- adding relations to pose-constraints should call DAG on the pose - prevented constraints to break "IK" chains
1225 lines
31 KiB
C
1225 lines
31 KiB
C
/**
|
|
* $Id$
|
|
*
|
|
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
* Contributor(s): Full recode, Ton Roosendaal, Crete 2005
|
|
*
|
|
* ***** END GPL/BL DUAL LICENSE BLOCK *****
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "nla.h"
|
|
|
|
#include "BLI_arithb.h"
|
|
#include "BLI_blenlib.h"
|
|
|
|
#include "DNA_mesh_types.h"
|
|
#include "DNA_meshdata_types.h"
|
|
#include "DNA_armature_types.h"
|
|
#include "DNA_action_types.h"
|
|
#include "DNA_object_types.h"
|
|
#include "DNA_scene_types.h"
|
|
#include "DNA_view3d_types.h"
|
|
#include "DNA_constraint_types.h"
|
|
|
|
#include "BKE_curve.h"
|
|
#include "BKE_depsgraph.h"
|
|
#include "BKE_displist.h"
|
|
#include "BKE_global.h"
|
|
#include "BKE_main.h"
|
|
#include "BKE_library.h"
|
|
#include "BKE_blender.h"
|
|
#include "BKE_armature.h"
|
|
#include "BKE_action.h"
|
|
#include "BKE_constraint.h"
|
|
#include "BKE_object.h"
|
|
#include "BKE_object.h"
|
|
#include "BKE_deform.h"
|
|
#include "BKE_utildefines.h"
|
|
|
|
#include "BIF_editdeform.h"
|
|
|
|
#include "IK_solver.h"
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
/* ugly Globals */
|
|
static float g_premat[4][4];
|
|
static float g_postmat[4][4];
|
|
static MDeformVert *g_dverts;
|
|
static ListBase *g_defbase;
|
|
static Object *g_deform;
|
|
|
|
/* **************** Generic Functions, data level *************** */
|
|
|
|
bArmature *get_armature(Object *ob)
|
|
{
|
|
if(ob==NULL) return NULL;
|
|
if(ob->type==OB_ARMATURE) return ob->data;
|
|
else return NULL;
|
|
}
|
|
|
|
bArmature *add_armature()
|
|
{
|
|
bArmature *arm;
|
|
|
|
arm= alloc_libblock (&G.main->armature, ID_AR, "Armature");
|
|
return arm;
|
|
}
|
|
|
|
|
|
void free_boneChildren(Bone *bone)
|
|
{
|
|
Bone *child;
|
|
|
|
if (bone) {
|
|
|
|
child=bone->childbase.first;
|
|
if (child){
|
|
while (child){
|
|
free_boneChildren (child);
|
|
child=child->next;
|
|
}
|
|
BLI_freelistN (&bone->childbase);
|
|
}
|
|
}
|
|
}
|
|
|
|
void free_bones (bArmature *arm)
|
|
{
|
|
Bone *bone;
|
|
/* Free children (if any) */
|
|
bone= arm->bonebase.first;
|
|
if (bone) {
|
|
while (bone){
|
|
free_boneChildren (bone);
|
|
bone=bone->next;
|
|
}
|
|
}
|
|
|
|
|
|
BLI_freelistN(&arm->bonebase);
|
|
}
|
|
|
|
void free_armature(bArmature *arm)
|
|
{
|
|
if (arm) {
|
|
/* unlink_armature(arm);*/
|
|
free_bones(arm);
|
|
}
|
|
}
|
|
|
|
void make_local_armature(bArmature *arm)
|
|
{
|
|
int local=0, lib=0;
|
|
Object *ob;
|
|
bArmature *newArm;
|
|
|
|
if (arm->id.lib==0)
|
|
return;
|
|
if (arm->id.us==1) {
|
|
arm->id.lib= 0;
|
|
arm->id.flag= LIB_LOCAL;
|
|
new_id(0, (ID*)arm, 0);
|
|
return;
|
|
}
|
|
|
|
if(local && lib==0) {
|
|
arm->id.lib= 0;
|
|
arm->id.flag= LIB_LOCAL;
|
|
new_id(0, (ID *)arm, 0);
|
|
}
|
|
else if(local && lib) {
|
|
newArm= copy_armature(arm);
|
|
newArm->id.us= 0;
|
|
|
|
ob= G.main->object.first;
|
|
while(ob) {
|
|
if(ob->data==arm) {
|
|
|
|
if(ob->id.lib==0) {
|
|
ob->data= newArm;
|
|
newArm->id.us++;
|
|
arm->id.us--;
|
|
}
|
|
}
|
|
ob= ob->id.next;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void copy_bonechildren (Bone* newBone, Bone* oldBone)
|
|
{
|
|
Bone *curBone, *newChildBone;
|
|
|
|
/* Copy this bone's list*/
|
|
duplicatelist (&newBone->childbase, &oldBone->childbase);
|
|
|
|
/* For each child in the list, update it's children*/
|
|
newChildBone=newBone->childbase.first;
|
|
for (curBone=oldBone->childbase.first;curBone;curBone=curBone->next){
|
|
newChildBone->parent=newBone;
|
|
copy_bonechildren(newChildBone,curBone);
|
|
newChildBone=newChildBone->next;
|
|
}
|
|
}
|
|
|
|
bArmature *copy_armature(bArmature *arm)
|
|
{
|
|
bArmature *newArm;
|
|
Bone *oldBone, *newBone;
|
|
|
|
newArm= copy_libblock (arm);
|
|
duplicatelist(&newArm->bonebase, &arm->bonebase);
|
|
|
|
/* Duplicate the childrens' lists*/
|
|
newBone=newArm->bonebase.first;
|
|
for (oldBone=arm->bonebase.first;oldBone;oldBone=oldBone->next){
|
|
newBone->parent=NULL;
|
|
copy_bonechildren (newBone, oldBone);
|
|
newBone=newBone->next;
|
|
};
|
|
|
|
return newArm;
|
|
}
|
|
|
|
static Bone *get_named_bone_bonechildren (Bone *bone, const char *name)
|
|
{
|
|
Bone *curBone, *rbone;
|
|
|
|
if (!strcmp (bone->name, name))
|
|
return bone;
|
|
|
|
for (curBone=bone->childbase.first; curBone; curBone=curBone->next){
|
|
rbone=get_named_bone_bonechildren (curBone, name);
|
|
if (rbone)
|
|
return rbone;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
Bone *get_named_bone (bArmature *arm, const char *name)
|
|
/*
|
|
Walk the list until the bone is found
|
|
*/
|
|
{
|
|
Bone *bone=NULL, *curBone;
|
|
|
|
if (!arm) return NULL;
|
|
|
|
for (curBone=arm->bonebase.first; curBone; curBone=curBone->next){
|
|
bone = get_named_bone_bonechildren (curBone, name);
|
|
if (bone)
|
|
return bone;
|
|
}
|
|
|
|
return bone;
|
|
}
|
|
|
|
/* ************* B-Bone support ******************* */
|
|
|
|
#define MAX_BBONE_SUBDIV 32
|
|
|
|
/* data has MAX_BBONE_SUBDIV+1 interpolated points, will become desired amount with equal distances */
|
|
static void equalize_bezier(float *data, int desired)
|
|
{
|
|
float *fp, totdist, ddist, dist, fac1, fac2;
|
|
float pdist[MAX_BBONE_SUBDIV+1];
|
|
float temp[MAX_BBONE_SUBDIV+1][4];
|
|
int a, nr;
|
|
|
|
pdist[0]= 0.0f;
|
|
for(a=0, fp= data; a<MAX_BBONE_SUBDIV; a++, fp+=4) {
|
|
QUATCOPY(temp[a], fp);
|
|
pdist[a+1]= pdist[a]+VecLenf(fp, fp+4);
|
|
}
|
|
/* do last point */
|
|
QUATCOPY(temp[a], fp);
|
|
totdist= pdist[a];
|
|
|
|
/* go over distances and calculate new points */
|
|
ddist= totdist/((float)desired);
|
|
nr= 1;
|
|
for(a=1, fp= data+4; a<desired; a++, fp+=4) {
|
|
|
|
dist= ((float)a)*ddist;
|
|
|
|
/* we're looking for location (distance) 'dist' in the array */
|
|
while((dist>= pdist[nr]) && nr<MAX_BBONE_SUBDIV) {
|
|
nr++;
|
|
}
|
|
|
|
fac1= pdist[nr]- pdist[nr-1];
|
|
fac2= pdist[nr]-dist;
|
|
fac1= fac2/fac1;
|
|
fac2= 1.0f-fac1;
|
|
|
|
fp[0]= fac1*temp[nr-1][0]+ fac2*temp[nr][0];
|
|
fp[1]= fac1*temp[nr-1][1]+ fac2*temp[nr][1];
|
|
fp[2]= fac1*temp[nr-1][2]+ fac2*temp[nr][2];
|
|
fp[3]= fac1*temp[nr-1][3]+ fac2*temp[nr][3];
|
|
}
|
|
/* set last point, needed for orientation calculus */
|
|
QUATCOPY(fp, temp[MAX_BBONE_SUBDIV]);
|
|
}
|
|
|
|
/* returns pointer to static array, filled with desired amount of bone->segments elements */
|
|
/* this calculation is done within pchan pose_mat space */
|
|
Mat4 *b_bone_spline_setup(bPoseChannel *pchan)
|
|
{
|
|
static Mat4 bbone_array[MAX_BBONE_SUBDIV];
|
|
bPoseChannel *next, *prev;
|
|
Bone *bone= pchan->bone;
|
|
float h1[3], h2[3], length, hlength1, hlength2, roll;
|
|
float mat3[3][3], imat[4][4];
|
|
float data[MAX_BBONE_SUBDIV+1][4], *fp;
|
|
int a;
|
|
|
|
length= bone->length;
|
|
hlength1= bone->ease1*length*0.390464f; // 0.5*sqrt(2)*kappa, the handle length for near-perfect circles
|
|
hlength2= bone->ease2*length*0.390464f;
|
|
|
|
/* evaluate next and prev bones */
|
|
if(bone->flag & BONE_IK_TOPARENT)
|
|
prev= pchan->parent;
|
|
else
|
|
prev= NULL;
|
|
|
|
next= pchan->child;
|
|
|
|
/* find the handle points, since this is inside bone space, the
|
|
first point = (0,0,0)
|
|
last point = (0, length, 0) */
|
|
|
|
Mat4Invert(imat, pchan->pose_mat);
|
|
|
|
if(prev) {
|
|
/* transform previous point inside this bone space */
|
|
VECCOPY(h1, prev->pose_head);
|
|
Mat4MulVecfl(imat, h1);
|
|
/* if previous bone is B-bone too, use average handle direction */
|
|
if(prev->bone->segments>1) h1[1]-= length;
|
|
Normalise(h1);
|
|
VecMulf(h1, -hlength1);
|
|
}
|
|
else {
|
|
h1[0]= 0.0f; h1[1]= hlength1; h1[2]= 0.0f;
|
|
}
|
|
if(next) {
|
|
float difmat[4][4], result[3][3], imat3[3][3];
|
|
|
|
/* transform next point inside this bone space */
|
|
VECCOPY(h2, next->pose_tail);
|
|
Mat4MulVecfl(imat, h2);
|
|
/* if next bone is B-bone too, use average handle direction */
|
|
if(next->bone->segments>1);
|
|
else h2[1]-= length;
|
|
|
|
/* find the next roll to interpolate as well */
|
|
Mat4MulMat4(difmat, next->pose_mat, imat);
|
|
Mat3CpyMat4(result, difmat); // the desired rotation at beginning of next bone
|
|
|
|
vec_roll_to_mat3(h2, 0.0f, mat3); // the result of vec_roll without roll
|
|
|
|
Mat3Inv(imat3, mat3);
|
|
Mat3MulMat3(mat3, imat3, result); // the matrix transforming vec_roll to desired roll
|
|
|
|
roll= atan2(mat3[2][0], mat3[2][2]);
|
|
|
|
/* and only now negate handle */
|
|
Normalise(h2);
|
|
VecMulf(h2, -hlength2);
|
|
|
|
}
|
|
else {
|
|
h2[0]= 0.0f; h2[1]= -hlength2; h2[2]= 0.0f;
|
|
roll= 0.0;
|
|
}
|
|
|
|
/* make curve */
|
|
if(bone->segments > MAX_BBONE_SUBDIV)
|
|
bone->segments= MAX_BBONE_SUBDIV;
|
|
|
|
forward_diff_bezier(0.0, h1[0], h2[0], 0.0, data[0], MAX_BBONE_SUBDIV, 4);
|
|
forward_diff_bezier(0.0, h1[1], length + h2[1], length, data[0]+1, MAX_BBONE_SUBDIV, 4);
|
|
forward_diff_bezier(0.0, h1[2], h2[2], 0.0, data[0]+2, MAX_BBONE_SUBDIV, 4);
|
|
forward_diff_bezier(0.0, 0.390464f*roll, (1.0f-0.390464f)*roll, roll, data[0]+3, MAX_BBONE_SUBDIV, 4);
|
|
|
|
equalize_bezier(data[0], bone->segments); // note: does stride 4!
|
|
|
|
/* make transformation matrices for the segments for drawing */
|
|
for(a=0, fp= data[0]; a<bone->segments; a++, fp+=4) {
|
|
VecSubf(h1, fp+4, fp);
|
|
vec_roll_to_mat3(h1, fp[3], mat3); // fp[3] is roll
|
|
Mat4CpyMat3(bbone_array[a].mat, mat3);
|
|
VECCOPY(bbone_array[a].mat[3], fp);
|
|
}
|
|
|
|
return bbone_array;
|
|
}
|
|
|
|
/* ************ Armature Deform ******************* */
|
|
|
|
void init_armature_deform(Object *parent, Object *ob)
|
|
{
|
|
bArmature *arm;
|
|
bDeformGroup *dg;
|
|
MDeformVert *dvert;
|
|
int totverts;
|
|
float obinv[4][4];
|
|
int i, j;
|
|
|
|
arm = get_armature(parent);
|
|
if (!arm)
|
|
return;
|
|
|
|
g_defbase = &ob->defbase;
|
|
g_deform = parent;
|
|
|
|
Mat4Invert(obinv, ob->obmat);
|
|
Mat4CpyMat4(g_premat, ob->obmat);
|
|
Mat4MulMat4(g_postmat, parent->obmat, obinv);
|
|
|
|
Mat4Invert (g_premat, g_postmat);
|
|
|
|
/* Store the deformation verts */
|
|
if (ob->type==OB_MESH){
|
|
g_dverts = ((Mesh*)ob->data)->dvert;
|
|
totverts = ((Mesh*)ob->data)->totvert;
|
|
}
|
|
else{
|
|
g_dverts=NULL;
|
|
totverts=0;
|
|
}
|
|
|
|
/* bone defmats are already in the channels, chan_mat */
|
|
|
|
/* Validate channel data in bDeformGroups */
|
|
|
|
for (dg=g_defbase->first; dg; dg=dg->next)
|
|
dg->data = (void*)get_pose_channel(parent->pose, dg->name);
|
|
|
|
if (g_dverts){
|
|
for (j=0; j<totverts; j++){
|
|
dvert = g_dverts+j;
|
|
for (i=0; i<dvert->totweight; i++){
|
|
bDeformGroup *fg;
|
|
fg = BLI_findlink (g_defbase, dvert->dw[i].def_nr);
|
|
|
|
if (fg)
|
|
dvert->dw[i].data = fg->data;
|
|
else
|
|
dvert->dw[i].data = NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float dist_to_bone (float vec[3], float b1[3], float b2[3])
|
|
{
|
|
/* float dist=0; */
|
|
float bdelta[3];
|
|
float pdelta[3];
|
|
float hsqr, a, l;
|
|
|
|
VecSubf (bdelta, b2, b1);
|
|
l = Normalise (bdelta);
|
|
|
|
VecSubf (pdelta, vec, b1);
|
|
|
|
a = bdelta[0]*pdelta[0] + bdelta[1]*pdelta[1] + bdelta[2]*pdelta[2];
|
|
hsqr = ((pdelta[0]*pdelta[0]) + (pdelta[1]*pdelta[1]) + (pdelta[2]*pdelta[2]));
|
|
|
|
if (a < 0.0F){
|
|
//return 100000;
|
|
/* If we're past the end of the bone, do some weird field attenuation thing */
|
|
return ((b1[0]-vec[0])*(b1[0]-vec[0]) +(b1[1]-vec[1])*(b1[1]-vec[1]) +(b1[2]-vec[2])*(b1[2]-vec[2])) ;
|
|
}
|
|
else if (a > l){
|
|
//return 100000;
|
|
/* If we're past the end of the bone, do some weird field attenuation thing */
|
|
return ((b2[0]-vec[0])*(b2[0]-vec[0]) +(b2[1]-vec[1])*(b2[1]-vec[1]) +(b2[2]-vec[2])*(b2[2]-vec[2])) ;
|
|
}
|
|
else {
|
|
return (hsqr - (a*a));
|
|
}
|
|
}
|
|
|
|
static float calc_armature_deform_bone(Bone *bone, bPoseChannel *pchan, float *vec, float *co)
|
|
{
|
|
float dist, fac, ifac;
|
|
float cop[3];
|
|
float bdsqr, contrib=0.0;
|
|
|
|
bdsqr = bone->dist*bone->dist;
|
|
VECCOPY (cop, co);
|
|
|
|
dist = dist_to_bone(cop, bone->arm_head, bone->arm_tail);
|
|
|
|
if ((dist) <= bdsqr){
|
|
fac = (dist)/bdsqr;
|
|
ifac = 1.0F-fac;
|
|
|
|
ifac*=bone->weight;
|
|
contrib= ifac;
|
|
if(contrib>0.0) {
|
|
|
|
VECCOPY (cop, co);
|
|
|
|
Mat4MulVecfl(pchan->chan_mat, cop);
|
|
|
|
VecSubf (cop, cop, co); // Make this a delta from the base position
|
|
cop[0]*=ifac; cop[1]*=ifac; cop[2]*=ifac;
|
|
VecAddf (vec, vec, cop);
|
|
}
|
|
}
|
|
|
|
return contrib;
|
|
}
|
|
|
|
void calc_bone_deform (bPoseChannel *pchan, float weight, float *vec, float *co, float *contrib)
|
|
{
|
|
float cop[3];
|
|
|
|
if (!weight)
|
|
return;
|
|
|
|
VECCOPY (cop, co);
|
|
|
|
Mat4MulVecfl(pchan->chan_mat, cop);
|
|
|
|
vec[0]+=(cop[0]-co[0])*weight;
|
|
vec[1]+=(cop[1]-co[1])*weight;
|
|
vec[2]+=(cop[2]-co[2])*weight;
|
|
|
|
(*contrib)+=weight;
|
|
}
|
|
|
|
void calc_armature_deform (Object *ob, float *co, int index)
|
|
{
|
|
bPoseChannel *pchan;
|
|
MDeformVert *dvert = g_dverts+index;
|
|
float vec[3];
|
|
float contrib=0.0;
|
|
int i;
|
|
|
|
vec[0]=vec[1]=vec[2]=0;
|
|
|
|
/* Apply the object's matrix */
|
|
Mat4MulVecfl(g_premat, co);
|
|
|
|
/* using deform vertex groups */
|
|
if (g_dverts){
|
|
|
|
for (i=0; i<dvert->totweight; i++){
|
|
pchan = (bPoseChannel *)dvert->dw[i].data;
|
|
if (pchan) calc_bone_deform (pchan, dvert->dw[i].weight, vec, co, &contrib);
|
|
}
|
|
}
|
|
else { /* or use bone distances */
|
|
Bone *bone;
|
|
|
|
for(pchan= g_deform->pose->chanbase.first; pchan; pchan= pchan->next) {
|
|
bone= pchan->bone;
|
|
if(bone) {
|
|
contrib+= calc_armature_deform_bone(bone, pchan, vec, co);
|
|
}
|
|
}
|
|
|
|
}
|
|
if (contrib>0.0){
|
|
vec[0]/=contrib;
|
|
vec[1]/=contrib;
|
|
vec[2]/=contrib;
|
|
}
|
|
|
|
VecAddf (co, vec, co);
|
|
Mat4MulVecfl(g_postmat, co);
|
|
}
|
|
|
|
/* ************ END Armature Deform ******************* */
|
|
|
|
void get_objectspace_bone_matrix (struct Bone* bone, float M_accumulatedMatrix[][4], int root, int posed)
|
|
{
|
|
Mat4CpyMat4(M_accumulatedMatrix, bone->arm_mat);
|
|
}
|
|
|
|
|
|
/* **************** The new & simple (but OK!) armature evaluation ********* */
|
|
|
|
/* ****************** And how it works! ****************************************
|
|
|
|
This is the bone transformation trick; they're hierarchical so each bone(b)
|
|
is in the coord system of bone(b-1):
|
|
|
|
arm_mat(b)= arm_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b)
|
|
|
|
-> yoffs is just the y axis translation in parent's coord system
|
|
-> d_root is the translation of the bone root, also in parent's coord system
|
|
|
|
pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b)
|
|
|
|
we then - in init deform - store the deform in chan_mat, such that:
|
|
|
|
pose_mat(b)= arm_mat(b) * chan_mat(b)
|
|
|
|
*************************************************************************** */
|
|
|
|
|
|
/* Calculates the rest matrix of a bone based
|
|
On its vector and a roll around that vector */
|
|
void vec_roll_to_mat3(float *vec, float roll, float mat[][3])
|
|
{
|
|
float nor[3], axis[3], target[3]={0,1,0};
|
|
float theta;
|
|
float rMatrix[3][3], bMatrix[3][3];
|
|
|
|
VECCOPY (nor, vec);
|
|
Normalise (nor);
|
|
|
|
/* Find Axis & Amount for bone matrix*/
|
|
Crossf (axis,target,nor);
|
|
|
|
if (Inpf(axis,axis) > 0.0000000000001) {
|
|
/* if nor is *not* a multiple of target ... */
|
|
Normalise (axis);
|
|
theta=(float) acos (Inpf (target,nor));
|
|
|
|
/* Make Bone matrix*/
|
|
VecRotToMat3(axis, theta, bMatrix);
|
|
}
|
|
else {
|
|
/* if nor is a multiple of target ... */
|
|
float updown;
|
|
|
|
/* point same direction, or opposite? */
|
|
updown = ( Inpf (target,nor) > 0 ) ? 1.0 : -1.0;
|
|
|
|
/* I think this should work ... */
|
|
bMatrix[0][0]=updown; bMatrix[0][1]=0.0; bMatrix[0][2]=0.0;
|
|
bMatrix[1][0]=0.0; bMatrix[1][1]=updown; bMatrix[1][2]=0.0;
|
|
bMatrix[2][0]=0.0; bMatrix[2][1]=0.0; bMatrix[2][2]=1.0;
|
|
}
|
|
|
|
/* Make Roll matrix*/
|
|
VecRotToMat3(nor, roll, rMatrix);
|
|
|
|
/* Combine and output result*/
|
|
Mat3MulMat3 (mat, rMatrix, bMatrix);
|
|
}
|
|
|
|
|
|
/* recursive part, calculates restposition of entire tree of children */
|
|
/* used by exiting editmode too */
|
|
void where_is_armature_bone(Bone *bone, Bone *prevbone)
|
|
{
|
|
float vec[3];
|
|
|
|
/* Bone Space */
|
|
VecSubf (vec, bone->tail, bone->head);
|
|
vec_roll_to_mat3(vec, bone->roll, bone->bone_mat);
|
|
|
|
bone->length= VecLenf(bone->head, bone->tail);
|
|
|
|
/* this is called on old file reading too... */
|
|
if(bone->xwidth==0.0) {
|
|
bone->xwidth= 0.1f;
|
|
bone->zwidth= 0.1f;
|
|
bone->segments= 1;
|
|
}
|
|
|
|
if(prevbone) {
|
|
float offs_bone[4][4]; // yoffs(b-1) + root(b) + bonemat(b)
|
|
|
|
/* bone transform itself */
|
|
Mat4CpyMat3(offs_bone, bone->bone_mat);
|
|
|
|
/* The bone's root offset (is in the parent's coordinate system) */
|
|
VECCOPY(offs_bone[3], bone->head);
|
|
|
|
/* Get the length translation of parent (length along y axis) */
|
|
offs_bone[3][1]+= prevbone->length;
|
|
|
|
/* Compose the matrix for this bone */
|
|
Mat4MulMat4(bone->arm_mat, offs_bone, prevbone->arm_mat);
|
|
}
|
|
else {
|
|
Mat4CpyMat3(bone->arm_mat, bone->bone_mat);
|
|
VECCOPY(bone->arm_mat[3], bone->head);
|
|
}
|
|
|
|
/* head */
|
|
VECCOPY(bone->arm_head, bone->arm_mat[3]);
|
|
/* tail is in current local coord system */
|
|
VECCOPY(vec, bone->arm_mat[1]);
|
|
VecMulf(vec, bone->length);
|
|
VecAddf(bone->arm_tail, bone->arm_head, vec);
|
|
|
|
/* and the kiddies */
|
|
prevbone= bone;
|
|
for(bone= bone->childbase.first; bone; bone= bone->next) {
|
|
where_is_armature_bone(bone, prevbone);
|
|
}
|
|
}
|
|
|
|
/* updates vectors and matrices on rest-position level, only needed
|
|
after editing armature itself, now only on reading file */
|
|
void where_is_armature (bArmature *arm)
|
|
{
|
|
Bone *bone;
|
|
|
|
/* hierarchical from root to children */
|
|
for(bone= arm->bonebase.first; bone; bone= bone->next) {
|
|
where_is_armature_bone(bone, NULL);
|
|
}
|
|
}
|
|
|
|
static int rebuild_pose_bone(bPose *pose, Bone *bone, bPoseChannel *parchan, int counter)
|
|
{
|
|
bPoseChannel *pchan = verify_pose_channel (pose, bone->name); // verify checks and/or adds
|
|
|
|
pchan->bone= bone;
|
|
pchan->parent= parchan;
|
|
|
|
counter++;
|
|
|
|
for(bone= bone->childbase.first; bone; bone= bone->next) {
|
|
counter= rebuild_pose_bone(pose, bone, pchan, counter);
|
|
/* for quick detecting of next bone in chain */
|
|
if(bone->flag & BONE_IK_TOPARENT)
|
|
pchan->child= get_pose_channel(pose, bone->name);
|
|
}
|
|
|
|
return counter;
|
|
}
|
|
|
|
/* only after leave editmode, but also for validating older files */
|
|
/* NOTE: pose->flag is set for it */
|
|
void armature_rebuild_pose(Object *ob, bArmature *arm)
|
|
{
|
|
Bone *bone;
|
|
bPose *pose;
|
|
bPoseChannel *pchan, *next;
|
|
int counter=0;
|
|
|
|
/* only done here */
|
|
if(ob->pose==NULL) ob->pose= MEM_callocN(sizeof(bPose), "new pose");
|
|
pose= ob->pose;
|
|
|
|
/* clear */
|
|
for(pchan= pose->chanbase.first; pchan; pchan= pchan->next) {
|
|
pchan->bone= NULL;
|
|
pchan->child= NULL;
|
|
}
|
|
|
|
/* first step, check if all channels are there */
|
|
for(bone= arm->bonebase.first; bone; bone= bone->next) {
|
|
counter= rebuild_pose_bone(pose, bone, NULL, counter);
|
|
}
|
|
/* sort channels on dependency order, so we can walk the channel list */
|
|
|
|
/* and a check for garbage */
|
|
for(pchan= pose->chanbase.first; pchan; pchan= next) {
|
|
next= pchan->next;
|
|
if(pchan->bone==NULL) {
|
|
BLI_freelinkN(&pose->chanbase, pchan); // constraints?
|
|
}
|
|
}
|
|
//printf("rebuild pose, %d bones\n", counter);
|
|
if(counter<2) return;
|
|
|
|
update_pose_constraint_flags(ob->pose); // for IK detection for example
|
|
|
|
/* the sorting */
|
|
DAG_pose_sort(ob);
|
|
|
|
ob->pose->flag &= ~POSE_RECALC;
|
|
}
|
|
|
|
|
|
/* ********************** THE IK SOLVER ******************* */
|
|
|
|
|
|
/* allocates PoseChain, and links that to root bone/channel */
|
|
/* note; if we got this working, it can become static too? */
|
|
static void initialize_posechain(struct Object *ob, bPoseChannel *pchan_tip)
|
|
{
|
|
bPoseChannel *curchan, *pchan_root=NULL, *chanlist[256];
|
|
PoseChain *chain;
|
|
bConstraint *con;
|
|
bKinematicConstraint *data;
|
|
int a, segcount= 0;
|
|
|
|
/* find IK constraint, and validate it */
|
|
for(con= pchan_tip->constraints.first; con; con= con->next) {
|
|
if(con->type==CONSTRAINT_TYPE_KINEMATIC) break;
|
|
}
|
|
if(con==NULL) return;
|
|
if(con->flag & CONSTRAINT_DISABLE) return; // not sure...
|
|
|
|
data=(bKinematicConstraint*)con->data;
|
|
if(data->tar==NULL) return;
|
|
if(data->tar->type==OB_ARMATURE && data->subtarget[0]==0) return;
|
|
|
|
/* Find the chain's root & count the segments needed */
|
|
for (curchan = pchan_tip; curchan; curchan=curchan->parent){
|
|
pchan_root = curchan;
|
|
/* tip is not in the chain */
|
|
if (curchan!=pchan_tip){
|
|
chanlist[segcount]=curchan;
|
|
segcount++;
|
|
}
|
|
if(segcount>255) break; // also weak
|
|
|
|
if (!(curchan->bone->flag & BONE_IK_TOPARENT))
|
|
break;
|
|
}
|
|
if (!segcount) return;
|
|
|
|
/* setup the chain data */
|
|
chain = MEM_callocN(sizeof(PoseChain), "posechain");
|
|
chain->totchannel= segcount;
|
|
chain->solver = IK_CreateChain();
|
|
chain->con= con;
|
|
|
|
chain->iterations = data->iterations;
|
|
chain->tolerance = data->tolerance;
|
|
|
|
chain->pchanchain= MEM_callocN(segcount*sizeof(void *), "channel chain");
|
|
for(a=0; a<segcount; a++) {
|
|
chain->pchanchain[a]= chanlist[segcount-a-1];
|
|
}
|
|
|
|
/* AND! link the chain to the root */
|
|
BLI_addtail(&pchan_root->chain, chain);
|
|
}
|
|
|
|
/* called from within the core where_is_pose loop, all animsystems and constraints
|
|
were executed & assigned. Now as last we do an IK pass */
|
|
static void execute_posechain(Object *ob, PoseChain *chain)
|
|
{
|
|
IK_Segment_Extern *segs;
|
|
bPoseChannel *pchan;
|
|
float R_parmat[3][3];
|
|
float iR_parmat[3][3];
|
|
float R_bonemat[3][3];
|
|
float rootmat[4][4], imat[4][4];
|
|
float size[3];
|
|
int curseg;
|
|
|
|
/* first set the goal inverse transform, assuming the root of chain was done ok! */
|
|
pchan= chain->pchanchain[0];
|
|
Mat4One(rootmat);
|
|
VECCOPY(rootmat[3], pchan->pose_head);
|
|
|
|
Mat4MulMat4 (imat, rootmat, ob->obmat);
|
|
Mat4Invert (chain->goalinv, imat);
|
|
|
|
/* and set and transform goal */
|
|
get_constraint_target_matrix(chain->con, TARGET_BONE, NULL, rootmat, size, 1.0); // 1.0=ctime
|
|
VECCOPY (chain->goal, rootmat[3]);
|
|
/* do we need blending? */
|
|
if(chain->con->enforce!=1.0) {
|
|
float vec[3];
|
|
float fac= chain->con->enforce;
|
|
float mfac= 1.0-fac;
|
|
|
|
pchan= chain->pchanchain[chain->totchannel-1]; // last bone
|
|
VECCOPY(vec, pchan->pose_tail);
|
|
Mat4MulVecfl(ob->obmat, vec); // world space
|
|
chain->goal[0]= fac*chain->goal[0] + mfac*vec[0];
|
|
chain->goal[1]= fac*chain->goal[1] + mfac*vec[1];
|
|
chain->goal[2]= fac*chain->goal[2] + mfac*vec[2];
|
|
}
|
|
Mat4MulVecfl (chain->goalinv, chain->goal);
|
|
|
|
/* Now we construct the IK segments */
|
|
segs = MEM_callocN (sizeof(IK_Segment_Extern)*chain->totchannel, "iksegments");
|
|
|
|
for (curseg=0; curseg<chain->totchannel; curseg++){
|
|
|
|
pchan= chain->pchanchain[curseg];
|
|
|
|
/* Get the matrix that transforms from prevbone into this bone */
|
|
Mat3CpyMat4(R_bonemat, pchan->pose_mat);
|
|
|
|
if (pchan->parent && (pchan->bone->flag & BONE_IK_TOPARENT)) {
|
|
Mat3CpyMat4(R_parmat, pchan->parent->pose_mat);
|
|
}
|
|
else
|
|
Mat3One (R_parmat);
|
|
|
|
Mat3Inv(iR_parmat, R_parmat);
|
|
|
|
/* Mult and Copy the matrix into the basis and transpose (IK lib likes it) */
|
|
Mat3MulMat3((void *)segs[curseg].basis, iR_parmat, R_bonemat);
|
|
Mat3Transp((void *)segs[curseg].basis);
|
|
|
|
/* Fill out the IK segment */
|
|
segs[curseg].length = pchan->bone->length;
|
|
}
|
|
|
|
/* Solve the chain */
|
|
|
|
IK_LoadChain(chain->solver, segs, chain->totchannel);
|
|
|
|
IK_SolveChain(chain->solver, chain->goal, chain->tolerance,
|
|
chain->iterations, 0.1f, chain->solver->segments);
|
|
|
|
|
|
/* not yet free! */
|
|
}
|
|
|
|
void free_posechain (PoseChain *chain)
|
|
{
|
|
if (chain->solver) {
|
|
MEM_freeN (chain->solver->segments);
|
|
chain->solver->segments = NULL;
|
|
IK_FreeChain(chain->solver);
|
|
}
|
|
if(chain->pchanchain) MEM_freeN(chain->pchanchain);
|
|
MEM_freeN(chain);
|
|
}
|
|
|
|
/* ********************** THE POSE SOLVER ******************* */
|
|
|
|
|
|
/* loc/rot/size to mat4 */
|
|
/* used in constraint.c too */
|
|
void chan_calc_mat(bPoseChannel *chan)
|
|
{
|
|
float smat[3][3];
|
|
float rmat[3][3];
|
|
float tmat[3][3];
|
|
|
|
SizeToMat3(chan->size, smat);
|
|
|
|
NormalQuat(chan->quat);
|
|
QuatToMat3(chan->quat, rmat);
|
|
|
|
Mat3MulMat3(tmat, rmat, smat);
|
|
|
|
Mat4CpyMat3(chan->chan_mat, tmat);
|
|
|
|
/* prevent action channels breaking chains */
|
|
/* need to check for bone here, CONSTRAINT_TYPE_ACTION uses this call */
|
|
if (chan->bone==NULL || !(chan->bone->flag & BONE_IK_TOPARENT)) {
|
|
VECCOPY(chan->chan_mat[3], chan->loc);
|
|
}
|
|
|
|
}
|
|
|
|
/* transform from bone(b) to bone(b+1), store in chan_mat */
|
|
static void make_dmats(bPoseChannel *pchan)
|
|
{
|
|
if (pchan->parent) {
|
|
float iR_parmat[4][4];
|
|
Mat4Invert(iR_parmat, pchan->parent->pose_mat);
|
|
Mat4MulMat4(pchan->chan_mat, pchan->pose_mat, iR_parmat); // delta mat
|
|
}
|
|
else Mat4CpyMat4(pchan->chan_mat, pchan->pose_mat);
|
|
}
|
|
|
|
/* applies IK matrix to pchan, IK is done separated */
|
|
/* formula: pose_mat(b) = pose_mat(b-1) * diffmat(b-1, b) * ik_mat(b) */
|
|
/* to make this work, the diffmats have to be precalculated! Stored in chan_mat */
|
|
static void where_is_ik_bone(bPoseChannel *pchan, float ik_mat[][3]) // nr = to detect if this is first bone
|
|
{
|
|
float vec[3], ikmat[4][4];
|
|
|
|
Mat4CpyMat3(ikmat, ik_mat);
|
|
|
|
if (pchan->parent)
|
|
Mat4MulSerie(pchan->pose_mat, pchan->parent->pose_mat, pchan->chan_mat, ikmat, NULL, NULL, NULL, NULL, NULL);
|
|
else
|
|
Mat4MulMat4(pchan->pose_mat, ikmat, pchan->chan_mat);
|
|
|
|
/* calculate head */
|
|
VECCOPY(pchan->pose_head, pchan->pose_mat[3]);
|
|
/* calculate tail */
|
|
VECCOPY(vec, pchan->pose_mat[1]);
|
|
VecMulf(vec, pchan->bone->length);
|
|
VecAddf(pchan->pose_tail, pchan->pose_head, vec);
|
|
|
|
pchan->flag |= POSE_DONE;
|
|
}
|
|
|
|
/* The main armature solver, does all constraints excluding IK */
|
|
/* pchan is validated, as having bone and parent pointer */
|
|
static void where_is_pose_bone(Object *ob, bPoseChannel *pchan)
|
|
{
|
|
Bone *bone, *parbone;
|
|
bPoseChannel *parchan;
|
|
float vec[3], ctime= 1.0; // ctime todo
|
|
|
|
/* set up variables for quicker access below */
|
|
bone= pchan->bone;
|
|
parbone= bone->parent;
|
|
parchan= pchan->parent;
|
|
|
|
/* this gives a chan_mat with actions (ipos) results */
|
|
chan_calc_mat(pchan);
|
|
|
|
/* construct the posemat based on PoseChannels, that we do before applying constraints */
|
|
/* pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b) */
|
|
|
|
if(parchan) {
|
|
float offs_bone[4][4]; // yoffs(b-1) + root(b) + bonemat(b)
|
|
|
|
/* bone transform itself */
|
|
Mat4CpyMat3(offs_bone, bone->bone_mat);
|
|
|
|
/* The bone's root offset (is in the parent's coordinate system) */
|
|
VECCOPY(offs_bone[3], bone->head);
|
|
|
|
/* Get the length translation of parent (length along y axis) */
|
|
offs_bone[3][1]+= parbone->length;
|
|
|
|
/* Compose the matrix for this bone */
|
|
Mat4MulSerie(pchan->pose_mat, parchan->pose_mat, offs_bone, pchan->chan_mat, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
else
|
|
Mat4MulMat4(pchan->pose_mat, pchan->chan_mat, bone->arm_mat);
|
|
|
|
|
|
/* Do constraints */
|
|
if(pchan->constraints.first) {
|
|
static Object conOb;
|
|
static int initialized= 0;
|
|
float vec[3];
|
|
|
|
VECCOPY(vec, pchan->pose_mat[3]);
|
|
|
|
/* Build a workob to pass the bone to the constraint solver */
|
|
if(initialized==0) {
|
|
memset(&conOb, 0, sizeof(Object));
|
|
initialized= 1;
|
|
}
|
|
conOb.size[0]= conOb.size[1]= conOb.size[2]= 1.0;
|
|
conOb.data = ob->data;
|
|
conOb.type = ob->type;
|
|
conOb.parent = ob; // ik solver retrieves the armature that way !?!?!?!
|
|
conOb.pose= ob->pose; // needed for retrieving pchan
|
|
conOb.trackflag = ob->trackflag;
|
|
conOb.upflag = ob->upflag;
|
|
|
|
/* Collect the constraints from the pose (listbase copy) */
|
|
conOb.constraints = pchan->constraints;
|
|
|
|
/* conOb.obmat takes bone to worldspace */
|
|
Mat4MulMat4 (conOb.obmat, pchan->pose_mat, ob->obmat);
|
|
|
|
/* Solve */
|
|
solve_constraints (&conOb, TARGET_BONE, (void*)pchan, ctime); // ctime doesnt alter objects
|
|
|
|
/* Take out of worldspace */
|
|
Mat4MulMat4 (pchan->pose_mat, conOb.obmat, ob->imat);
|
|
|
|
/* prevent constraints breaking a chain */
|
|
if(pchan->bone->flag & BONE_IK_TOPARENT)
|
|
VECCOPY(pchan->pose_mat[3], vec);
|
|
|
|
}
|
|
|
|
/* calculate head */
|
|
VECCOPY(pchan->pose_head, pchan->pose_mat[3]);
|
|
/* calculate tail */
|
|
VECCOPY(vec, pchan->pose_mat[1]);
|
|
VecMulf(vec, bone->length);
|
|
VecAddf(pchan->pose_tail, pchan->pose_head, vec);
|
|
|
|
}
|
|
|
|
/* This only reads anim data from channels, and writes to channels */
|
|
/* This is the only function adding poses */
|
|
void where_is_pose (Object *ob)
|
|
{
|
|
bArmature *arm;
|
|
Bone *bone;
|
|
bPoseChannel *pchan, *next;
|
|
float imat[4][4];
|
|
// float ctime= (float)G.scene->r.cfra; /* time only applies constraint location on curve path (now) */
|
|
|
|
arm = get_armature(ob);
|
|
|
|
if(arm==NULL) return;
|
|
if(ob->pose==NULL || (ob->pose->flag & POSE_RECALC))
|
|
armature_rebuild_pose(ob, arm);
|
|
|
|
// printf("re-evaluate pose %s\n", ob->id.name);
|
|
|
|
/* In restposition we read the data from the bones */
|
|
if(arm->flag & ARM_RESTPOS) {
|
|
|
|
for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
|
|
bone= pchan->bone;
|
|
if(bone) {
|
|
Mat4CpyMat4(pchan->pose_mat, bone->arm_mat);
|
|
VECCOPY(pchan->pose_head, bone->arm_head);
|
|
VECCOPY(pchan->pose_tail, bone->arm_tail);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
Mat4Invert(ob->imat, ob->obmat); // imat is needed
|
|
|
|
/* 1. construct the PoseChains, clear flags */
|
|
for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
|
|
pchan->flag &= ~POSE_DONE;
|
|
if(pchan->constflag & PCHAN_HAS_IK) // flag is set on editing constraints
|
|
initialize_posechain(ob, pchan); // will attach it to root!
|
|
}
|
|
|
|
/* 2. the main loop, channels are already hierarchical sorted from root to children */
|
|
for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
|
|
if(!(pchan->flag & POSE_DONE)) {
|
|
/* 3. if we find an IK root, we handle it separated */
|
|
if(pchan->chain.first) {
|
|
while(pchan->chain.first) {
|
|
PoseChain *chain= pchan->chain.first;
|
|
int a;
|
|
|
|
/* 4. walk over the chain for regular solving */
|
|
for(a=0; a<chain->totchannel; a++) {
|
|
if(!(chain->pchanchain[a]->flag & POSE_DONE)) // successive chains can set the flag
|
|
where_is_pose_bone(ob, chain->pchanchain[a]);
|
|
}
|
|
/* 5. execute the IK solver */
|
|
execute_posechain(ob, chain); // calculates 3x3 difference matrices
|
|
/* 6. apply the differences to the channels, we calculate the original differences first */
|
|
for(a=0; a<chain->totchannel; a++)
|
|
make_dmats(chain->pchanchain[a]);
|
|
for(a=0; a<chain->totchannel; a++)
|
|
where_is_ik_bone(chain->pchanchain[a], (void *)chain->solver->segments[a].basis_change);
|
|
// (sets POSE_DONE)
|
|
|
|
/* 6. and free */
|
|
BLI_remlink(&pchan->chain, chain);
|
|
free_posechain(chain);
|
|
}
|
|
}
|
|
else where_is_pose_bone(ob, pchan);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* calculating deform matrices */
|
|
for(pchan= ob->pose->chanbase.first; pchan; pchan= next) {
|
|
next= pchan->next;
|
|
|
|
if(pchan->bone) {
|
|
Mat4Invert(imat, pchan->bone->arm_mat);
|
|
Mat4MulMat4(pchan->chan_mat, imat, pchan->pose_mat);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* *************** helper for selection code ****************** */
|
|
|
|
|
|
Bone *get_indexed_bone (Object *ob, int index)
|
|
/*
|
|
Now using pose channel
|
|
*/
|
|
{
|
|
bPoseChannel *pchan;
|
|
int a= 0;
|
|
|
|
if(ob->pose==NULL) return NULL;
|
|
|
|
for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next, a++) {
|
|
if(a==index) return pchan->bone;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* ****************** Game Blender functions, called by engine ************** */
|
|
|
|
void GB_build_mats (float parmat[][4], float obmat[][4], float premat[][4], float postmat[][4])
|
|
{
|
|
float obinv[4][4];
|
|
|
|
Mat4Invert(obinv, obmat);
|
|
Mat4CpyMat4(premat, obmat);
|
|
Mat4MulMat4(postmat, parmat, obinv);
|
|
|
|
Mat4Invert (premat, postmat);
|
|
}
|
|
|
|
void GB_init_armature_deform(ListBase *defbase, float premat[][4], float postmat[][4])
|
|
{
|
|
g_defbase = defbase;
|
|
Mat4CpyMat4 (g_premat, premat);
|
|
Mat4CpyMat4 (g_postmat, postmat);
|
|
|
|
}
|
|
|
|
void GB_validate_defgroups (Mesh *mesh, ListBase *defbase)
|
|
{
|
|
/* Should only be called when the mesh or armature changes */
|
|
int j, i;
|
|
MDeformVert *dvert;
|
|
|
|
for (j=0; j<mesh->totvert; j++){
|
|
dvert = mesh->dvert+j;
|
|
for (i=0; i<dvert->totweight; i++)
|
|
dvert->dw[i].data = ((bDeformGroup*)BLI_findlink (defbase, dvert->dw[i].def_nr))->data;
|
|
}
|
|
}
|
|
|
|
void GB_calc_armature_deform (float *co, MDeformVert *dvert)
|
|
{
|
|
float vec[3]={0, 0, 0};
|
|
float contrib = 0;
|
|
int i;
|
|
// bPoseChannel *pchan;
|
|
|
|
Mat4MulVecfl(g_premat, co);
|
|
|
|
for (i=0; i<dvert->totweight; i++){
|
|
// pchan = (bPoseChannel *)dvert->dw[i].data;
|
|
// if (pchan) calc_bone_deform (pchan, dvert->dw[i].weight, vec, co, &contrib);
|
|
}
|
|
|
|
if (contrib){
|
|
vec[0]/=contrib;
|
|
vec[1]/=contrib;
|
|
vec[2]/=contrib;
|
|
}
|
|
|
|
VecAddf (co, vec, co);
|
|
Mat4MulVecfl(g_postmat, co);
|
|
}
|
|
|
|
/* ****************** END Game Blender functions, called by engine ************** */
|
|
|