me->mat) {
for (a = 0; a < me->totcol; a++) {
if (me->mat[a]) me->mat[a]->id.us--;
me->mat[a] = NULL;
}
}
if (me->key) {
me->key->id.us--;
}
me->key = NULL;
if (me->texcomesh) me->texcomesh = NULL;
}
/* do not free mesh itself */
void BKE_mesh_free(Mesh *me, int unlink)
{
if (unlink)
BKE_mesh_unlink(me);
CustomData_free(&me->vdata, me->totvert);
CustomData_free(&me->edata, me->totedge);
CustomData_free(&me->fdata, me->totface);
CustomData_free(&me->ldata, me->totloop);
CustomData_free(&me->pdata, me->totpoly);
if (me->adt) {
BKE_free_animdata(&me->id);
me->adt = NULL;
}
if (me->mat) MEM_freeN(me->mat);
if (me->bb) MEM_freeN(me->bb);
if (me->mselect) MEM_freeN(me->mselect);
if (me->edit_btmesh) MEM_freeN(me->edit_btmesh);
}
static void mesh_tessface_clear_intern(Mesh *mesh, int free_customdata)
{
if (free_customdata) {
CustomData_free(&mesh->fdata, mesh->totface);
}
else {
CustomData_reset(&mesh->fdata);
}
mesh->mface = NULL;
mesh->mtface = NULL;
mesh->mcol = NULL;
mesh->totface = 0;
}
Mesh *BKE_mesh_add(Main *bmain, const char *name)
{
Mesh *me;
me = BKE_libblock_alloc(bmain, ID_ME, name);
me->size[0] = me->size[1] = me->size[2] = 1.0;
me->smoothresh = 30;
me->texflag = ME_AUTOSPACE;
/* disable because its slow on many GPU's, see [#37518] */
#if 0
me->flag = ME_TWOSIDED;
#endif
me->drawflag = ME_DRAWEDGES | ME_DRAWFACES | ME_DRAWCREASES;
CustomData_reset(&me->vdata);
CustomData_reset(&me->edata);
CustomData_reset(&me->fdata);
CustomData_reset(&me->pdata);
CustomData_reset(&me->ldata);
return me;
}
Mesh *BKE_mesh_copy_ex(Main *bmain, Mesh *me)
{
Mesh *men;
MTFace *tface;
MTexPoly *txface;
int a, i;
const int do_tessface = ((me->totface != 0) && (me->totpoly == 0)); /* only do tessface if we have no polys */
men = BKE_libblock_copy_ex(bmain, &me->id);
men->mat = MEM_dupallocN(me->mat);
for (a = 0; a < men->totcol; a++) {
id_us_plus((ID *)men->mat[a]);
}
id_us_plus((ID *)men->texcomesh);
CustomData_copy(&me->vdata, &men->vdata, CD_MASK_MESH, CD_DUPLICATE, men->totvert);
CustomData_copy(&me->edata, &men->edata, CD_MASK_MESH, CD_DUPLICATE, men->totedge);
CustomData_copy(&me->ldata, &men->ldata, CD_MASK_MESH, CD_DUPLICATE, men->totloop);
CustomData_copy(&me->pdata, &men->pdata, CD_MASK_MESH, CD_DUPLICATE, men->totpoly);
if (do_tessface) {
CustomData_copy(&me->fdata, &men->fdata, CD_MASK_MESH, CD_DUPLICATE, men->totface);
}
else {
mesh_tessface_clear_intern(men, false);
}
BKE_mesh_update_customdata_pointers(men, do_tessface);
/* ensure indirect linked data becomes lib-extern */
for (i = 0; i < me->fdata.totlayer; i++) {
if (me->fdata.layers[i].type == CD_MTFACE) {
tface = (MTFace *)me->fdata.layers[i].data;
for (a = 0; a < me->totface; a++, tface++)
if (tface->tpage)
id_lib_extern((ID *)tface->tpage);
}
}
for (i = 0; i < me->pdata.totlayer; i++) {
if (me->pdata.layers[i].type == CD_MTEXPOLY) {
txface = (MTexPoly *)me->pdata.layers[i].data;
for (a = 0; a < me->totpoly; a++, txface++)
if (txface->tpage)
id_lib_extern((ID *)txface->tpage);
}
}
men->edit_btmesh = NULL;
men->mselect = MEM_dupallocN(men->mselect);
men->bb = MEM_dupallocN(men->bb);
men->key = BKE_key_copy(me->key);
if (men->key) men->key->from = (ID *)men;
return men;
}
Mesh *BKE_mesh_copy(Mesh *me)
{
return BKE_mesh_copy_ex(G.main, me);
}
BMesh *BKE_mesh_to_bmesh(Mesh *me, Object *ob)
{
BMesh *bm;
const BMAllocTemplate allocsize = BMALLOC_TEMPLATE_FROM_ME(me);
bm = BM_mesh_create(&allocsize);
BM_mesh_bm_from_me(bm, me, false, true, ob->shapenr);
return bm;
}
static void expand_local_mesh(Mesh *me)
{
id_lib_extern((ID *)me->texcomesh);
if (me->mtface || me->mtpoly) {
int a, i;
for (i = 0; i < me->pdata.totlayer; i++) {
if (me->pdata.layers[i].type == CD_MTEXPOLY) {
MTexPoly *txface = (MTexPoly *)me->pdata.layers[i].data;
for (a = 0; a < me->totpoly; a++, txface++) {
/* special case: ima always local immediately */
if (txface->tpage) {
id_lib_extern((ID *)txface->tpage);
}
}
}
}
for (i = 0; i < me->fdata.totlayer; i++) {
if (me->fdata.layers[i].type == CD_MTFACE) {
MTFace *tface = (MTFace *)me->fdata.layers[i].data;
for (a = 0; a < me->totface; a++, tface++) {
/* special case: ima always local immediately */
if (tface->tpage) {
id_lib_extern((ID *)tface->tpage);
}
}
}
}
}
if (me->mat) {
extern_local_matarar(me->mat, me->totcol);
}
}
void BKE_mesh_make_local(Mesh *me)
{
Main *bmain = G.main;
Object *ob;
bool is_local = false, is_lib = false;
/* - only lib users: do nothing
* - only local users: set flag
* - mixed: make copy
*/
if (me->id.lib == NULL) return;
if (me->id.us == 1) {
id_clear_lib_data(bmain, &me->id);
expand_local_mesh(me);
return;
}
for (ob = bmain->object.first; ob && ELEM(0, is_lib, is_local); ob = ob->id.next) {
if (me == ob->data) {
if (ob->id.lib) is_lib = true;
else is_local = true;
}
}
if (is_local && is_lib == false) {
id_clear_lib_data(bmain, &me->id);
expand_local_mesh(me);
}
else if (is_local && is_lib) {
Mesh *me_new = BKE_mesh_copy(me);
me_new->id.us = 0;
/* Remap paths of new ID using old library as base. */
BKE_id_lib_local_paths(bmain, me->id.lib, &me_new->id);
for (ob = bmain->object.first; ob; ob = ob->id.next) {
if (me == ob->data) {
if (ob->id.lib == NULL) {
BKE_mesh_assign_object(ob, me_new);
}
}
}
}
}
bool BKE_mesh_uv_cdlayer_rename_index(Mesh *me, const int poly_index, const int loop_index, const int face_index,
const char *new_name, const bool do_tessface)
{
CustomData *pdata, *ldata, *fdata;
CustomDataLayer *cdlp, *cdlu, *cdlf;
const int step = do_tessface ? 3 : 2;
int i;
if (me->edit_btmesh) {
pdata = &me->edit_btmesh->bm->pdata;
ldata = &me->edit_btmesh->bm->ldata;
fdata = NULL; /* No tessellated data in BMesh! */
}
else {
pdata = &me->pdata;
ldata = &me->ldata;
fdata = &me->fdata;
}
cdlp = &pdata->layers[poly_index];
cdlu = &ldata->layers[loop_index];
cdlf = fdata && do_tessface ? &fdata->layers[face_index] : NULL;
if (cdlp->name != new_name) {
/* Mesh validate passes a name from the CD layer as the new name,
* Avoid memcpy from self to self in this case.
*/
BLI_strncpy(cdlp->name, new_name, sizeof(cdlp->name));
CustomData_set_layer_unique_name(pdata, cdlp - pdata->layers);
}
/* Loop until we do have exactly the same name for all layers! */
for (i = 1; (strcmp(cdlp->name, cdlu->name) != 0 || (cdlf && strcmp(cdlp->name, cdlf->name) != 0)); i++) {
switch (i % step) {
case 0:
BLI_strncpy(cdlp->name, cdlu->name, sizeof(cdlp->name));
CustomData_set_layer_unique_name(pdata, cdlp - pdata->layers);
break;
case 1:
BLI_strncpy(cdlu->name, cdlp->name, sizeof(cdlu->name));
CustomData_set_layer_unique_name(ldata, cdlu - ldata->layers);
break;
case 2:
if (cdlf) {
BLI_strncpy(cdlf->name, cdlp->name, sizeof(cdlf->name));
CustomData_set_layer_unique_name(fdata, cdlf - fdata->layers);
}
break;
}
}
return true;
}
bool BKE_mesh_uv_cdlayer_rename(Mesh *me, const char *old_name, const char *new_name, bool do_tessface)
{
CustomData *pdata, *ldata, *fdata;
if (me->edit_btmesh) {
pdata = &me->edit_btmesh->bm->pdata;
ldata = &me->edit_btmesh->bm->ldata;
/* No tessellated data in BMesh! */
fdata = NULL;
do_tessface = false;
}
else {
pdata = &me->pdata;
ldata = &me->ldata;
fdata = &me->fdata;
do_tessface = (do_tessface && fdata->totlayer);
}
{
const int pidx_start = CustomData_get_layer_index(pdata, CD_MTEXPOLY);
const int lidx_start = CustomData_get_layer_index(ldata, CD_MLOOPUV);
const int fidx_start = do_tessface ? CustomData_get_layer_index(fdata, CD_MTFACE) : -1;
int pidx = CustomData_get_named_layer(pdata, CD_MTEXPOLY, old_name);
int lidx = CustomData_get_named_layer(ldata, CD_MLOOPUV, old_name);
int fidx = do_tessface ? CustomData_get_named_layer(fdata, CD_MTFACE, old_name) : -1;
/* None of those cases should happen, in theory!
* Note this assume we have the same number of mtexpoly, mloopuv and mtface layers!
*/
if (pidx == -1) {
if (lidx == -1) {
if (fidx == -1) {
/* No layer found with this name! */
return false;
}
else {
lidx = fidx;
}
}
pidx = lidx;
}
else {
if (lidx == -1) {
lidx = pidx;
}
if (fidx == -1 && do_tessface) {
fidx = pidx;
}
}
#if 0
/* For now, we do not consider mismatch in indices (i.e. same name leading to (relative) different indices). */
else if (pidx != lidx) {
lidx = pidx;
}
#endif
/* Go back to absolute indices! */
pidx += pidx_start;
lidx += lidx_start;
if (fidx != -1)
fidx += fidx_start;
return BKE_mesh_uv_cdlayer_rename_index(me, pidx, lidx, fidx, new_name, do_tessface);
}
}
void BKE_mesh_boundbox_calc(Mesh *me, float r_loc[3], float r_size[3])
{
BoundBox *bb;
float min[3], max[3];
float mloc[3], msize[3];
if (me->bb == NULL) me->bb = MEM_callocN(sizeof(BoundBox), "boundbox");
bb = me->bb;
if (!r_loc) r_loc = mloc;
if (!r_size) r_size = msize;
INIT_MINMAX(min, max);
if (!BKE_mesh_minmax(me, min, max)) {
min[0] = min[1] = min[2] = -1.0f;
max[0] = max[1] = max[2] = 1.0f;
}
mid_v3_v3v3(r_loc, min, max);
r_size[0] = (max[0] - min[0]) / 2.0f;
r_size[1] = (max[1] - min[1]) / 2.0f;
r_size[2] = (max[2] - min[2]) / 2.0f;
BKE_boundbox_init_from_minmax(bb, min, max);
bb->flag &= ~BOUNDBOX_DIRTY;
}
void BKE_mesh_texspace_calc(Mesh *me)
{
float loc[3], size[3];
int a;
BKE_mesh_boundbox_calc(me, loc, size);
if (me->texflag & ME_AUTOSPACE) {
for (a = 0; a < 3; a++) {
if (size[a] == 0.0f) size[a] = 1.0f;
else if (size[a] > 0.0f && size[a] < 0.00001f) size[a] = 0.00001f;
else if (size[a] < 0.0f && size[a] > -0.00001f) size[a] = -0.00001f;
}
copy_v3_v3(me->loc, loc);
copy_v3_v3(me->size, size);
zero_v3(me->rot);
}
}
BoundBox *BKE_mesh_boundbox_get(Object *ob)
{
Mesh *me = ob->data;
if (ob->bb)
return ob->bb;
if (me->bb == NULL || (me->bb->flag & BOUNDBOX_DIRTY)) {
BKE_mesh_texspace_calc(me);
}
return me->bb;
}
void BKE_mesh_texspace_get(Mesh *me, float r_loc[3], float r_rot[3], float r_size[3])
{
if (me->bb == NULL || (me->bb->flag & BOUNDBOX_DIRTY)) {
BKE_mesh_texspace_calc(me);
}
if (r_loc) copy_v3_v3(r_loc, me->loc);
if (r_rot) copy_v3_v3(r_rot, me->rot);
if (r_size) copy_v3_v3(r_size, me->size);
}
void BKE_mesh_texspace_copy_from_object(Mesh *me, Object *ob)
{
float *texloc, *texrot, *texsize;
short *texflag;
if (BKE_object_obdata_texspace_get(ob, &texflag, &texloc, &texsize, &texrot)) {
me->texflag = *texflag;
copy_v3_v3(me->loc, texloc);
copy_v3_v3(me->size, texsize);
copy_v3_v3(me->rot, texrot);
}
}
float (*BKE_mesh_orco_verts_get(Object *ob))[3]
{
Mesh *me = ob->data;
MVert *mvert = NULL;
Mesh *tme = me->texcomesh ? me->texcomesh : me;
int a, totvert;
float (*vcos)[3] = NULL;
/* Get appropriate vertex coordinates */
vcos = MEM_callocN(sizeof(*vcos) * me->totvert, "orco mesh");
mvert = tme->mvert;
totvert = min_ii(tme->totvert, me->totvert);
for (a = 0; a < totvert; a++, mvert++) {
copy_v3_v3(vcos[a], mvert->co);
}
return vcos;
}
void BKE_mesh_orco_verts_transform(Mesh *me, float (*orco)[3], int totvert, int invert)
{
float loc[3], size[3];
int a;
BKE_mesh_texspace_get(me->texcomesh ? me->texcomesh : me, loc, NULL, size);
if (invert) {
for (a = 0; a < totvert; a++) {
float *co = orco[a];
madd_v3_v3v3v3(co, loc, co, size);
}
}
else {
for (a = 0; a < totvert; a++) {
float *co = orco[a];
co[0] = (co[0] - loc[0]) / size[0];
co[1] = (co[1] - loc[1]) / size[1];
co[2] = (co[2] - loc[2]) / size[2];
}
}
}
/* rotates the vertices of a face in case v[2] or v[3] (vertex index) is = 0.
* this is necessary to make the if (mface->v4) check for quads work */
int test_index_face(MFace *mface, CustomData *fdata, int mfindex, int nr)
{
/* first test if the face is legal */
if ((mface->v3 || nr == 4) && mface->v3 == mface->v4) {
mface->v4 = 0;
nr--;
}
if ((mface->v2 || mface->v4) && mface->v2 == mface->v3) {
mface->v3 = mface->v4;
mface->v4 = 0;
nr--;
}
if (mface->v1 == mface->v2) {
mface->v2 = mface->v3;
mface->v3 = mface->v4;
mface->v4 = 0;
nr--;
}
/* check corrupt cases, bow-tie geometry, cant handle these because edge data wont exist so just return 0 */
if (nr == 3) {
if (
/* real edges */
mface->v1 == mface->v2 ||
mface->v2 == mface->v3 ||
mface->v3 == mface->v1)
{
return 0;
}
}
else if (nr == 4) {
if (
/* real edges */
mface->v1 == mface->v2 ||
mface->v2 == mface->v3 ||
mface->v3 == mface->v4 ||
mface->v4 == mface->v1 ||
/* across the face */
mface->v1 == mface->v3 ||
mface->v2 == mface->v4)
{
return 0;
}
}
/* prevent a zero at wrong index location */
if (nr == 3) {
if (mface->v3 == 0) {
static int corner_indices[4] = {1, 2, 0, 3};
SWAP(unsigned int, mface->v1, mface->v2);
SWAP(unsigned int, mface->v2, mface->v3);
if (fdata)
CustomData_swap(fdata, mfindex, corner_indices);
}
}
else if (nr == 4) {
if (mface->v3 == 0 || mface->v4 == 0) {
static int corner_indices[4] = {2, 3, 0, 1};
SWAP(unsigned int, mface->v1, mface->v3);
SWAP(unsigned int, mface->v2, mface->v4);
if (fdata)
CustomData_swap(fdata, mfindex, corner_indices);
}
}
return nr;
}
Mesh *BKE_mesh_from_object(Object *ob)
{
if (ob == NULL) return NULL;
if (ob->type == OB_MESH) return ob->data;
else return NULL;
}
void BKE_mesh_assign_object(Object *ob, Mesh *me)
{
Mesh *old = NULL;
multires_force_update(ob);
if (ob == NULL) return;
if (ob->type == OB_MESH) {
old = ob->data;
if (old)
old->id.us--;
ob->data = me;
id_us_plus((ID *)me);
}
test_object_materials(G.main, (ID *)me);
test_object_modifiers(ob);
}
void BKE_mesh_from_metaball(ListBase *lb, Mesh *me)
{
DispList *dl;
MVert *mvert;
MLoop *mloop, *allloop;
MPoly *mpoly;
const float *nors, *verts;
int a, *index;
dl = lb->first;
if (dl == NULL) return;
if (dl->type == DL_INDEX4) {
mvert = CustomData_add_layer(&me->vdata, CD_MVERT, CD_CALLOC, NULL, dl->nr);
allloop = mloop = CustomData_add_layer(&me->ldata, CD_MLOOP, CD_CALLOC, NULL, dl->parts * 4);
mpoly = CustomData_add_layer(&me->pdata, CD_MPOLY, CD_CALLOC, NULL, dl->parts);
me->mvert = mvert;
me->mloop = mloop;
me->mpoly = mpoly;
me->totvert = dl->nr;
me->totpoly = dl->parts;
a = dl->nr;
nors = dl->nors;
verts = dl->verts;
while (a--) {
copy_v3_v3(mvert->co, verts);
normal_float_to_short_v3(mvert->no, nors);
mvert++;
nors += 3;
verts += 3;
}
a = dl->parts;
index = dl->index;
while (a--) {
int count = index[2] != index[3] ? 4 : 3;
mloop[0].v = index[0];
mloop[1].v = index[1];
mloop[2].v = index[2];
if (count == 4)
mloop[3].v = index[3];
mpoly->totloop = count;
mpoly->loopstart = (int)(mloop - allloop);
mpoly->flag = ME_SMOOTH;
mpoly++;
mloop += count;
me->totloop += count;
index += 4;
}
BKE_mesh_update_customdata_pointers(me, true);
BKE_mesh_calc_normals(me);
BKE_mesh_calc_edges(me, true, false);
}
}
/**
* Specialized function to use when we _know_ existing edges don't overlap with poly edges.
*/
static void make_edges_mdata_extend(MEdge **r_alledge, int *r_totedge,
const MPoly *mpoly, MLoop *mloop,
const int totpoly)
{
int totedge = *r_totedge;
int totedge_new;
EdgeHash *eh;
unsigned int eh_reserve;
const MPoly *mp;
int i;
eh_reserve = max_ii(totedge, BLI_EDGEHASH_SIZE_GUESS_FROM_POLYS(totpoly));
eh = BLI_edgehash_new_ex(__func__, eh_reserve);
for (i = 0, mp = mpoly; i < totpoly; i++, mp++) {
BKE_mesh_poly_edgehash_insert(eh, mp, mloop + mp->loopstart);
}
totedge_new = BLI_edgehash_size(eh);
#ifdef DEBUG
/* ensure that theres no overlap! */
if (totedge_new) {
MEdge *medge = *r_alledge;
for (i = 0; i < totedge; i++, medge++) {
BLI_assert(BLI_edgehash_haskey(eh, medge->v1, medge->v2) == false);
}
}
#endif
if (totedge_new) {
EdgeHashIterator *ehi;
MEdge *medge;
unsigned int e_index = totedge;
*r_alledge = medge = (*r_alledge ? MEM_reallocN(*r_alledge, sizeof(MEdge) * (totedge + totedge_new)) :
MEM_callocN(sizeof(MEdge) * totedge_new, __func__));
medge += totedge;
totedge += totedge_new;
/* --- */
for (ehi = BLI_edgehashIterator_new(eh);
BLI_edgehashIterator_isDone(ehi) == false;
BLI_edgehashIterator_step(ehi), ++medge, e_index++)
{
BLI_edgehashIterator_getKey(ehi, &medge->v1, &medge->v2);
BLI_edgehashIterator_setValue(ehi, SET_UINT_IN_POINTER(e_index));
medge->crease = medge->bweight = 0;
medge->flag = ME_EDGEDRAW | ME_EDGERENDER;
}
BLI_edgehashIterator_free(ehi);
*r_totedge = totedge;
for (i = 0, mp = mpoly; i < totpoly; i++, mp++) {
MLoop *l = &mloop[mp->loopstart];
MLoop *l_prev = (l + (mp->totloop - 1));
int j;
for (j = 0; j < mp->totloop; j++, l++) {
/* lookup hashed edge index */
l_prev->e = GET_UINT_FROM_POINTER(BLI_edgehash_lookup(eh, l_prev->v, l->v));
l_prev = l;
}
}
}
BLI_edgehash_free(eh, NULL);
}
/* Initialize mverts, medges and, faces for converting nurbs to mesh and derived mesh */
/* return non-zero on error */
int BKE_mesh_nurbs_to_mdata(Object *ob, MVert **allvert, int *totvert,
MEdge **alledge, int *totedge, MLoop **allloop, MPoly **allpoly,
int *totloop, int *totpoly)
{
ListBase disp = {NULL, NULL};
if (ob->curve_cache) {
disp = ob->curve_cache->disp;
}
return BKE_mesh_nurbs_displist_to_mdata(ob, &disp,
allvert, totvert,
alledge, totedge,
allloop, allpoly, NULL,
totloop, totpoly);
}
/* BMESH: this doesn't calculate all edges from polygons,
* only free standing edges are calculated */
/* Initialize mverts, medges and, faces for converting nurbs to mesh and derived mesh */
/* use specified dispbase */
int BKE_mesh_nurbs_displist_to_mdata(Object *ob, ListBase *dispbase,
MVert **allvert, int *_totvert,
MEdge **alledge, int *_totedge,
MLoop **allloop, MPoly **allpoly,
MLoopUV **alluv,
int *_totloop, int *_totpoly)
{
Curve *cu = ob->data;
DispList *dl;
MVert *mvert;
MPoly *mpoly;
MLoop *mloop;
MLoopUV *mloopuv = NULL;
MEdge *medge;
const float *data;
int a, b, ofs, vertcount, startvert, totvert = 0, totedge = 0, totloop = 0, totvlak = 0;
int p1, p2, p3, p4, *index;
const bool conv_polys = ((CU_DO_2DFILL(cu) == false) || /* 2d polys are filled with DL_INDEX3 displists */
(ob->type == OB_SURF)); /* surf polys are never filled */
/* count */
dl = dispbase->first;
while (dl) {
if (dl->type == DL_SEGM) {
totvert += dl->parts * dl->nr;
totedge += dl->parts * (dl->nr - 1);
}
else if (dl->type == DL_POLY) {
if (conv_polys) {
totvert += dl->parts * dl->nr;
totedge += dl->parts * dl->nr;
}
}
else if (dl->type == DL_SURF) {
int tot;
totvert += dl->parts * dl->nr;
tot = (dl->parts - 1 + ((dl->flag & DL_CYCL_V) == 2)) * (dl->nr - 1 + (dl->flag & DL_CYCL_U));
totvlak += tot;
totloop += tot * 4;
}
else if (dl->type == DL_INDEX3) {
int tot;
totvert += dl->nr;
tot = dl->parts;
totvlak += tot;
totloop += tot * 3;
}
dl = dl->next;
}
if (totvert == 0) {
/* error("can't convert"); */
/* Make Sure you check ob->data is a curve */
return -1;
}
*allvert = mvert = MEM_callocN(sizeof(MVert) * totvert, "nurbs_init mvert");
*alledge = medge = MEM_callocN(sizeof(MEdge) * totedge, "nurbs_init medge");
*allloop = mloop = MEM_callocN(sizeof(MLoop) * totvlak * 4, "nurbs_init mloop"); // totloop
*allpoly = mpoly = MEM_callocN(sizeof(MPoly) * totvlak, "nurbs_init mloop");
if (alluv)
*alluv = mloopuv = MEM_callocN(sizeof(MLoopUV) * totvlak * 4, "nurbs_init mloopuv");
/* verts and faces */
vertcount = 0;
dl = dispbase->first;
while (dl) {
int smooth = dl->rt & CU_SMOOTH ? 1 : 0;
if (dl->type == DL_SEGM) {
startvert = vertcount;
a = dl->parts * dl->nr;
data = dl->verts;
while (a--) {
copy_v3_v3(mvert->co, data);
data += 3;
vertcount++;
mvert++;
}
for (a = 0; a < dl->parts; a++) {
ofs = a * dl->nr;
for (b = 1; b < dl->nr; b++) {
medge->v1 = startvert + ofs + b - 1;
medge->v2 = startvert + ofs + b;
medge->flag = ME_LOOSEEDGE | ME_EDGERENDER | ME_EDGEDRAW;
medge++;
}
}
}
else if (dl->type == DL_POLY) {
if (conv_polys) {
startvert = vertcount;
a = dl->parts * dl->nr;
data = dl->verts;
while (a--) {
copy_v3_v3(mvert->co, data);
data += 3;
vertcount++;
mvert++;
}
for (a = 0; a < dl->parts; a++) {
ofs = a * dl->nr;
for (b = 0; b < dl->nr; b++) {
medge->v1 = startvert + ofs + b;
if (b == dl->nr - 1) medge->v2 = startvert + ofs;
else medge->v2 = startvert + ofs + b + 1;
medge->flag = ME_LOOSEEDGE | ME_EDGERENDER | ME_EDGEDRAW;
medge++;
}
}
}
}
else if (dl->type == DL_INDEX3) {
startvert = vertcount;
a = dl->nr;
data = dl->verts;
while (a--) {
copy_v3_v3(mvert->co, data);
data += 3;
vertcount++;
mvert++;
}
a = dl->parts;
index = dl->index;
while (a--) {
mloop[0].v = startvert + index[0];
mloop[1].v = startvert + index[2];
mloop[2].v = startvert + index[1];
mpoly->loopstart = (int)(mloop - (*allloop));
mpoly->totloop = 3;
mpoly->mat_nr = dl->col;
if (mloopuv) {
int i;
for (i = 0; i < 3; i++, mloopuv++) {
mloopuv->uv[0] = (mloop[i].v - startvert) / (float)(dl->nr - 1);
mloopuv->uv[1] = 0.0f;
}
}
if (smooth) mpoly->flag |= ME_SMOOTH;
mpoly++;
mloop += 3;
index += 3;
}
}
else if (dl->type == DL_SURF) {
startvert = vertcount;
a = dl->parts * dl->nr;
data = dl->verts;
while (a--) {
copy_v3_v3(mvert->co, data);
data += 3;
vertcount++;
mvert++;
}
for (a = 0; a < dl->parts; a++) {
if ( (dl->flag & DL_CYCL_V) == 0 && a == dl->parts - 1) break;
if (dl->flag & DL_CYCL_U) { /* p2 -> p1 -> */
p1 = startvert + dl->nr * a; /* p4 -> p3 -> */
p2 = p1 + dl->nr - 1; /* -----> next row */
p3 = p1 + dl->nr;
p4 = p2 + dl->nr;
b = 0;
}
else {
p2 = startvert + dl->nr * a;
p1 = p2 + 1;
p4 = p2 + dl->nr;
p3 = p1 + dl->nr;
b = 1;
}
if ( (dl->flag & DL_CYCL_V) && a == dl->parts - 1) {
p3 -= dl->parts * dl->nr;
p4 -= dl->parts * dl->nr;
}
for (; b < dl->nr; b++) {
mloop[0].v = p1;
mloop[1].v = p3;
mloop[2].v = p4;
mloop[3].v = p2;
mpoly->loopstart = (int)(mloop - (*allloop));
mpoly->totloop = 4;
mpoly->mat_nr = dl->col;
if (mloopuv) {
int orco_sizeu = dl->nr - 1;
int orco_sizev = dl->parts - 1;
int i;
/* exception as handled in convertblender.c too */
if (dl->flag & DL_CYCL_U) {
orco_sizeu++;
if (dl->flag & DL_CYCL_V)
orco_sizev++;
}
else if (dl->flag & DL_CYCL_V) {
orco_sizev++;
}
for (i = 0; i < 4; i++, mloopuv++) {
/* find uv based on vertex index into grid array */
int v = mloop[i].v - startvert;
mloopuv->uv[0] = (v / dl->nr) / (float)orco_sizev;
mloopuv->uv[1] = (v % dl->nr) / (float)orco_sizeu;
/* cyclic correction */
if ((i == 1 || i == 2) && mloopuv->uv[0] == 0.0f)
mloopuv->uv[0] = 1.0f;
if ((i == 0 || i == 1) && mloopuv->uv[1] == 0.0f)
mloopuv->uv[1] = 1.0f;
}
}
if (smooth) mpoly->flag |= ME_SMOOTH;
mpoly++;
mloop += 4;
p4 = p3;
p3++;
p2 = p1;
p1++;
}
}
}
dl = dl->next;
}
if (totvlak) {
make_edges_mdata_extend(alledge, &totedge,
*allpoly, *allloop, totvlak);
}
*_totpoly = totvlak;
*_totloop = totloop;
*_totedge = totedge;
*_totvert = totvert;
return 0;
}
/* this may fail replacing ob->data, be sure to check ob->type */
void BKE_mesh_from_nurbs_displist(Object *ob, ListBase *dispbase, const bool use_orco_uv)
{
Main *bmain = G.main;
Object *ob1;
DerivedMesh *dm = ob->derivedFinal;
Mesh *me;
Curve *cu;
MVert *allvert = NULL;
MEdge *alledge = NULL;
MLoop *allloop = NULL;
MLoopUV *alluv = NULL;
MPoly *allpoly = NULL;
int totvert, totedge, totloop, totpoly;
cu = ob->data;
if (dm == NULL) {
if (BKE_mesh_nurbs_displist_to_mdata(ob, dispbase, &allvert, &totvert,
&alledge, &totedge, &allloop,
&allpoly, (use_orco_uv) ? &alluv : NULL,
&totloop, &totpoly) != 0)
{
/* Error initializing */
return;
}
/* make mesh */
me = BKE_mesh_add(G.main, "Mesh");
me->totvert = totvert;
me->totedge = totedge;
me->totloop = totloop;
me->totpoly = totpoly;
me->mvert = CustomData_add_layer(&me->vdata, CD_MVERT, CD_ASSIGN, allvert, me->totvert);
me->medge = CustomData_add_layer(&me->edata, CD_MEDGE, CD_ASSIGN, alledge, me->totedge);
me->mloop = CustomData_add_layer(&me->ldata, CD_MLOOP, CD_ASSIGN, allloop, me->totloop);
me->mpoly = CustomData_add_layer(&me->pdata, CD_MPOLY, CD_ASSIGN, allpoly, me->totpoly);
if (alluv) {
const char *uvname = "Orco";
me->mtpoly = CustomData_add_layer_named(&me->pdata, CD_MTEXPOLY, CD_DEFAULT, NULL, me->totpoly, uvname);
me->mloopuv = CustomData_add_layer_named(&me->ldata, CD_MLOOPUV, CD_ASSIGN, alluv, me->totloop, uvname);
}
BKE_mesh_calc_normals(me);
}
else {
me = BKE_mesh_add(G.main, "Mesh");
DM_to_mesh(dm, me, ob, CD_MASK_MESH);
}
me->totcol = cu->totcol;
me->mat = cu->mat;
BKE_mesh_texspace_calc(me);
cu->mat = NULL;
cu->totcol = 0;
if (ob->data) {
BKE_libblock_free(bmain, ob->data);
}
ob->data = me;
ob->type = OB_MESH;
/* other users */
ob1 = bmain->object.first;
while (ob1) {
if (ob1->data == cu) {
ob1->type = OB_MESH;
ob1->data = ob->data;
id_us_plus((ID *)ob->data);
}
ob1 = ob1->id.next;
}
}
void BKE_mesh_from_nurbs(Object *ob)
{
Curve *cu = (Curve *) ob->data;
bool use_orco_uv = (cu->flag & CU_UV_ORCO) != 0;
ListBase disp = {NULL, NULL};
if (ob->curve_cache) {
disp = ob->curve_cache->disp;
}
BKE_mesh_from_nurbs_displist(ob, &disp, use_orco_uv);
}
typedef struct EdgeLink {
Link *next, *prev;
void *edge;
} EdgeLink;
typedef struct VertLink {
Link *next, *prev;
unsigned int index;
} VertLink;
static void prependPolyLineVert(ListBase *lb, unsigned int index)
{
VertLink *vl = MEM_callocN(sizeof(VertLink), "VertLink");
vl->index = index;
BLI_addhead(lb, vl);
}
static void appendPolyLineVert(ListBase *lb, unsigned int index)
{
VertLink *vl = MEM_callocN(sizeof(VertLink), "VertLink");
vl->index = index;
BLI_addtail(lb, vl);
}
void BKE_mesh_to_curve_nurblist(DerivedMesh *dm, ListBase *nurblist, const int edge_users_test)
{
MVert *mvert = dm->getVertArray(dm);
MEdge *med, *medge = dm->getEdgeArray(dm);
MPoly *mp, *mpoly = dm->getPolyArray(dm);
MLoop *mloop = dm->getLoopArray(dm);
int dm_totedge = dm->getNumEdges(dm);
int dm_totpoly = dm->getNumPolys(dm);
int totedges = 0;
int i;
/* only to detect edge polylines */
int *edge_users;
ListBase edges = {NULL, NULL};
/* get boundary edges */
edge_users = MEM_callocN(sizeof(int) * dm_totedge, __func__);
for (i = 0, mp = mpoly; i < dm_totpoly; i++, mp++) {
MLoop *ml = &mloop[mp->loopstart];
int j;
for (j = 0; j < mp->totloop; j++, ml++) {
edge_users[ml->e]++;
}
}
/* create edges from all faces (so as to find edges not in any faces) */
med = medge;
for (i = 0; i < dm_totedge; i++, med++) {
if (edge_users[i] == edge_users_test) {
EdgeLink *edl = MEM_callocN(sizeof(EdgeLink), "EdgeLink");
edl->edge = med;
BLI_addtail(&edges, edl); totedges++;
}
}
MEM_freeN(edge_users);
if (edges.first) {
while (edges.first) {
/* each iteration find a polyline and add this as a nurbs poly spline */
ListBase polyline = {NULL, NULL}; /* store a list of VertLink's */
bool closed = false;
int totpoly = 0;
MEdge *med_current = ((EdgeLink *)edges.last)->edge;
unsigned int startVert = med_current->v1;
unsigned int endVert = med_current->v2;
bool ok = true;
appendPolyLineVert(&polyline, startVert); totpoly++;
appendPolyLineVert(&polyline, endVert); totpoly++;
BLI_freelinkN(&edges, edges.last); totedges--;
while (ok) { /* while connected edges are found... */
ok = false;
i = totedges;
while (i) {
EdgeLink *edl;
i -= 1;
edl = BLI_findlink(&edges, i);
med = edl->edge;
if (med->v1 == endVert) {
endVert = med->v2;
appendPolyLineVert(&polyline, med->v2); totpoly++;
BLI_freelinkN(&edges, edl); totedges--;
ok = true;
}
else if (med->v2 == endVert) {
endVert = med->v1;
appendPolyLineVert(&polyline, endVert); totpoly++;
BLI_freelinkN(&edges, edl); totedges--;
ok = true;
}
else if (med->v1 == startVert) {
startVert = med->v2;
prependPolyLineVert(&polyline, startVert); totpoly++;
BLI_freelinkN(&edges, edl); totedges--;
ok = true;
}
else if (med->v2 == startVert) {
startVert = med->v1;
prependPolyLineVert(&polyline, startVert); totpoly++;
BLI_freelinkN(&edges, edl); totedges--;
ok = true;
}
}
}
/* Now we have a polyline, make into a curve */
if (startVert == endVert) {
BLI_freelinkN(&polyline, polyline.last);
totpoly--;
closed = true;
}
/* --- nurbs --- */
{
Nurb *nu;
BPoint *bp;
VertLink *vl;
/* create new 'nurb' within the curve */
nu = (Nurb *)MEM_callocN(sizeof(Nurb), "MeshNurb");
nu->pntsu = totpoly;
nu->pntsv = 1;
nu->orderu = 4;
nu->flagu = CU_NURB_ENDPOINT | (closed ? CU_NURB_CYCLIC : 0); /* endpoint */
nu->resolu = 12;
nu->bp = (BPoint *)MEM_callocN(sizeof(BPoint) * totpoly, "bpoints");
/* add points */
vl = polyline.first;
for (i = 0, bp = nu->bp; i < totpoly; i++, bp++, vl = (VertLink *)vl->next) {
copy_v3_v3(bp->vec, mvert[vl->index].co);
bp->f1 = SELECT;
bp->radius = bp->weight = 1.0;
}
BLI_freelistN(&polyline);
/* add nurb to curve */
BLI_addtail(nurblist, nu);
}
/* --- done with nurbs --- */
}
}
}
void BKE_mesh_to_curve(Scene *scene, Object *ob)
{
/* make new mesh data from the original copy */
DerivedMesh *dm = mesh_get_derived_final(scene, ob, CD_MASK_MESH);
ListBase nurblist = {NULL, NULL};
bool needsFree = false;
BKE_mesh_to_curve_nurblist(dm, &nurblist, 0);
BKE_mesh_to_curve_nurblist(dm, &nurblist, 1);
if (nurblist.first) {
Curve *cu = BKE_curve_add(G.main, ob->id.name + 2, OB_CURVE);
cu->flag |= CU_3D;
cu->nurb = nurblist;
((Mesh *)ob->data)->id.us--;
ob->data = cu;
ob->type = OB_CURVE;
/* curve objects can't contain DM in usual cases, we could free memory */
needsFree = true;
}
dm->needsFree = needsFree;
dm->release(dm);
if (needsFree) {
ob->derivedFinal = NULL;
/* curve object could have got bounding box only in special cases */
if (ob->bb) {
MEM_freeN(ob->bb);
ob->bb = NULL;
}
}
}
void BKE_mesh_material_index_remove(Mesh *me, short index)
{
MPoly *mp;
MFace *mf;
int i;
for (mp = me->mpoly, i = 0; i < me->totpoly; i++, mp++) {
if (mp->mat_nr && mp->mat_nr >= index) {
mp->mat_nr--;
}
}
for (mf = me->mface, i = 0; i < me->totface; i++, mf++) {
if (mf->mat_nr && mf->mat_nr >= index) {
mf->mat_nr--;
}
}
}
void BKE_mesh_material_index_clear(Mesh *me)
{
MPoly *mp;
MFace *mf;
int i;
for (mp = me->mpoly, i = 0; i < me->totpoly; i++, mp++) {
mp->mat_nr = 0;
}
for (mf = me->mface, i = 0; i < me->totface; i++, mf++) {
mf->mat_nr = 0;
}
}
void BKE_mesh_smooth_flag_set(Object *meshOb, int enableSmooth)
{
Mesh *me = meshOb->data;
int i;
for (i = 0; i < me->totpoly; i++) {
MPoly *mp = &((MPoly *) me->mpoly)[i];
if (enableSmooth) {
mp->flag |= ME_SMOOTH;
}
else {
mp->flag &= ~ME_SMOOTH;
}
}
for (i = 0; i < me->totface; i++) {
MFace *mf = &((MFace *) me->mface)[i];
if (enableSmooth) {
mf->flag |= ME_SMOOTH;
}
else {
mf->flag &= ~ME_SMOOTH;
}
}
}
/**
* Return a newly MEM_malloc'd array of all the mesh vertex locations
* \note \a r_numVerts may be NULL
*/
float (*BKE_mesh_vertexCos_get(Mesh *me, int *r_numVerts))[3]
{
int i, numVerts = me->totvert;
float (*cos)[3] = MEM_mallocN(sizeof(*cos) * numVerts, "vertexcos1");
if (r_numVerts) *r_numVerts = numVerts;
for (i = 0; i < numVerts; i++)
copy_v3_v3(cos[i], me->mvert[i].co);
return cos;
}
/**
* Find the index of the loop in 'poly' which references vertex,
* returns -1 if not found
*/
int poly_find_loop_from_vert(const MPoly *poly, const MLoop *loopstart,
unsigned vert)
{
int j;
for (j = 0; j < poly->totloop; j++, loopstart++) {
if (loopstart->v == vert)
return j;
}
return -1;
}
/**
* Fill \a r_adj with the loop indices in \a poly adjacent to the
* vertex. Returns the index of the loop matching vertex, or -1 if the
* vertex is not in \a poly
*/
int poly_get_adj_loops_from_vert(unsigned r_adj[3], const MPoly *poly,
const MLoop *mloop, unsigned vert)
{
int corner = poly_find_loop_from_vert(poly,
&mloop[poly->loopstart],
vert);
if (corner != -1) {
const MLoop *ml = &mloop[poly->loopstart + corner];
/* vertex was found */
r_adj[0] = ME_POLY_LOOP_PREV(mloop, poly, corner)->v;
r_adj[1] = ml->v;
r_adj[2] = ME_POLY_LOOP_NEXT(mloop, poly, corner)->v;
}
return corner;
}
/**
* Return the index of the edge vert that is not equal to \a v. If
* neither edge vertex is equal to \a v, returns -1.
*/
int BKE_mesh_edge_other_vert(const MEdge *e, int v)
{
if (e->v1 == v)
return e->v2;
else if (e->v2 == v)
return e->v1;
else
return -1;
}
/* basic vertex data functions */
bool BKE_mesh_minmax(Mesh *me, float r_min[3], float r_max[3])
{
int i = me->totvert;
MVert *mvert;
for (mvert = me->mvert; i--; mvert++) {
minmax_v3v3_v3(r_min, r_max, mvert->co);
}
return (me->totvert != 0);
}
void BKE_mesh_translate(Mesh *me, const float offset[3], const bool do_keys)
{
int i = me->totvert;
MVert *mvert;
for (mvert = me->mvert; i--; mvert++) {
add_v3_v3(mvert->co, offset);
}
if (do_keys && me->key) {
KeyBlock *kb;
for (kb = me->key->block.first; kb; kb = kb->next) {
float *fp = kb->data;
for (i = kb->totelem; i--; fp += 3) {
add_v3_v3(fp, offset);
}
}
}
}
void BKE_mesh_ensure_navmesh(Mesh *me)
{
if (!CustomData_has_layer(&me->pdata, CD_RECAST)) {
int i;
int numFaces = me->totpoly;
int *recastData;
recastData = (int *)MEM_mallocN(numFaces * sizeof(int), __func__);
for (i = 0; i < numFaces; i++) {
recastData[i] = i + 1;
}
CustomData_add_layer_named(&me->pdata, CD_RECAST, CD_ASSIGN, recastData, numFaces, "recastData");
}
}
void BKE_mesh_tessface_calc(Mesh *mesh)
{
mesh->totface = BKE_mesh_recalc_tessellation(&mesh->fdata, &mesh->ldata, &mesh->pdata,
mesh->mvert,
mesh->totface, mesh->totloop, mesh->totpoly,
/* calc normals right after, don't copy from polys here */
false);
BKE_mesh_update_customdata_pointers(mesh, true);
}
void BKE_mesh_tessface_ensure(Mesh *mesh)
{
if (mesh->totpoly && mesh->totface == 0) {
BKE_mesh_tessface_calc(mesh);
}
}
void BKE_mesh_tessface_clear(Mesh *mesh)
{
mesh_tessface_clear_intern(mesh, true);
}
void BKE_mesh_do_versions_cd_flag_init(Mesh *mesh)
{
if (UNLIKELY(mesh->cd_flag)) {
return;
}
else {
MVert *mv;
MEdge *med;
int i;
for (mv = mesh->mvert, i = 0; i < mesh->totvert; mv++, i++) {
if (mv->bweight != 0) {
mesh->cd_flag |= ME_CDFLAG_VERT_BWEIGHT;
break;
}
}
for (med = mesh->medge, i = 0; i < mesh->totedge; med++, i++) {
if (med->bweight != 0) {
mesh->cd_flag |= ME_CDFLAG_EDGE_BWEIGHT;
if (mesh->cd_flag & ME_CDFLAG_EDGE_CREASE) {
break;
}
}
if (med->crease != 0) {
mesh->cd_flag |= ME_CDFLAG_EDGE_CREASE;
if (mesh->cd_flag & ME_CDFLAG_EDGE_BWEIGHT) {
break;
}
}
}
}
}
/* -------------------------------------------------------------------- */
/* MSelect functions (currently used in weight paint mode) */
void BKE_mesh_mselect_clear(Mesh *me)
{
if (me->mselect) {
MEM_freeN(me->mselect);
me->mselect = NULL;
}
me->totselect = 0;
}
void BKE_mesh_mselect_validate(Mesh *me)
{
MSelect *mselect_src, *mselect_dst;
int i_src, i_dst;
if (me->totselect == 0)
return;
mselect_src = me->mselect;
mselect_dst = MEM_mallocN(sizeof(MSelect) * (me->totselect), "Mesh selection history");
for (i_src = 0, i_dst = 0; i_src < me->totselect; i_src++) {
int index = mselect_src[i_src].index;
switch (mselect_src[i_src].type) {
case ME_VSEL:
{
if (me->mvert[index].flag & SELECT) {
mselect_dst[i_dst] = mselect_src[i_src];
i_dst++;
}
break;
}
case ME_ESEL:
{
if (me->medge[index].flag & SELECT) {
mselect_dst[i_dst] = mselect_src[i_src];
i_dst++;
}
break;
}
case ME_FSEL:
{
if (me->mpoly[index].flag & SELECT) {
mselect_dst[i_dst] = mselect_src[i_src];
i_dst++;
}
break;
}
default:
{
BLI_assert(0);
break;
}
}
}
MEM_freeN(mselect_src);
if (i_dst == 0) {
MEM_freeN(mselect_dst);
mselect_dst = NULL;
}
else if (i_dst != me->totselect) {
mselect_dst = MEM_reallocN(mselect_dst, sizeof(MSelect) * i_dst);
}
me->totselect = i_dst;
me->mselect = mselect_dst;
}
/**
* Return the index within me->mselect, or -1
*/
int BKE_mesh_mselect_find(Mesh *me, int index, int type)
{
int i;
BLI_assert(ELEM3(type, ME_VSEL, ME_ESEL, ME_FSEL));
for (i = 0; i < me->totselect; i++) {
if ((me->mselect[i].index == index) &&
(me->mselect[i].type == type))
{
return i;
}
}
return -1;
}
/**
* Return The index of the active element.
*/
int BKE_mesh_mselect_active_get(Mesh *me, int type)
{
BLI_assert(ELEM3(type, ME_VSEL, ME_ESEL, ME_FSEL));
if (me->totselect) {
if (me->mselect[me->totselect - 1].type == type) {
return me->mselect[me->totselect - 1].index;
}
}
return -1;
}
void BKE_mesh_mselect_active_set(Mesh *me, int index, int type)
{
const int msel_index = BKE_mesh_mselect_find(me, index, type);
if (msel_index == -1) {
/* add to the end */
me->mselect = MEM_reallocN(me->mselect, sizeof(MSelect) * (me->totselect + 1));
me->mselect[me->totselect].index = index;
me->mselect[me->totselect].type = type;
me->totselect++;
}
else if (msel_index != me->totselect - 1) {
/* move to the end */
SWAP(MSelect, me->mselect[msel_index], me->mselect[me->totselect - 1]);
}
BLI_assert((me->mselect[me->totselect - 1].index == index) &&
(me->mselect[me->totselect - 1].type == type));
}
/* settings: 1 - preview, 2 - render */
Mesh *BKE_mesh_new_from_object(
Main *bmain, Scene *sce, Object *ob,
int apply_modifiers, int settings, int calc_tessface, int calc_undeformed)
{
Mesh *tmpmesh;
Curve *tmpcu = NULL, *copycu;
Object *tmpobj = NULL;
int render = settings == eModifierMode_Render, i;
int cage = !apply_modifiers;
/* perform the mesh extraction based on type */
switch (ob->type) {
case OB_FONT:
case OB_CURVE:
case OB_SURF:
{
ListBase dispbase = {NULL, NULL};
DerivedMesh *derivedFinal = NULL;
int uv_from_orco;
/* copies object and modifiers (but not the data) */
tmpobj = BKE_object_copy_ex(bmain, ob, true);
tmpcu = (Curve *)tmpobj->data;
tmpcu->id.us--;
/* if getting the original caged mesh, delete object modifiers */
if (cage)
BKE_object_free_modifiers(tmpobj);
/* copies the data */
copycu = tmpobj->data = BKE_curve_copy((Curve *) ob->data);
/* temporarily set edit so we get updates from edit mode, but
* also because for text datablocks copying it while in edit
* mode gives invalid data structures */
copycu->editfont = tmpcu->editfont;
copycu->editnurb = tmpcu->editnurb;
/* get updated display list, and convert to a mesh */
BKE_displist_make_curveTypes_forRender(sce, tmpobj, &dispbase, &derivedFinal, false, render);
copycu->editfont = NULL;
copycu->editnurb = NULL;
tmpobj->derivedFinal = derivedFinal;
/* convert object type to mesh */
uv_from_orco = (tmpcu->flag & CU_UV_ORCO) != 0;
BKE_mesh_from_nurbs_displist(tmpobj, &dispbase, uv_from_orco);
tmpmesh = tmpobj->data;
BKE_displist_free(&dispbase);
/* BKE_mesh_from_nurbs changes the type to a mesh, check it worked.
* if it didn't the curve did not have any segments or otherwise
* would have generated an empty mesh */
if (tmpobj->type != OB_MESH) {
BKE_libblock_free_us(G.main, tmpobj);
return NULL;
}
BKE_mesh_texspace_copy_from_object(tmpmesh, ob);
BKE_libblock_free_us(bmain, tmpobj);
break;
}
case OB_MBALL:
{
/* metaballs don't have modifiers, so just convert to mesh */
Object *basis_ob = BKE_mball_basis_find(sce, ob);
/* todo, re-generatre for render-res */
/* metaball_polygonize(scene, ob) */
if (ob != basis_ob)
return NULL; /* only do basis metaball */
tmpmesh = BKE_mesh_add(bmain, "Mesh");
/* BKE_mesh_add gives us a user count we don't need */
tmpmesh->id.us--;
if (render) {
ListBase disp = {NULL, NULL};
/* TODO(sergey): This is gonna to work for until EvaluationContext
* only contains for_render flag. As soon as CoW is
* implemented, this is to be rethinked.
*/
EvaluationContext eval_ctx = {0};
eval_ctx.for_render = render;
BKE_displist_make_mball_forRender(&eval_ctx, sce, ob, &disp);
BKE_mesh_from_metaball(&disp, tmpmesh);
BKE_displist_free(&disp);
}
else {
ListBase disp = {NULL, NULL};
if (ob->curve_cache) {
disp = ob->curve_cache->disp;
}
BKE_mesh_from_metaball(&disp, tmpmesh);
}
BKE_mesh_texspace_copy_from_object(tmpmesh, ob);
break;
}
case OB_MESH:
/* copies object and modifiers (but not the data) */
if (cage) {
/* copies the data */
tmpmesh = BKE_mesh_copy_ex(bmain, ob->data);
/* if not getting the original caged mesh, get final derived mesh */
}
else {
/* Make a dummy mesh, saves copying */
DerivedMesh *dm;
/* CustomDataMask mask = CD_MASK_BAREMESH|CD_MASK_MTFACE|CD_MASK_MCOL; */
CustomDataMask mask = CD_MASK_MESH; /* this seems more suitable, exporter,
* for example, needs CD_MASK_MDEFORMVERT */
if (calc_undeformed)
mask |= CD_MASK_ORCO;
/* Write the display mesh into the dummy mesh */
if (render)
dm = mesh_create_derived_render(sce, ob, mask);
else
dm = mesh_create_derived_view(sce, ob, mask);
tmpmesh = BKE_mesh_add(bmain, "Mesh");
DM_to_mesh(dm, tmpmesh, ob, mask);
dm->release(dm);
}
/* BKE_mesh_add/copy gives us a user count we don't need */
tmpmesh->id.us--;
break;
default:
/* "Object does not have geometry data") */
return NULL;
}
/* Copy materials to new mesh */
switch (ob->type) {
case OB_SURF:
case OB_FONT:
case OB_CURVE:
tmpmesh->totcol = tmpcu->totcol;
/* free old material list (if it exists) and adjust user counts */
if (tmpcu->mat) {
for (i = tmpcu->totcol; i-- > 0; ) {
/* are we an object material or data based? */
tmpmesh->mat[i] = ob->matbits[i] ? ob->mat[i] : tmpcu->mat[i];
if (tmpmesh->mat[i]) {
tmpmesh->mat[i]->id.us++;
}
}
}
break;
#if 0
/* Crashes when assigning the new material, not sure why */
case OB_MBALL:
tmpmb = (MetaBall *)ob->data;
tmpmesh->totcol = tmpmb->totcol;
/* free old material list (if it exists) and adjust user counts */
if (tmpmb->mat) {
for (i = tmpmb->totcol; i-- > 0; ) {
tmpmesh->mat[i] = tmpmb->mat[i]; /* CRASH HERE ??? */
if (tmpmesh->mat[i]) {
tmpmb->mat[i]->id.us++;
}
}
}
break;
#endif
case OB_MESH:
if (!cage) {
Mesh *origmesh = ob->data;
tmpmesh->flag = origmesh->flag;
tmpmesh->mat = MEM_dupallocN(origmesh->mat);
tmpmesh->totcol = origmesh->totcol;
tmpmesh->smoothresh = origmesh->smoothresh;
if (origmesh->mat) {
for (i = origmesh->totcol; i-- > 0; ) {
/* are we an object material or data based? */
tmpmesh->mat[i] = ob->matbits[i] ? ob->mat[i] : origmesh->mat[i];
if (tmpmesh->mat[i]) {
tmpmesh->mat[i]->id.us++;
}
}
}
}
break;
} /* end copy materials */
if (calc_tessface) {
/* cycles and exporters rely on this still */
BKE_mesh_tessface_ensure(tmpmesh);
}
/* make sure materials get updated in objects */
test_object_materials(bmain, &tmpmesh->id);
return tmpmesh;
}