This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/shrinkwrap.c
Campbell Barton 4ca67869cc Code cleanup: remove unused includes
Opted to keep includes if they are used indirectly (even if removing is possible).
2014-05-01 04:47:51 +10:00

599 lines
18 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Andr Pinto
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/shrinkwrap.c
* \ingroup bke
*/
#include <string.h>
#include <float.h>
#include <math.h>
#include <memory.h>
#include <stdio.h>
#include <time.h>
#include <assert.h>
#include "DNA_object_types.h"
#include "DNA_modifier_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_mesh_types.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "BKE_shrinkwrap.h"
#include "BKE_DerivedMesh.h"
#include "BKE_lattice.h"
#include "BKE_deform.h"
#include "BKE_subsurf.h"
#include "BKE_editmesh.h"
#include "BLI_strict_flags.h"
/* for timing... */
#if 0
# include "PIL_time.h"
#else
# define TIMEIT_BENCH(expr, id) (expr)
#endif
/* Util macros */
#define OUT_OF_MEMORY() ((void)printf("Shrinkwrap: Out of memory\n"))
/* get derived mesh */
/* TODO is anyfunction that does this? returning the derivedFinal without we caring if its in edit mode or not? */
DerivedMesh *object_get_derived_final(Object *ob, bool for_render)
{
Mesh *me = ob->data;
BMEditMesh *em = me->edit_btmesh;
if (for_render) {
/* TODO(sergey): use proper derived render here in the future. */
return ob->derivedFinal;
}
if (em) {
DerivedMesh *dm = em->derivedFinal;
return dm;
}
return ob->derivedFinal;
}
/* Space transform */
void space_transform_from_matrixs(SpaceTransform *data, float local[4][4], float target[4][4])
{
float itarget[4][4];
invert_m4_m4(itarget, target);
mul_m4_m4m4(data->local2target, itarget, local);
invert_m4_m4(data->target2local, data->local2target);
}
void space_transform_apply(const SpaceTransform *data, float co[3])
{
mul_v3_m4v3(co, ((SpaceTransform *)data)->local2target, co);
}
void space_transform_invert(const SpaceTransform *data, float co[3])
{
mul_v3_m4v3(co, ((SpaceTransform *)data)->target2local, co);
}
static void space_transform_apply_normal(const SpaceTransform *data, float no[3])
{
mul_mat3_m4_v3(((SpaceTransform *)data)->local2target, no);
normalize_v3(no); /* TODO: could we just determine de scale value from the matrix? */
}
static void space_transform_invert_normal(const SpaceTransform *data, float no[3])
{
mul_mat3_m4_v3(((SpaceTransform *)data)->target2local, no);
normalize_v3(no); /* TODO: could we just determine de scale value from the matrix? */
}
/*
* Shrinkwrap to the nearest vertex
*
* it builds a kdtree of vertexs we can attach to and then
* for each vertex performs a nearest vertex search on the tree
*/
static void shrinkwrap_calc_nearest_vertex(ShrinkwrapCalcData *calc)
{
int i;
BVHTreeFromMesh treeData = NULL_BVHTreeFromMesh;
BVHTreeNearest nearest = NULL_BVHTreeNearest;
TIMEIT_BENCH(bvhtree_from_mesh_verts(&treeData, calc->target, 0.0, 2, 6), bvhtree_verts);
if (treeData.tree == NULL) {
OUT_OF_MEMORY();
return;
}
/* Setup nearest */
nearest.index = -1;
nearest.dist_sq = FLT_MAX;
#ifndef __APPLE__
#pragma omp parallel for default(none) private(i) firstprivate(nearest) shared(treeData, calc) schedule(static)
#endif
for (i = 0; i < calc->numVerts; ++i) {
float *co = calc->vertexCos[i];
float tmp_co[3];
float weight = defvert_array_find_weight_safe(calc->dvert, i, calc->vgroup);
if (weight == 0.0f) {
continue;
}
/* Convert the vertex to tree coordinates */
if (calc->vert) {
copy_v3_v3(tmp_co, calc->vert[i].co);
}
else {
copy_v3_v3(tmp_co, co);
}
space_transform_apply(&calc->local2target, tmp_co);
/* Use local proximity heuristics (to reduce the nearest search)
*
* If we already had an hit before.. we assume this vertex is going to have a close hit to that other vertex
* so we can initiate the "nearest.dist" with the expected value to that last hit.
* This will lead in pruning of the search tree. */
if (nearest.index != -1)
nearest.dist_sq = len_squared_v3v3(tmp_co, nearest.co);
else
nearest.dist_sq = FLT_MAX;
BLI_bvhtree_find_nearest(treeData.tree, tmp_co, &nearest, treeData.nearest_callback, &treeData);
/* Found the nearest vertex */
if (nearest.index != -1) {
/* Adjusting the vertex weight,
* so that after interpolating it keeps a certain distance from the nearest position */
if (nearest.dist_sq > FLT_EPSILON) {
const float dist = sqrtf(nearest.dist_sq);
weight *= (dist - calc->keepDist) / dist;
}
/* Convert the coordinates back to mesh coordinates */
copy_v3_v3(tmp_co, nearest.co);
space_transform_invert(&calc->local2target, tmp_co);
interp_v3_v3v3(co, co, tmp_co, weight); /* linear interpolation */
}
}
free_bvhtree_from_mesh(&treeData);
}
/*
* This function raycast a single vertex and updates the hit if the "hit" is considered valid.
* Returns true if "hit" was updated.
* Opts control whether an hit is valid or not
* Supported options are:
* MOD_SHRINKWRAP_CULL_TARGET_FRONTFACE (front faces hits are ignored)
* MOD_SHRINKWRAP_CULL_TARGET_BACKFACE (back faces hits are ignored)
*/
bool BKE_shrinkwrap_project_normal(
char options, const float vert[3],
const float dir[3], const SpaceTransform *transf,
BVHTree *tree, BVHTreeRayHit *hit,
BVHTree_RayCastCallback callback, void *userdata)
{
/* don't use this because this dist value could be incompatible
* this value used by the callback for comparing prev/new dist values.
* also, at the moment there is no need to have a corrected 'dist' value */
// #define USE_DIST_CORRECT
float tmp_co[3], tmp_no[3];
const float *co, *no;
BVHTreeRayHit hit_tmp;
/* Copy from hit (we need to convert hit rays from one space coordinates to the other */
memcpy(&hit_tmp, hit, sizeof(hit_tmp));
/* Apply space transform (TODO readjust dist) */
if (transf) {
copy_v3_v3(tmp_co, vert);
space_transform_apply(transf, tmp_co);
co = tmp_co;
copy_v3_v3(tmp_no, dir);
space_transform_apply_normal(transf, tmp_no);
no = tmp_no;
#ifdef USE_DIST_CORRECT
hit_tmp.dist *= mat4_to_scale(((SpaceTransform *)transf)->local2target);
#endif
}
else {
co = vert;
no = dir;
}
hit_tmp.index = -1;
BLI_bvhtree_ray_cast(tree, co, no, 0.0f, &hit_tmp, callback, userdata);
if (hit_tmp.index != -1) {
/* invert the normal first so face culling works on rotated objects */
if (transf) {
space_transform_invert_normal(transf, hit_tmp.no);
}
if (options & (MOD_SHRINKWRAP_CULL_TARGET_FRONTFACE | MOD_SHRINKWRAP_CULL_TARGET_BACKFACE)) {
/* apply backface */
const float dot = dot_v3v3(dir, hit_tmp.no);
if (((options & MOD_SHRINKWRAP_CULL_TARGET_FRONTFACE) && dot <= 0.0f) ||
((options & MOD_SHRINKWRAP_CULL_TARGET_BACKFACE) && dot >= 0.0f))
{
return false; /* Ignore hit */
}
}
if (transf) {
/* Inverting space transform (TODO make coeherent with the initial dist readjust) */
space_transform_invert(transf, hit_tmp.co);
#ifdef USE_DIST_CORRECT
hit_tmp.dist = len_v3v3(vert, hit_tmp.co);
#endif
}
BLI_assert(hit_tmp.dist <= hit->dist);
memcpy(hit, &hit_tmp, sizeof(hit_tmp));
return true;
}
return false;
}
static void shrinkwrap_calc_normal_projection(ShrinkwrapCalcData *calc, bool for_render)
{
int i;
/* Options about projection direction */
const float proj_limit_squared = calc->smd->projLimit * calc->smd->projLimit;
float proj_axis[3] = {0.0f, 0.0f, 0.0f};
/* Raycast and tree stuff */
/** \note 'hit.dist' is kept in the targets space, this is only used
* for finding the best hit, to get the real dist,
* measure the len_v3v3() from the input coord to hit.co */
BVHTreeRayHit hit;
BVHTreeFromMesh treeData = NULL_BVHTreeFromMesh;
/* auxiliary target */
DerivedMesh *auxMesh = NULL;
BVHTreeFromMesh auxData = NULL_BVHTreeFromMesh;
SpaceTransform local2aux;
/* If the user doesn't allows to project in any direction of projection axis
* then theres nothing todo. */
if ((calc->smd->shrinkOpts & (MOD_SHRINKWRAP_PROJECT_ALLOW_POS_DIR | MOD_SHRINKWRAP_PROJECT_ALLOW_NEG_DIR)) == 0)
return;
/* Prepare data to retrieve the direction in which we should project each vertex */
if (calc->smd->projAxis == MOD_SHRINKWRAP_PROJECT_OVER_NORMAL) {
if (calc->vert == NULL) return;
}
else {
/* The code supports any axis that is a combination of X,Y,Z
* although currently UI only allows to set the 3 different axis */
if (calc->smd->projAxis & MOD_SHRINKWRAP_PROJECT_OVER_X_AXIS) proj_axis[0] = 1.0f;
if (calc->smd->projAxis & MOD_SHRINKWRAP_PROJECT_OVER_Y_AXIS) proj_axis[1] = 1.0f;
if (calc->smd->projAxis & MOD_SHRINKWRAP_PROJECT_OVER_Z_AXIS) proj_axis[2] = 1.0f;
normalize_v3(proj_axis);
/* Invalid projection direction */
if (len_squared_v3(proj_axis) < FLT_EPSILON) {
return;
}
}
if (calc->smd->auxTarget) {
auxMesh = object_get_derived_final(calc->smd->auxTarget, for_render);
if (!auxMesh)
return;
SPACE_TRANSFORM_SETUP(&local2aux, calc->ob, calc->smd->auxTarget);
}
/* After sucessufuly build the trees, start projection vertexs */
if (bvhtree_from_mesh_faces(&treeData, calc->target, 0.0, 4, 6) &&
(auxMesh == NULL || bvhtree_from_mesh_faces(&auxData, auxMesh, 0.0, 4, 6)))
{
#ifndef __APPLE__
#pragma omp parallel for private(i, hit) schedule(static)
#endif
for (i = 0; i < calc->numVerts; ++i) {
float *co = calc->vertexCos[i];
float tmp_co[3], tmp_no[3];
const float weight = defvert_array_find_weight_safe(calc->dvert, i, calc->vgroup);
if (weight == 0.0f) {
continue;
}
if (calc->vert) {
/* calc->vert contains verts from derivedMesh */
/* this coordinated are deformed by vertexCos only for normal projection (to get correct normals) */
/* for other cases calc->varts contains undeformed coordinates and vertexCos should be used */
if (calc->smd->projAxis == MOD_SHRINKWRAP_PROJECT_OVER_NORMAL) {
copy_v3_v3(tmp_co, calc->vert[i].co);
normal_short_to_float_v3(tmp_no, calc->vert[i].no);
}
else {
copy_v3_v3(tmp_co, co);
copy_v3_v3(tmp_no, proj_axis);
}
}
else {
copy_v3_v3(tmp_co, co);
copy_v3_v3(tmp_no, proj_axis);
}
hit.index = -1;
hit.dist = 10000.0f; /* TODO: we should use FLT_MAX here, but sweepsphere code isn't prepared for that */
/* Project over positive direction of axis */
if (calc->smd->shrinkOpts & MOD_SHRINKWRAP_PROJECT_ALLOW_POS_DIR) {
if (auxData.tree) {
BKE_shrinkwrap_project_normal(0, tmp_co, tmp_no,
&local2aux, auxData.tree, &hit,
auxData.raycast_callback, &auxData);
}
BKE_shrinkwrap_project_normal(calc->smd->shrinkOpts, tmp_co, tmp_no,
&calc->local2target, treeData.tree, &hit,
treeData.raycast_callback, &treeData);
}
/* Project over negative direction of axis */
if (calc->smd->shrinkOpts & MOD_SHRINKWRAP_PROJECT_ALLOW_NEG_DIR) {
float inv_no[3];
negate_v3_v3(inv_no, tmp_no);
if (auxData.tree) {
BKE_shrinkwrap_project_normal(0, tmp_co, inv_no,
&local2aux, auxData.tree, &hit,
auxData.raycast_callback, &auxData);
}
BKE_shrinkwrap_project_normal(calc->smd->shrinkOpts, tmp_co, inv_no,
&calc->local2target, treeData.tree, &hit,
treeData.raycast_callback, &treeData);
}
/* don't set the initial dist (which is more efficient),
* because its calculated in the targets space, we want the dist in our own space */
if (proj_limit_squared != 0.0f) {
if (len_squared_v3v3(hit.co, co) > proj_limit_squared) {
hit.index = -1;
}
}
if (hit.index != -1) {
madd_v3_v3v3fl(hit.co, hit.co, tmp_no, calc->keepDist);
interp_v3_v3v3(co, co, hit.co, weight);
}
}
}
/* free data structures */
free_bvhtree_from_mesh(&treeData);
free_bvhtree_from_mesh(&auxData);
}
/*
* Shrinkwrap moving vertexs to the nearest surface point on the target
*
* it builds a BVHTree from the target mesh and then performs a
* NN matches for each vertex
*/
static void shrinkwrap_calc_nearest_surface_point(ShrinkwrapCalcData *calc)
{
int i;
BVHTreeFromMesh treeData = NULL_BVHTreeFromMesh;
BVHTreeNearest nearest = NULL_BVHTreeNearest;
/* Create a bvh-tree of the given target */
bvhtree_from_mesh_faces(&treeData, calc->target, 0.0, 2, 6);
if (treeData.tree == NULL) {
OUT_OF_MEMORY();
return;
}
/* Setup nearest */
nearest.index = -1;
nearest.dist_sq = FLT_MAX;
/* Find the nearest vertex */
#ifndef __APPLE__
#pragma omp parallel for default(none) private(i) firstprivate(nearest) shared(calc, treeData) schedule(static)
#endif
for (i = 0; i < calc->numVerts; ++i) {
float *co = calc->vertexCos[i];
float tmp_co[3];
float weight = defvert_array_find_weight_safe(calc->dvert, i, calc->vgroup);
if (weight == 0.0f) continue;
/* Convert the vertex to tree coordinates */
if (calc->vert) {
copy_v3_v3(tmp_co, calc->vert[i].co);
}
else {
copy_v3_v3(tmp_co, co);
}
space_transform_apply(&calc->local2target, tmp_co);
/* Use local proximity heuristics (to reduce the nearest search)
*
* If we already had an hit before.. we assume this vertex is going to have a close hit to that other vertex
* so we can initiate the "nearest.dist" with the expected value to that last hit.
* This will lead in pruning of the search tree. */
if (nearest.index != -1)
nearest.dist_sq = len_squared_v3v3(tmp_co, nearest.co);
else
nearest.dist_sq = FLT_MAX;
BLI_bvhtree_find_nearest(treeData.tree, tmp_co, &nearest, treeData.nearest_callback, &treeData);
/* Found the nearest vertex */
if (nearest.index != -1) {
if (calc->smd->shrinkOpts & MOD_SHRINKWRAP_KEEP_ABOVE_SURFACE) {
/* Make the vertex stay on the front side of the face */
madd_v3_v3v3fl(tmp_co, nearest.co, nearest.no, calc->keepDist);
}
else {
/* Adjusting the vertex weight,
* so that after interpolating it keeps a certain distance from the nearest position */
const float dist = sasqrt(nearest.dist_sq);
if (dist > FLT_EPSILON) {
/* linear interpolation */
interp_v3_v3v3(tmp_co, tmp_co, nearest.co, (dist - calc->keepDist) / dist);
}
else {
copy_v3_v3(tmp_co, nearest.co);
}
}
/* Convert the coordinates back to mesh coordinates */
space_transform_invert(&calc->local2target, tmp_co);
interp_v3_v3v3(co, co, tmp_co, weight); /* linear interpolation */
}
}
free_bvhtree_from_mesh(&treeData);
}
/* Main shrinkwrap function */
void shrinkwrapModifier_deform(ShrinkwrapModifierData *smd, Object *ob, DerivedMesh *dm,
float (*vertexCos)[3], int numVerts, bool for_render)
{
DerivedMesh *ss_mesh = NULL;
ShrinkwrapCalcData calc = NULL_ShrinkwrapCalcData;
/* remove loop dependencies on derived meshes (TODO should this be done elsewhere?) */
if (smd->target == ob) smd->target = NULL;
if (smd->auxTarget == ob) smd->auxTarget = NULL;
/* Configure Shrinkwrap calc data */
calc.smd = smd;
calc.ob = ob;
calc.numVerts = numVerts;
calc.vertexCos = vertexCos;
/* DeformVertex */
calc.vgroup = defgroup_name_index(calc.ob, calc.smd->vgroup_name);
if (dm) {
calc.dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT);
}
else if (calc.ob->type == OB_LATTICE) {
calc.dvert = BKE_lattice_deform_verts_get(calc.ob);
}
if (smd->target) {
calc.target = object_get_derived_final(smd->target, for_render);
/* TODO there might be several "bugs" on non-uniform scales matrixs
* because it will no longer be nearest surface, not sphere projection
* because space has been deformed */
SPACE_TRANSFORM_SETUP(&calc.local2target, ob, smd->target);
/* TODO: smd->keepDist is in global units.. must change to local */
calc.keepDist = smd->keepDist;
}
calc.vgroup = defgroup_name_index(calc.ob, smd->vgroup_name);
if (dm != NULL && smd->shrinkType == MOD_SHRINKWRAP_PROJECT) {
/* Setup arrays to get vertexs positions, normals and deform weights */
calc.vert = dm->getVertDataArray(dm, CD_MVERT);
calc.dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT);
/* Using vertexs positions/normals as if a subsurface was applied */
if (smd->subsurfLevels) {
SubsurfModifierData ssmd = {{NULL}};
ssmd.subdivType = ME_CC_SUBSURF; /* catmull clark */
ssmd.levels = smd->subsurfLevels; /* levels */
ss_mesh = subsurf_make_derived_from_derived(dm, &ssmd, NULL, (ob->mode & OB_MODE_EDIT) ? SUBSURF_IN_EDIT_MODE : 0);
if (ss_mesh) {
calc.vert = ss_mesh->getVertDataArray(ss_mesh, CD_MVERT);
if (calc.vert) {
/* TRICKY: this code assumes subsurface will have the transformed original vertices
* in their original order at the end of the vert array. */
calc.vert = calc.vert + ss_mesh->getNumVerts(ss_mesh) - dm->getNumVerts(dm);
}
}
/* Just to make sure we are not leaving any memory behind */
assert(ssmd.emCache == NULL);
assert(ssmd.mCache == NULL);
}
}
/* Projecting target defined - lets work! */
if (calc.target) {
switch (smd->shrinkType) {
case MOD_SHRINKWRAP_NEAREST_SURFACE:
TIMEIT_BENCH(shrinkwrap_calc_nearest_surface_point(&calc), deform_surface);
break;
case MOD_SHRINKWRAP_PROJECT:
TIMEIT_BENCH(shrinkwrap_calc_normal_projection(&calc, for_render), deform_project);
break;
case MOD_SHRINKWRAP_NEAREST_VERTEX:
TIMEIT_BENCH(shrinkwrap_calc_nearest_vertex(&calc), deform_vertex);
break;
}
}
/* free memory */
if (ss_mesh)
ss_mesh->release(ss_mesh);
}