actually copy Object data and then store it back later. Of course this means changes to object during the call are lost (and very hard to track down). Eekadoodle! Oh yeah, actual commit was to move call to fetch derived mesh above pushdata, because this call can alloc cache's in the Object (which won't get freed later if it is after pushdata)
1699 lines
44 KiB
C
1699 lines
44 KiB
C
/* effect.c
|
|
*
|
|
*
|
|
* $Id$
|
|
*
|
|
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version. The Blender
|
|
* Foundation also sells licenses for use in proprietary software under
|
|
* the Blender License. See http://www.blender.org/BL/ for information
|
|
* about this.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
* The Original Code is: all of this file.
|
|
*
|
|
* Contributor(s): none yet.
|
|
*
|
|
* ***** END GPL/BL DUAL LICENSE BLOCK *****
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
#include "DNA_listBase.h"
|
|
#include "DNA_effect_types.h"
|
|
#include "DNA_object_types.h"
|
|
#include "DNA_object_force.h"
|
|
#include "DNA_mesh_types.h"
|
|
#include "DNA_meshdata_types.h"
|
|
#include "DNA_material_types.h"
|
|
#include "DNA_curve_types.h"
|
|
#include "DNA_key_types.h"
|
|
#include "DNA_texture_types.h"
|
|
#include "DNA_scene_types.h"
|
|
#include "DNA_lattice_types.h"
|
|
#include "DNA_ipo_types.h"
|
|
|
|
#include "BLI_blenlib.h"
|
|
#include "BLI_arithb.h"
|
|
#include "BLI_rand.h"
|
|
|
|
#include "BKE_action.h"
|
|
#include "BKE_bad_level_calls.h"
|
|
#include "BKE_blender.h"
|
|
#include "BKE_constraint.h"
|
|
#include "BKE_deform.h"
|
|
#include "BKE_displist.h"
|
|
#include "BKE_DerivedMesh.h"
|
|
#include "BKE_effect.h"
|
|
#include "BKE_global.h"
|
|
#include "BKE_ipo.h"
|
|
#include "BKE_key.h"
|
|
#include "BKE_lattice.h"
|
|
#include "BKE_mesh.h"
|
|
#include "BKE_material.h"
|
|
#include "BKE_main.h"
|
|
#include "BKE_object.h"
|
|
#include "BKE_screen.h"
|
|
#include "BKE_utildefines.h"
|
|
|
|
#include "render.h" // externtex, bad level call (ton)
|
|
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
Effect *add_effect(int type)
|
|
{
|
|
Effect *eff=0;
|
|
PartEff *paf;
|
|
WaveEff *wav;
|
|
int a;
|
|
|
|
switch(type) {
|
|
case EFF_PARTICLE:
|
|
paf= MEM_callocN(sizeof(PartEff), "neweff");
|
|
eff= (Effect *)paf;
|
|
|
|
paf->sta= 1.0;
|
|
paf->end= 100.0;
|
|
paf->lifetime= 50.0;
|
|
for(a=0; a<PAF_MAXMULT; a++) {
|
|
paf->life[a]= 50.0;
|
|
paf->child[a]= 4;
|
|
paf->mat[a]= 1;
|
|
}
|
|
|
|
paf->totpart= 1000;
|
|
paf->totkey= 8;
|
|
paf->staticstep= 5;
|
|
paf->defvec[2]= 1.0f;
|
|
paf->nabla= 0.05f;
|
|
|
|
break;
|
|
|
|
case EFF_WAVE:
|
|
wav= MEM_callocN(sizeof(WaveEff), "neweff");
|
|
eff= (Effect *)wav;
|
|
|
|
wav->flag |= (WAV_X+WAV_Y+WAV_CYCL);
|
|
|
|
wav->height= 0.5f;
|
|
wav->width= 1.5f;
|
|
wav->speed= 0.5f;
|
|
wav->narrow= 1.5f;
|
|
wav->lifetime= 0.0f;
|
|
wav->damp= 10.0f;
|
|
|
|
break;
|
|
}
|
|
|
|
eff->type= eff->buttype= type;
|
|
eff->flag |= SELECT;
|
|
|
|
return eff;
|
|
}
|
|
|
|
void free_effect(Effect *eff)
|
|
{
|
|
PartEff *paf;
|
|
|
|
if(eff->type==EFF_PARTICLE) {
|
|
paf= (PartEff *)eff;
|
|
if(paf->keys) MEM_freeN(paf->keys);
|
|
}
|
|
MEM_freeN(eff);
|
|
}
|
|
|
|
|
|
void free_effects(ListBase *lb)
|
|
{
|
|
Effect *eff;
|
|
|
|
eff= lb->first;
|
|
while(eff) {
|
|
BLI_remlink(lb, eff);
|
|
free_effect(eff);
|
|
eff= lb->first;
|
|
}
|
|
}
|
|
|
|
Effect *copy_effect(Effect *eff)
|
|
{
|
|
Effect *effn;
|
|
|
|
effn= MEM_dupallocN(eff);
|
|
if(effn->type==EFF_PARTICLE) ((PartEff *)effn)->keys= 0;
|
|
|
|
return effn;
|
|
}
|
|
|
|
void copy_act_effect(Object *ob)
|
|
{
|
|
/* return a copy of the active effect */
|
|
Effect *effn, *eff;
|
|
|
|
eff= ob->effect.first;
|
|
while(eff) {
|
|
if(eff->flag & SELECT) {
|
|
|
|
effn= copy_effect(eff);
|
|
BLI_addtail(&ob->effect, effn);
|
|
|
|
eff->flag &= ~SELECT;
|
|
return;
|
|
|
|
}
|
|
eff= eff->next;
|
|
}
|
|
|
|
/* when it comes here: add new effect */
|
|
eff= add_effect(EFF_PARTICLE);
|
|
BLI_addtail(&ob->effect, eff);
|
|
|
|
}
|
|
|
|
void copy_effects(ListBase *lbn, ListBase *lb)
|
|
{
|
|
Effect *eff, *effn;
|
|
|
|
lbn->first= lbn->last= 0;
|
|
|
|
eff= lb->first;
|
|
while(eff) {
|
|
effn= copy_effect(eff);
|
|
BLI_addtail(lbn, effn);
|
|
|
|
eff= eff->next;
|
|
}
|
|
|
|
}
|
|
|
|
void deselectall_eff(Object *ob)
|
|
{
|
|
Effect *eff= ob->effect.first;
|
|
|
|
while(eff) {
|
|
eff->flag &= ~SELECT;
|
|
eff= eff->next;
|
|
}
|
|
}
|
|
|
|
/* ***************** PARTICLES ***************** */
|
|
|
|
Particle *new_particle(PartEff *paf)
|
|
{
|
|
static Particle *pa;
|
|
static int cur;
|
|
|
|
/* we agree: when paf->keys==0: alloc */
|
|
if(paf->keys==0) {
|
|
pa= paf->keys= MEM_callocN( paf->totkey*paf->totpart*sizeof(Particle), "particlekeys" );
|
|
cur= 0;
|
|
}
|
|
else {
|
|
if(cur && cur<paf->totpart) pa+=paf->totkey;
|
|
cur++;
|
|
}
|
|
return pa;
|
|
}
|
|
|
|
PartEff *give_parteff(Object *ob)
|
|
{
|
|
PartEff *paf;
|
|
|
|
paf= ob->effect.first;
|
|
while(paf) {
|
|
if(paf->type==EFF_PARTICLE) return paf;
|
|
paf= paf->next;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void where_is_particle(PartEff *paf, Particle *pa, float ctime, float *vec)
|
|
{
|
|
Particle *p[4];
|
|
float dt, t[4];
|
|
int a;
|
|
|
|
if(paf->totkey==1) {
|
|
VECCOPY(vec, pa->co);
|
|
return;
|
|
}
|
|
|
|
/* first find the first particlekey */
|
|
a= (int)((paf->totkey-1)*(ctime-pa->time)/pa->lifetime);
|
|
if(a>=paf->totkey) a= paf->totkey-1;
|
|
else if(a<0) a= 0;
|
|
|
|
pa+= a;
|
|
|
|
if(a>0) p[0]= pa-1; else p[0]= pa;
|
|
p[1]= pa;
|
|
|
|
if(a+1<paf->totkey) p[2]= pa+1; else p[2]= pa;
|
|
if(a+2<paf->totkey) p[3]= pa+2; else p[3]= p[2];
|
|
|
|
if(p[1]==p[2]) dt= 0.0;
|
|
else dt= (ctime-p[1]->time)/(p[2]->time - p[1]->time);
|
|
|
|
if(paf->flag & PAF_BSPLINE) set_four_ipo(dt, t, KEY_BSPLINE);
|
|
else set_four_ipo(dt, t, KEY_CARDINAL);
|
|
|
|
vec[0]= t[0]*p[0]->co[0] + t[1]*p[1]->co[0] + t[2]*p[2]->co[0] + t[3]*p[3]->co[0];
|
|
vec[1]= t[0]*p[0]->co[1] + t[1]*p[1]->co[1] + t[2]*p[2]->co[1] + t[3]*p[3]->co[1];
|
|
vec[2]= t[0]*p[0]->co[2] + t[1]*p[1]->co[2] + t[2]*p[2]->co[2] + t[3]*p[3]->co[2];
|
|
|
|
}
|
|
|
|
void particle_tex(MTex *mtex, PartEff *paf, float *co, float *no)
|
|
{
|
|
float tin, tr, tg, tb, ta;
|
|
float old;
|
|
|
|
externtex(mtex, co, &tin, &tr, &tg, &tb, &ta);
|
|
|
|
if(paf->texmap==PAF_TEXINT) {
|
|
tin*= paf->texfac;
|
|
no[0]+= tin*paf->defvec[0];
|
|
no[1]+= tin*paf->defvec[1];
|
|
no[2]+= tin*paf->defvec[2];
|
|
}
|
|
else if(paf->texmap==PAF_TEXRGB) {
|
|
no[0]+= (tr-0.5f)*paf->texfac;
|
|
no[1]+= (tg-0.5f)*paf->texfac;
|
|
no[2]+= (tb-0.5f)*paf->texfac;
|
|
}
|
|
else { /* PAF_TEXGRAD */
|
|
|
|
old= tin;
|
|
co[0]+= paf->nabla;
|
|
externtex(mtex, co, &tin, &tr, &tg, &tb, &ta);
|
|
no[0]+= (old-tin)*paf->texfac;
|
|
|
|
co[0]-= paf->nabla;
|
|
co[1]+= paf->nabla;
|
|
externtex(mtex, co, &tin, &tr, &tg, &tb, &ta);
|
|
no[1]+= (old-tin)*paf->texfac;
|
|
|
|
co[1]-= paf->nabla;
|
|
co[2]+= paf->nabla;
|
|
externtex(mtex, co, &tin, &tr, &tg, &tb, &ta);
|
|
no[2]+= (old-tin)*paf->texfac;
|
|
|
|
}
|
|
}
|
|
|
|
static int linetriangle(float p1[3], float p2[3], float v0[3], float v1[3], float v2[3], float *labda)
|
|
{
|
|
float p[3], s[3], d[3], e1[3], e2[3], q[3];
|
|
float a, f, u, v;
|
|
|
|
VECSUB(e1, v1, v0);
|
|
VECSUB(e2, v2, v0);
|
|
VECSUB(d, p2, p1);
|
|
|
|
Crossf(p, d, e2);
|
|
a = INPR(e1, p);
|
|
if ((a > -0.000001) && (a < 0.000001)) return 0;
|
|
f = 1.0f/a;
|
|
|
|
VECSUB(s, p1, v0);
|
|
|
|
Crossf(q, s, e1);
|
|
*labda = f * INPR(e2, q);
|
|
if ((*labda < 0.0)||(*labda > 1.0)) return 0;
|
|
|
|
u = f * INPR(s, p);
|
|
if ((u < 0.0)||(u > 1.0)) return 0;
|
|
|
|
v = f * INPR(d, q);
|
|
if ((v < 0.0)||((u + v) > 1.0)) return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* -------- pdDoEffector() --------
|
|
generic force/speed system, now used for particles and softbodies
|
|
opco = global coord, as input
|
|
force = force accumulator
|
|
speed = speed accumulator
|
|
cur_time = in frames
|
|
par_layer = layer the caller is in
|
|
|
|
*/
|
|
void pdDoEffector(float *opco, float *force, float *speed, float cur_time, unsigned int par_layer,unsigned int flags)
|
|
{
|
|
/*
|
|
Modifies the force on a particle according to its
|
|
relation with the effector object
|
|
Different kind of effectors include:
|
|
Forcefields: Gravity-like attractor
|
|
(force power is related to the inverse of distance to the power of a falloff value)
|
|
Vortex fields: swirling effectors
|
|
(particles rotate around Z-axis of the object. otherwise, same relation as)
|
|
(Forcefields, but this is not done through a force/acceleration)
|
|
|
|
*/
|
|
Object *ob;
|
|
Base *base;
|
|
PartDeflect *pd;
|
|
float vect_to_vert[3];
|
|
float force_vec[3];
|
|
float f_force, distance;
|
|
float *obloc;
|
|
float force_val, ffall_val;
|
|
short cur_frame;
|
|
|
|
/* Cycle through objects, get total of (1/(gravity_strength * dist^gravity_power)) */
|
|
/* Check for min distance here? (yes would be cool to add that, ton) */
|
|
|
|
for(base = G.scene->base.first; base; base= base->next) {
|
|
if( (base->lay & par_layer) && base->object->pd) {
|
|
ob= base->object;
|
|
pd= ob->pd;
|
|
|
|
/* checking if to continue or not */
|
|
if(pd->forcefield==0) continue;
|
|
|
|
/* Get IPO force strength and fall off values here */
|
|
if (has_ipo_code(ob->ipo, OB_PD_FSTR))
|
|
force_val = IPO_GetFloatValue(ob->ipo, OB_PD_FSTR, cur_time);
|
|
else
|
|
force_val = pd->f_strength;
|
|
|
|
if (has_ipo_code(ob->ipo, OB_PD_FFALL))
|
|
ffall_val = IPO_GetFloatValue(ob->ipo, OB_PD_FFALL, cur_time);
|
|
else
|
|
ffall_val = pd->f_power;
|
|
|
|
|
|
/* Need to set r.cfra for paths (investigate, ton) (uses ob->ctime now, ton) */
|
|
if(ob->ctime!=cur_time) {
|
|
cur_frame = G.scene->r.cfra;
|
|
G.scene->r.cfra = (short)cur_time;
|
|
where_is_object_time(ob, cur_time);
|
|
G.scene->r.cfra = cur_frame;
|
|
}
|
|
|
|
/* use center of object for distance calculus */
|
|
obloc= ob->obmat[3];
|
|
VECSUB(vect_to_vert, obloc, opco);
|
|
distance = VecLength(vect_to_vert);
|
|
|
|
if((pd->flag & PFIELD_USEMAX) && distance>pd->maxdist)
|
|
; /* don't do anything */
|
|
else if(pd->forcefield == PFIELD_WIND) {
|
|
VECCOPY(force_vec, ob->obmat[2]);
|
|
|
|
/* wind works harder perpendicular to normal, would be nice for softbody later (ton) */
|
|
|
|
/* Limit minimum distance to vertex so that */
|
|
/* the force is not too big */
|
|
if (distance < 0.001) distance = 0.001f;
|
|
f_force = (force_val)*(1/(1000 * (float)pow((double)distance, (double)ffall_val)));
|
|
if(flags &&PE_WIND_AS_SPEED){
|
|
speed[0] -= (force_vec[0] * f_force );
|
|
speed[1] -= (force_vec[1] * f_force );
|
|
speed[2] -= (force_vec[2] * f_force );
|
|
}
|
|
else{
|
|
force[0] += force_vec[0]*f_force;
|
|
force[1] += force_vec[1]*f_force;
|
|
force[2] += force_vec[2]*f_force;
|
|
}
|
|
}
|
|
else if(pd->forcefield == PFIELD_FORCE) {
|
|
|
|
/* only use center of object */
|
|
obloc= ob->obmat[3];
|
|
|
|
/* Now calculate the gravitational force */
|
|
VECSUB(vect_to_vert, obloc, opco);
|
|
distance = VecLength(vect_to_vert);
|
|
|
|
/* Limit minimum distance to vertex so that */
|
|
/* the force is not too big */
|
|
if (distance < 0.001) distance = 0.001f;
|
|
f_force = (force_val)*(1/(1000 * (float)pow((double)distance, (double)ffall_val)));
|
|
force[0] += (vect_to_vert[0] * f_force );
|
|
force[1] += (vect_to_vert[1] * f_force );
|
|
force[2] += (vect_to_vert[2] * f_force );
|
|
|
|
}
|
|
else if(pd->forcefield == PFIELD_VORTEX) {
|
|
|
|
/* only use center of object */
|
|
obloc= ob->obmat[3];
|
|
|
|
/* Now calculate the vortex force */
|
|
VECSUB(vect_to_vert, obloc, opco);
|
|
distance = VecLength(vect_to_vert);
|
|
|
|
Crossf(force_vec, ob->obmat[2], vect_to_vert);
|
|
Normalise(force_vec);
|
|
|
|
/* Limit minimum distance to vertex so that */
|
|
/* the force is not too big */
|
|
if (distance < 0.001) distance = 0.001f;
|
|
f_force = (force_val)*(1/(100 * (float)pow((double)distance, (double)ffall_val)));
|
|
speed[0] -= (force_vec[0] * f_force );
|
|
speed[1] -= (force_vec[1] * f_force );
|
|
speed[2] -= (force_vec[2] * f_force );
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void cache_object_vertices(Object *ob)
|
|
{
|
|
Mesh *me;
|
|
MVert *mvert;
|
|
float *fp;
|
|
int a;
|
|
|
|
me= ob->data;
|
|
if(me->totvert==0) return;
|
|
|
|
fp= ob->sumohandle= MEM_mallocN(3*sizeof(float)*me->totvert, "cache particles");
|
|
mvert= me->mvert;
|
|
a= me->totvert;
|
|
while(a--) {
|
|
VECCOPY(fp, mvert->co);
|
|
Mat4MulVecfl(ob->obmat, fp);
|
|
mvert++;
|
|
fp+= 3;
|
|
}
|
|
}
|
|
|
|
int pdDoDeflection(float opco[3], float npco[3], float opno[3],
|
|
float npno[3], float life, float force[3], int def_depth,
|
|
float cur_time, unsigned int par_layer, int *last_object,
|
|
int *last_face, int *same_face)
|
|
{
|
|
/* Particle deflection code */
|
|
/* The code is in two sections: the first part checks whether a particle has */
|
|
/* intersected a face of a deflector mesh, given its old and new co-ords, opco and npco */
|
|
/* and which face it hit first */
|
|
/* The second part calculates the new co-ordinates given that collision and updates */
|
|
/* the new co-ordinates accordingly */
|
|
Base *base;
|
|
Object *ob, *deflection_object = NULL;
|
|
Mesh *def_mesh;
|
|
MFace *mface, *deflection_face = NULL;
|
|
float *v1, *v2, *v3, *v4, *vcache=NULL;
|
|
float nv1[3], nv2[3], nv3[3], nv4[3], edge1[3], edge2[3];
|
|
float dv1[3], dv2[3], dv3[3];
|
|
float vect_to_int[3], refl_vel[3];
|
|
float d_intersect_co[3], d_intersect_vect[3], d_nvect[3], d_i_co_above[3];
|
|
float forcec[3];
|
|
float k_point3, dist_to_plane;
|
|
float first_dist, ref_plane_mag;
|
|
float dk_plane=0, dk_point1=0;
|
|
float icalctop, icalcbot, n_mag;
|
|
float mag_iv, x_m,y_m,z_m;
|
|
float damping, perm_thresh;
|
|
float perm_val, rdamp_val;
|
|
int a, deflected=0, deflected_now=0;
|
|
float t,t2, min_t;
|
|
float mat[3][3], obloc[3];
|
|
short cur_frame;
|
|
float time_before, time_after;
|
|
float force_mag_norm;
|
|
int d_object=0, d_face=0, ds_object=0, ds_face=0;
|
|
|
|
first_dist = 200000;
|
|
min_t = 200000;
|
|
|
|
/* The first part of the code, finding the first intersected face*/
|
|
base= G.scene->base.first;
|
|
while (base) {
|
|
/*Only proceed for mesh object in same layer */
|
|
if(base->object->type==OB_MESH && (base->lay & par_layer)) {
|
|
ob= base->object;
|
|
/* only with deflecting set */
|
|
if(ob->pd && ob->pd->deflect) {
|
|
def_mesh= ob->data;
|
|
|
|
d_object = d_object + 1;
|
|
|
|
d_face = d_face + 1;
|
|
mface= def_mesh->mface;
|
|
a = def_mesh->totface;
|
|
|
|
|
|
if(ob->parent==NULL && ob->ipo==NULL) { // static
|
|
if(ob->sumohandle==NULL) cache_object_vertices(ob);
|
|
vcache= ob->sumohandle;
|
|
}
|
|
else {
|
|
/*Find out where the object is at this time*/
|
|
cur_frame = G.scene->r.cfra;
|
|
G.scene->r.cfra = (short)cur_time;
|
|
where_is_object_time(ob, cur_time);
|
|
G.scene->r.cfra = cur_frame;
|
|
|
|
/*Pass the values from ob->obmat to mat*/
|
|
/*and the location values to obloc */
|
|
Mat3CpyMat4(mat,ob->obmat);
|
|
obloc[0] = ob->obmat[3][0];
|
|
obloc[1] = ob->obmat[3][1];
|
|
obloc[2] = ob->obmat[3][2];
|
|
vcache= NULL;
|
|
|
|
}
|
|
|
|
while (a--) {
|
|
|
|
if(vcache) {
|
|
v1= vcache+ 3*(mface->v1);
|
|
VECCOPY(nv1, v1);
|
|
v1= vcache+ 3*(mface->v2);
|
|
VECCOPY(nv2, v1);
|
|
v1= vcache+ 3*(mface->v3);
|
|
VECCOPY(nv3, v1);
|
|
v1= vcache+ 3*(mface->v4);
|
|
VECCOPY(nv4, v1);
|
|
}
|
|
else {
|
|
/* Calculate the global co-ordinates of the vertices*/
|
|
v1= (def_mesh->mvert+(mface->v1))->co;
|
|
v2= (def_mesh->mvert+(mface->v2))->co;
|
|
v3= (def_mesh->mvert+(mface->v3))->co;
|
|
v4= (def_mesh->mvert+(mface->v4))->co;
|
|
|
|
VECCOPY(nv1, v1);
|
|
VECCOPY(nv2, v2);
|
|
VECCOPY(nv3, v3);
|
|
VECCOPY(nv4, v4);
|
|
|
|
/*Apply the objects deformation matrix*/
|
|
Mat3MulVecfl(mat, nv1);
|
|
Mat3MulVecfl(mat, nv2);
|
|
Mat3MulVecfl(mat, nv3);
|
|
Mat3MulVecfl(mat, nv4);
|
|
|
|
VECADD(nv1, nv1, obloc);
|
|
VECADD(nv2, nv2, obloc);
|
|
VECADD(nv3, nv3, obloc);
|
|
VECADD(nv4, nv4, obloc);
|
|
}
|
|
|
|
deflected_now = 0;
|
|
|
|
|
|
|
|
// t= 0.5; // this is labda of line, can use it optimize quad intersection
|
|
// sorry but no .. see below (BM)
|
|
if( linetriangle(opco, npco, nv1, nv2, nv3, &t) ) {
|
|
if (t < min_t) {
|
|
deflected = 1;
|
|
deflected_now = 1;
|
|
}
|
|
}
|
|
// else if (mface->v4 && (t>=0.0 && t<=1.0)) {
|
|
// no, you can't skip testing the other triangle
|
|
// it might give a smaller t on (close to) the edge .. this is numerics not esoteric maths :)
|
|
// note: the 2 triangles don't need to share a plane ! (BM)
|
|
if (mface->v4) {
|
|
if( linetriangle(opco, npco, nv1, nv3, nv4, &t2) ) {
|
|
if (t2 < min_t) {
|
|
deflected = 1;
|
|
deflected_now = 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((deflected_now > 0) && ((t < min_t) ||(t2 < min_t))) {
|
|
min_t = t;
|
|
ds_object = d_object;
|
|
ds_face = d_face;
|
|
deflection_object = ob;
|
|
deflection_face = mface;
|
|
if (deflected_now==1) {
|
|
min_t = t;
|
|
VECCOPY(dv1, nv1);
|
|
VECCOPY(dv2, nv2);
|
|
VECCOPY(dv3, nv3);
|
|
}
|
|
else {
|
|
min_t = t2;
|
|
VECCOPY(dv1, nv1);
|
|
VECCOPY(dv2, nv3);
|
|
VECCOPY(dv3, nv4);
|
|
}
|
|
}
|
|
mface++;
|
|
}
|
|
}
|
|
}
|
|
base = base->next;
|
|
}
|
|
|
|
|
|
/* Here's the point to do the permeability calculation */
|
|
/* Set deflected to 0 if a random number is below the value */
|
|
/* Get the permeability IPO here*/
|
|
if (deflected) {
|
|
|
|
if (has_ipo_code(deflection_object->ipo, OB_PD_PERM))
|
|
perm_val = IPO_GetFloatValue(deflection_object->ipo, OB_PD_PERM, cur_time);
|
|
else
|
|
perm_val = deflection_object->pd->pdef_perm;
|
|
|
|
perm_thresh = (float)BLI_drand() - perm_val;
|
|
if (perm_thresh < 0 ) {
|
|
deflected = 0;
|
|
}
|
|
}
|
|
|
|
/* Now for the second part of the deflection code - work out the new speed */
|
|
/* and position of the particle if a collision occurred */
|
|
if (deflected) {
|
|
VECSUB(edge1, dv1, dv2);
|
|
VECSUB(edge2, dv3, dv2);
|
|
Crossf(d_nvect, edge2, edge1);
|
|
n_mag = Normalise(d_nvect);
|
|
dk_plane = INPR(d_nvect, nv1);
|
|
dk_point1 = INPR(d_nvect,opco);
|
|
|
|
VECSUB(d_intersect_vect, npco, opco);
|
|
|
|
d_intersect_co[0] = opco[0] + (min_t * (npco[0] - opco[0]));
|
|
d_intersect_co[1] = opco[1] + (min_t * (npco[1] - opco[1]));
|
|
d_intersect_co[2] = opco[2] + (min_t * (npco[2] - opco[2]));
|
|
|
|
d_i_co_above[0] = (d_intersect_co[0] + (0.001f * d_nvect[0]));
|
|
d_i_co_above[1] = (d_intersect_co[1] + (0.001f * d_nvect[1]));
|
|
d_i_co_above[2] = (d_intersect_co[2] + (0.001f * d_nvect[2]));
|
|
mag_iv = Normalise(d_intersect_vect);
|
|
VECCOPY(npco, d_intersect_co);
|
|
|
|
VECSUB(vect_to_int, opco, d_intersect_co);
|
|
first_dist = Normalise(vect_to_int);
|
|
|
|
/* Work out the lengths of time before and after collision*/
|
|
time_before = (life*(first_dist / (mag_iv)));
|
|
time_after = (life*((mag_iv - first_dist) / (mag_iv)));
|
|
|
|
/* We have to recalculate what the speed would have been at the */
|
|
/* point of collision, not the key frame time */
|
|
npno[0]= opno[0] + time_before*force[0];
|
|
npno[1]= opno[1] + time_before*force[1];
|
|
npno[2]= opno[2] + time_before*force[2];
|
|
|
|
|
|
/* Reflect the speed vector in the face */
|
|
x_m = (2 * npno[0] * d_nvect[0]);
|
|
y_m = (2 * npno[1] * d_nvect[1]);
|
|
z_m = (2 * npno[2] * d_nvect[2]);
|
|
refl_vel[0] = npno[0] - (d_nvect[0] * (x_m + y_m + z_m));
|
|
refl_vel[1] = npno[1] - (d_nvect[1] * (x_m + y_m + z_m));
|
|
refl_vel[2] = npno[2] - (d_nvect[2] * (x_m + y_m + z_m));
|
|
|
|
/*A random variation in the damping factor........ */
|
|
/*Get the IPO values for damping here*/
|
|
|
|
if (has_ipo_code(deflection_object->ipo, OB_PD_SDAMP))
|
|
damping = IPO_GetFloatValue(deflection_object->ipo, OB_PD_SDAMP, cur_time);
|
|
else
|
|
damping = deflection_object->pd->pdef_damp;
|
|
|
|
if (has_ipo_code(deflection_object->ipo, OB_PD_RDAMP))
|
|
rdamp_val = IPO_GetFloatValue(deflection_object->ipo, OB_PD_RDAMP, cur_time);
|
|
else
|
|
rdamp_val = deflection_object->pd->pdef_rdamp;
|
|
|
|
damping = damping + ((1 - damping) * ((float)BLI_drand()*rdamp_val));
|
|
damping = damping * damping;
|
|
ref_plane_mag = INPR(refl_vel,d_nvect);
|
|
|
|
if (damping > 0.999) damping = 0.999f;
|
|
|
|
/* Now add in the damping force - only damp in the direction of */
|
|
/* the faces normal vector */
|
|
npno[0] = (refl_vel[0] - (d_nvect[0] * ref_plane_mag * damping));
|
|
npno[1] = (refl_vel[1] - (d_nvect[1] * ref_plane_mag * damping));
|
|
npno[2] = (refl_vel[2] - (d_nvect[2] * ref_plane_mag * damping));
|
|
|
|
/* Now reset opno */
|
|
VECCOPY(opno,npno);
|
|
VECCOPY(forcec, force);
|
|
|
|
/* If the particle has bounced more than four times on the same */
|
|
/* face within this cycle (depth > 4, same face > 4 ) */
|
|
/* Then set the force to be only that component of the force */
|
|
/* in the same direction as the face normal */
|
|
/* i.e. subtract the component of the force in the direction */
|
|
/* of the face normal from the actual force */
|
|
if ((ds_object == *last_object) && (ds_face == *last_face)) {
|
|
/* Increment same_face */
|
|
*same_face = *same_face + 1;
|
|
if ((*same_face > 3) && (def_depth > 3)) {
|
|
force_mag_norm = INPR(forcec, d_nvect);
|
|
forcec[0] = forcec[0] - (d_nvect[0] * force_mag_norm);
|
|
forcec[1] = forcec[1] - (d_nvect[1] * force_mag_norm);
|
|
forcec[2] = forcec[2] - (d_nvect[2] * force_mag_norm);
|
|
}
|
|
}
|
|
else *same_face = 1;
|
|
|
|
*last_object = ds_object;
|
|
*last_face = ds_face;
|
|
|
|
/* We have the particles speed at the point of collision */
|
|
/* Now we want the particles speed at the current key frame */
|
|
|
|
npno[0]= npno[0] + time_after*forcec[0];
|
|
npno[1]= npno[1] + time_after*forcec[1];
|
|
npno[2]= npno[2] + time_after*forcec[2];
|
|
|
|
/* Now we have to recalculate pa->co for the remainder*/
|
|
/* of the time since the intersect*/
|
|
npco[0]= npco[0] + time_after*npno[0];
|
|
npco[1]= npco[1] + time_after*npno[1];
|
|
npco[2]= npco[2] + time_after*npno[2];
|
|
|
|
/* And set the old co-ordinates back to the point just above the intersection */
|
|
VECCOPY(opco, d_i_co_above);
|
|
|
|
/* Finally update the time */
|
|
life = time_after;
|
|
cur_time += time_before;
|
|
|
|
/* The particle may have fallen through the face again by now!!*/
|
|
/* So check if the particle has changed sides of the plane compared*/
|
|
/* the co-ordinates at the last keyframe*/
|
|
/* But only do this as a last resort, if we've got to the end of the */
|
|
/* number of collisions allowed */
|
|
if (def_depth==9) {
|
|
k_point3 = INPR(d_nvect,npco);
|
|
if (((dk_plane > k_point3) && (dk_plane < dk_point1))||((dk_plane < k_point3) && (dk_plane > dk_point1))) {
|
|
|
|
/* Yup, the pesky particle may have fallen through a hole!!! */
|
|
/* So we'll cheat a bit and move the particle along the normal vector */
|
|
/* until it's just the other side of the plane */
|
|
icalctop = (dk_plane - d_nvect[0]*npco[0] - d_nvect[1]*npco[1] - d_nvect[2]*npco[2]);
|
|
icalcbot = (d_nvect[0]*d_nvect[0] + d_nvect[1]*d_nvect[1] + d_nvect[2]*d_nvect[2]);
|
|
dist_to_plane = icalctop / icalcbot;
|
|
|
|
/* Now just increase the distance a little to place */
|
|
/* the point the other side of the plane */
|
|
dist_to_plane *= 1.1f;
|
|
npco[0]= npco[0] + (dist_to_plane * d_nvect[0]);
|
|
npco[1]= npco[1] + (dist_to_plane * d_nvect[1]);
|
|
npco[2]= npco[2] + (dist_to_plane * d_nvect[2]);
|
|
|
|
}
|
|
}
|
|
}
|
|
return deflected;
|
|
}
|
|
|
|
void make_particle_keys(int depth, int nr, PartEff *paf, Particle *part, float *force, int deform, MTex *mtex, unsigned int par_layer)
|
|
{
|
|
Particle *pa, *opa = NULL;
|
|
float damp, deltalife, life;
|
|
float cur_time;
|
|
float opco[3], opno[3], npco[3], npno[3], new_force[3], new_speed[3];
|
|
int b, rt1, rt2, deflected, deflection, finish_defs, def_count;
|
|
int last_ob, last_fc, same_fc;
|
|
|
|
damp= 1.0f-paf->damp;
|
|
pa= part;
|
|
|
|
/* start speed: random */
|
|
if(paf->randfac!=0.0) {
|
|
pa->no[0]+= (float)(paf->randfac*( BLI_drand() -0.5));
|
|
pa->no[1]+= (float)(paf->randfac*( BLI_drand() -0.5));
|
|
pa->no[2]+= (float)(paf->randfac*( BLI_drand() -0.5));
|
|
}
|
|
|
|
/* start speed: texture */
|
|
if(mtex && paf->texfac!=0.0) {
|
|
particle_tex(mtex, paf, pa->co, pa->no);
|
|
}
|
|
|
|
if(paf->totkey>1) deltalife= pa->lifetime/(paf->totkey-1);
|
|
else deltalife= pa->lifetime;
|
|
|
|
opa= pa;
|
|
pa++;
|
|
|
|
b= paf->totkey-1;
|
|
while(b--) {
|
|
/* new time */
|
|
pa->time= opa->time+deltalife;
|
|
|
|
/* set initial variables */
|
|
opco[0] = opa->co[0];
|
|
opco[1] = opa->co[1];
|
|
opco[2] = opa->co[2];
|
|
|
|
new_force[0] = force[0];
|
|
new_force[1] = force[1];
|
|
new_force[2] = force[2];
|
|
new_speed[0] = 0.0;
|
|
new_speed[1] = 0.0;
|
|
new_speed[2] = 0.0;
|
|
|
|
/* Check force field */
|
|
cur_time = pa->time;
|
|
pdDoEffector(opco, new_force, new_speed, cur_time, par_layer,0);
|
|
|
|
/* new location */
|
|
pa->co[0]= opa->co[0] + deltalife * (opa->no[0] + new_speed[0] + 0.5f*new_force[0]);
|
|
pa->co[1]= opa->co[1] + deltalife * (opa->no[1] + new_speed[1] + 0.5f*new_force[1]);
|
|
pa->co[2]= opa->co[2] + deltalife * (opa->no[2] + new_speed[2] + 0.5f*new_force[2]);
|
|
|
|
/* new speed */
|
|
pa->no[0]= opa->no[0] + deltalife*new_force[0];
|
|
pa->no[1]= opa->no[1] + deltalife*new_force[1];
|
|
pa->no[2]= opa->no[2] + deltalife*new_force[2];
|
|
|
|
/* Particle deflection code */
|
|
deflection = 0;
|
|
finish_defs = 1;
|
|
def_count = 0;
|
|
|
|
VECCOPY(opno, opa->no);
|
|
VECCOPY(npco, pa->co);
|
|
VECCOPY(npno, pa->no);
|
|
|
|
life = deltalife;
|
|
cur_time -= deltalife;
|
|
|
|
last_ob = -1;
|
|
last_fc = -1;
|
|
same_fc = 0;
|
|
|
|
/* First call the particle deflection check for the particle moving */
|
|
/* between the old co-ordinates and the new co-ordinates */
|
|
/* If a deflection occurs, call the code again, this time between the */
|
|
/* intersection point and the updated new co-ordinates */
|
|
/* Bail out if we've done the calculation 10 times - this seems ok */
|
|
/* for most scenes I've tested */
|
|
while (finish_defs) {
|
|
deflected = pdDoDeflection(opco, npco, opno, npno, life, new_force,
|
|
def_count, cur_time, par_layer,
|
|
&last_ob, &last_fc, &same_fc);
|
|
if (deflected) {
|
|
def_count = def_count + 1;
|
|
deflection = 1;
|
|
if (def_count==10) finish_defs = 0;
|
|
}
|
|
else {
|
|
finish_defs = 0;
|
|
}
|
|
}
|
|
|
|
/* Only update the particle positions and speed if we had a deflection */
|
|
if (deflection) {
|
|
pa->co[0] = npco[0];
|
|
pa->co[1] = npco[1];
|
|
pa->co[2] = npco[2];
|
|
pa->no[0] = npno[0];
|
|
pa->no[1] = npno[1];
|
|
pa->no[2] = npno[2];
|
|
}
|
|
|
|
|
|
/* speed: texture */
|
|
if(mtex && paf->texfac!=0.0) {
|
|
particle_tex(mtex, paf, pa->co, pa->no);
|
|
}
|
|
if(damp!=1.0) {
|
|
pa->no[0]*= damp;
|
|
pa->no[1]*= damp;
|
|
pa->no[2]*= damp;
|
|
}
|
|
|
|
|
|
|
|
opa= pa;
|
|
pa++;
|
|
/* opa is used later on too! */
|
|
}
|
|
|
|
if(deform) {
|
|
/* deform all keys */
|
|
pa= part;
|
|
b= paf->totkey;
|
|
while(b--) {
|
|
calc_latt_deform(pa->co);
|
|
pa++;
|
|
}
|
|
}
|
|
|
|
/* the big multiplication */
|
|
if(depth<PAF_MAXMULT && paf->mult[depth]!=0.0) {
|
|
|
|
/* new 'child' emerges from an average 'mult' part from
|
|
the particles */
|
|
damp = (float)nr;
|
|
rt1= (int)(damp*paf->mult[depth]);
|
|
rt2= (int)((damp+1.0)*paf->mult[depth]);
|
|
if(rt1!=rt2) {
|
|
|
|
for(b=0; b<paf->child[depth]; b++) {
|
|
pa= new_particle(paf);
|
|
*pa= *opa;
|
|
pa->lifetime= paf->life[depth];
|
|
if(paf->randlife!=0.0) {
|
|
pa->lifetime*= 1.0f+ (float)(paf->randlife*( BLI_drand() - 0.5));
|
|
}
|
|
pa->mat_nr= paf->mat[depth];
|
|
|
|
make_particle_keys(depth+1, b, paf, pa, force, deform, mtex, par_layer);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void init_mv_jit(float *jit, int num,int seed2)
|
|
{
|
|
float *jit2, x, rad1, rad2, rad3;
|
|
int i, num2;
|
|
|
|
if(num==0) return;
|
|
|
|
rad1= (float)(1.0/sqrt((float)num));
|
|
rad2= (float)(1.0/((float)num));
|
|
rad3= (float)sqrt((float)num)/((float)num);
|
|
|
|
BLI_srand(31415926 + num + seed2);
|
|
x= 0;
|
|
num2 = 2 * num;
|
|
for(i=0; i<num2; i+=2) {
|
|
|
|
jit[i]= x+ (float)(rad1*(0.5-BLI_drand()));
|
|
jit[i+1]= ((float)i/2)/num +(float)(rad1*(0.5-BLI_drand()));
|
|
|
|
jit[i]-= (float)floor(jit[i]);
|
|
jit[i+1]-= (float)floor(jit[i+1]);
|
|
|
|
x+= rad3;
|
|
x -= (float)floor(x);
|
|
}
|
|
|
|
jit2= MEM_mallocN(12 + 2*sizeof(float)*num, "initjit");
|
|
|
|
for (i=0 ; i<4 ; i++) {
|
|
RE_jitterate1(jit, jit2, num, rad1);
|
|
RE_jitterate1(jit, jit2, num, rad1);
|
|
RE_jitterate2(jit, jit2, num, rad2);
|
|
}
|
|
MEM_freeN(jit2);
|
|
}
|
|
|
|
|
|
static void give_mesh_mvert(Mesh *me, DispListMesh *dlm, int nr, float *co, short *no, int seed2)
|
|
{
|
|
static float *jit=0;
|
|
static int jitlevel=1;
|
|
MVert *mvert, *mvertbase=NULL;
|
|
MFace *mface, *mfacebase=NULL;
|
|
float u, v, *v1, *v2, *v3, *v4;
|
|
int totface=0, totvert=0, curface, curjit;
|
|
short *n1, *n2, *n3, *n4;
|
|
|
|
/* signal */
|
|
if(me==0) {
|
|
if(jit) MEM_freeN(jit);
|
|
jit= 0;
|
|
return;
|
|
}
|
|
|
|
if(dlm) {
|
|
mvertbase= dlm->mvert;
|
|
mfacebase= dlm->mface;
|
|
totface= dlm->totface;
|
|
totvert= dlm->totvert;
|
|
}
|
|
|
|
if(totvert==0) {
|
|
mvertbase= me->mvert;
|
|
mfacebase= me->mface;
|
|
totface= me->totface;
|
|
totvert= me->totvert;
|
|
}
|
|
|
|
if(totface==0 || nr<totvert) {
|
|
mvert= mvertbase + (nr % totvert);
|
|
VECCOPY(co, mvert->co);
|
|
VECCOPY(no, mvert->no);
|
|
}
|
|
else {
|
|
|
|
nr-= totvert;
|
|
|
|
if(jit==0) {
|
|
jitlevel= nr/totface;
|
|
if(jitlevel==0) jitlevel= 1;
|
|
if(jitlevel>100) jitlevel= 100;
|
|
|
|
jit= MEM_callocN(2+ jitlevel*2*sizeof(float), "jit");
|
|
init_mv_jit(jit, jitlevel,seed2);
|
|
|
|
}
|
|
|
|
curjit= nr/totface;
|
|
curjit= curjit % jitlevel;
|
|
|
|
curface= nr % totface;
|
|
|
|
mface= mfacebase;
|
|
mface+= curface;
|
|
|
|
v1= (mvertbase+(mface->v1))->co;
|
|
v2= (mvertbase+(mface->v2))->co;
|
|
n1= (mvertbase+(mface->v1))->no;
|
|
n2= (mvertbase+(mface->v2))->no;
|
|
if(mface->v3==0) {
|
|
v3= (mvertbase+(mface->v2))->co;
|
|
v4= (mvertbase+(mface->v1))->co;
|
|
n3= (mvertbase+(mface->v2))->no;
|
|
n4= (mvertbase+(mface->v1))->no;
|
|
}
|
|
else if(mface->v4==0) {
|
|
v3= (mvertbase+(mface->v3))->co;
|
|
v4= (mvertbase+(mface->v1))->co;
|
|
n3= (mvertbase+(mface->v3))->no;
|
|
n4= (mvertbase+(mface->v1))->no;
|
|
}
|
|
else {
|
|
v3= (mvertbase+(mface->v3))->co;
|
|
v4= (mvertbase+(mface->v4))->co;
|
|
n3= (mvertbase+(mface->v3))->no;
|
|
n4= (mvertbase+(mface->v4))->no;
|
|
}
|
|
|
|
u= jit[2*curjit];
|
|
v= jit[2*curjit+1];
|
|
|
|
co[0]= (float)((1.0-u)*(1.0-v)*v1[0] + (1.0-u)*(v)*v2[0] + (u)*(v)*v3[0] + (u)*(1.0-v)*v4[0]);
|
|
co[1]= (float)((1.0-u)*(1.0-v)*v1[1] + (1.0-u)*(v)*v2[1] + (u)*(v)*v3[1] + (u)*(1.0-v)*v4[1]);
|
|
co[2]= (float)((1.0-u)*(1.0-v)*v1[2] + (1.0-u)*(v)*v2[2] + (u)*(v)*v3[2] + (u)*(1.0-v)*v4[2]);
|
|
|
|
no[0]= (short)((1.0-u)*(1.0-v)*n1[0] + (1.0-u)*(v)*n2[0] + (u)*(v)*n3[0] + (u)*(1.0-v)*n4[0]);
|
|
no[1]= (short)((1.0-u)*(1.0-v)*n1[1] + (1.0-u)*(v)*n2[1] + (u)*(v)*n3[1] + (u)*(1.0-v)*n4[1]);
|
|
no[2]= (short)((1.0-u)*(1.0-v)*n1[2] + (1.0-u)*(v)*n2[2] + (u)*(v)*n3[2] + (u)*(1.0-v)*n4[2]);
|
|
|
|
}
|
|
}
|
|
|
|
|
|
void build_particle_system(Object *ob)
|
|
{
|
|
Base *base;
|
|
Object *par;
|
|
PartEff *paf;
|
|
Particle *pa;
|
|
Mesh *me;
|
|
MTex *mtexmove=0;
|
|
Material *ma;
|
|
DispListMesh *dlm;
|
|
int dmNeedsFree;
|
|
DerivedMesh *dm;
|
|
float framelenont, ftime, dtime, force[3], imat[3][3], vec[3];
|
|
float fac, prevobmat[4][4], sfraont, co[3];
|
|
int deform=0, a, cur, cfraont, cfralast, totpart, totvert;
|
|
short no[3];
|
|
|
|
if(ob->type!=OB_MESH) return;
|
|
me= ob->data;
|
|
if(me->totvert==0) return;
|
|
|
|
ma= give_current_material(ob, 1);
|
|
if(ma) {
|
|
mtexmove= ma->mtex[7];
|
|
}
|
|
|
|
paf= give_parteff(ob);
|
|
if(paf==NULL) return;
|
|
|
|
waitcursor(1);
|
|
|
|
disable_speed_curve(1);
|
|
|
|
/* generate all particles */
|
|
if(paf->keys) MEM_freeN(paf->keys);
|
|
paf->keys= NULL;
|
|
new_particle(paf);
|
|
|
|
/* reset deflector cache, sumohandle is free, but its still sorta abuse... (ton) */
|
|
for(base= G.scene->base.first; base; base= base->next) {
|
|
base->object->sumohandle= NULL;
|
|
}
|
|
|
|
cfraont= G.scene->r.cfra;
|
|
cfralast= -1000;
|
|
framelenont= G.scene->r.framelen;
|
|
G.scene->r.framelen= 1.0;
|
|
sfraont= ob->sf;
|
|
ob->sf= 0.0;
|
|
|
|
/* mult generations? */
|
|
totpart= paf->totpart;
|
|
for(a=0; a<PAF_MAXMULT; a++) {
|
|
if(paf->mult[a]!=0.0) {
|
|
/* interessant formula! this way after 'x' generations the total is paf->totpart */
|
|
totpart= (int)(totpart / (1.0+paf->mult[a]*paf->child[a]));
|
|
}
|
|
else break;
|
|
}
|
|
|
|
ftime= paf->sta;
|
|
dtime= (paf->end - paf->sta)/totpart;
|
|
|
|
/* this call returns NULL during editmode, just ignore it and
|
|
* particles should be recalc'd on exit.
|
|
*/
|
|
dm = mesh_get_derived_final(ob, &dmNeedsFree);
|
|
if (!dm) {
|
|
waitcursor(0);
|
|
return;
|
|
}
|
|
|
|
/* WARNING!!!! pushdata and popdata actually copy object memory!!!!
|
|
* Changes between these calls will be lost!!!
|
|
*/
|
|
|
|
/* remember full hierarchy */
|
|
par= ob;
|
|
while(par) {
|
|
pushdata(par, sizeof(Object));
|
|
par= par->parent;
|
|
}
|
|
|
|
/* for static particles, calculate system on current frame */
|
|
if(ma) do_mat_ipo(ma);
|
|
|
|
/* set it all at first frame */
|
|
G.scene->r.cfra= cfralast= (int)floor(ftime);
|
|
par= ob;
|
|
while(par) {
|
|
/* do_ob_ipo(par); */
|
|
do_ob_key(par);
|
|
par= par->parent;
|
|
}
|
|
|
|
if((paf->flag & PAF_STATIC)==0) {
|
|
if(ma) do_mat_ipo(ma); // nor for static
|
|
|
|
where_is_object(ob);
|
|
Mat4CpyMat4(prevobmat, ob->obmat);
|
|
Mat4Invert(ob->imat, ob->obmat);
|
|
Mat3CpyMat4(imat, ob->imat);
|
|
}
|
|
else {
|
|
Mat4One(prevobmat);
|
|
Mat3One(imat);
|
|
}
|
|
|
|
BLI_srand(paf->seed);
|
|
|
|
/* otherwise it goes way too fast */
|
|
force[0]= paf->force[0]*0.05f;
|
|
force[1]= paf->force[1]*0.05f;
|
|
force[2]= paf->force[2]*0.05f;
|
|
|
|
if( paf->flag & PAF_STATIC ) deform= 0;
|
|
else {
|
|
deform= (ob->parent && ob->parent->type==OB_LATTICE);
|
|
if(deform) init_latt_deform(ob->parent, 0);
|
|
}
|
|
|
|
/* init */
|
|
|
|
dlm = dm->convertToDispListMesh(dm);
|
|
totvert = dlm->totvert;
|
|
|
|
give_mesh_mvert(me, dlm, totpart, co, no, paf->seed);
|
|
|
|
if(G.f & G_DEBUG) {
|
|
printf("\n");
|
|
printf("Calculating particles......... \n");
|
|
}
|
|
for(a=0; a<totpart; a++, ftime+=dtime) {
|
|
|
|
pa= new_particle(paf);
|
|
pa->time= ftime;
|
|
|
|
if(G.f & G_DEBUG) {
|
|
int b, c;
|
|
|
|
c = totpart/100;
|
|
if (c==0){
|
|
c = 1;
|
|
}
|
|
|
|
b=(a%c);
|
|
if (b==0) {
|
|
printf("\r Particle: %d / %d ", a, totpart);
|
|
fflush(stdout);
|
|
}
|
|
}
|
|
/* set ob at correct time */
|
|
|
|
if((paf->flag & PAF_STATIC)==0) {
|
|
|
|
cur= (int)floor(ftime) + 1 ; /* + 1 has a reason: (obmat/prevobmat) otherwise comet-tails start too late */
|
|
if(cfralast != cur) {
|
|
G.scene->r.cfra= cfralast= cur;
|
|
|
|
/* added later: blur? */
|
|
bsystem_time(ob, ob->parent, (float)G.scene->r.cfra, 0.0);
|
|
|
|
par= ob;
|
|
while(par) {
|
|
/* do_ob_ipo(par); */
|
|
par->ctime= -1234567.0;
|
|
do_ob_key(par);
|
|
if(par->type==OB_ARMATURE) {
|
|
do_all_actions(par); // only does this object actions
|
|
// clear_object_constraint_status(par); // mysterious call, otherwise do_actions doesnt work???
|
|
}
|
|
par= par->parent;
|
|
}
|
|
if(ma) do_mat_ipo(ma);
|
|
Mat4CpyMat4(prevobmat, ob->obmat);
|
|
where_is_object(ob);
|
|
Mat4Invert(ob->imat, ob->obmat);
|
|
Mat3CpyMat4(imat, ob->imat);
|
|
}
|
|
}
|
|
/* get coordinates */
|
|
if(paf->flag & PAF_FACE) give_mesh_mvert(me, dlm, a, co, no, paf->seed);
|
|
else {
|
|
if (totvert) {
|
|
VECCOPY(co, dlm->mvert[a%totvert].co);
|
|
VECCOPY(no, dlm->mvert[a%totvert].no);
|
|
} else {
|
|
co[0] = co[1] = co[2] = 0.0f;
|
|
no[0] = no[1] = no[2] = 0;
|
|
}
|
|
}
|
|
|
|
VECCOPY(pa->co, co);
|
|
|
|
if(paf->flag & PAF_STATIC);
|
|
else {
|
|
Mat4MulVecfl(ob->obmat, pa->co);
|
|
|
|
VECCOPY(vec, co);
|
|
Mat4MulVecfl(prevobmat, vec);
|
|
|
|
/* first start speed: object */
|
|
VECSUB(pa->no, pa->co, vec);
|
|
VecMulf(pa->no, paf->obfac);
|
|
|
|
/* calculate the correct inter-frame */
|
|
fac= (ftime- (float)floor(ftime));
|
|
pa->co[0]= fac*pa->co[0] + (1.0f-fac)*vec[0];
|
|
pa->co[1]= fac*pa->co[1] + (1.0f-fac)*vec[1];
|
|
pa->co[2]= fac*pa->co[2] + (1.0f-fac)*vec[2];
|
|
}
|
|
|
|
/* start speed: normal */
|
|
if(paf->normfac!=0.0) {
|
|
/* transpose ! */
|
|
vec[0]= imat[0][0]*no[0] + imat[0][1]*no[1] + imat[0][2]*no[2];
|
|
vec[1]= imat[1][0]*no[0] + imat[1][1]*no[1] + imat[1][2]*no[2];
|
|
vec[2]= imat[2][0]*no[0] + imat[2][1]*no[1] + imat[2][2]*no[2];
|
|
|
|
Normalise(vec);
|
|
VecMulf(vec, paf->normfac);
|
|
VECADD(pa->no, pa->no, vec);
|
|
}
|
|
pa->lifetime= paf->lifetime;
|
|
if(paf->randlife!=0.0) {
|
|
pa->lifetime*= 1.0f+ (float)(paf->randlife*( BLI_drand() - 0.5));
|
|
}
|
|
pa->mat_nr= 1;
|
|
|
|
make_particle_keys(0, a, paf, pa, force, deform, mtexmove, ob->lay);
|
|
}
|
|
|
|
if(G.f & G_DEBUG) {
|
|
printf("\r Particle: %d / %d \n", totpart, totpart);
|
|
fflush(stdout);
|
|
}
|
|
if(deform) end_latt_deform();
|
|
|
|
/* restore */
|
|
G.scene->r.cfra= cfraont;
|
|
G.scene->r.framelen= framelenont;
|
|
give_mesh_mvert(0, 0, 0, 0, 0,paf->seed);
|
|
|
|
/* put hierarchy back */
|
|
par= ob;
|
|
while(par) {
|
|
popfirst(par);
|
|
/* do not do ob->ipo: keep insertkey */
|
|
do_ob_key(par);
|
|
|
|
if(par->type==OB_ARMATURE) {
|
|
do_all_actions(par); // only does this object actions
|
|
// clear_object_constraint_status(par); // mysterious call, otherwise do_actions doesnt work???
|
|
}
|
|
par= par->parent;
|
|
}
|
|
|
|
/* reset deflector cache */
|
|
for(base= G.scene->base.first; base; base= base->next) {
|
|
if(base->object->sumohandle) {
|
|
MEM_freeN(base->object->sumohandle);
|
|
base->object->sumohandle= NULL;
|
|
}
|
|
}
|
|
|
|
/* restore: AFTER popfirst */
|
|
ob->sf= sfraont;
|
|
|
|
if(ma) do_mat_ipo(ma); // set back on current time
|
|
disable_speed_curve(0);
|
|
|
|
waitcursor(0);
|
|
|
|
displistmesh_free(dlm);
|
|
if (dmNeedsFree) dm->release(dm);
|
|
}
|
|
|
|
/* ************* WAVE **************** */
|
|
|
|
void init_wave_deform(WaveEff *wav) {
|
|
wav->minfac= (float)(1.0/exp(wav->width*wav->narrow*wav->width*wav->narrow));
|
|
if(wav->damp==0) wav->damp= 10.0f;
|
|
}
|
|
|
|
void calc_wave_deform(WaveEff *wav, float ctime, float *co)
|
|
{
|
|
/* co is in local coords */
|
|
float lifefac, x, y, amplit;
|
|
|
|
/* actually this should not happen */
|
|
if((wav->flag & (WAV_X+WAV_Y))==0) return;
|
|
|
|
lifefac= wav->height;
|
|
|
|
if( wav->lifetime!=0.0) {
|
|
x= ctime - wav->timeoffs;
|
|
if(x>wav->lifetime) {
|
|
|
|
lifefac= x-wav->lifetime;
|
|
|
|
if(lifefac > wav->damp) lifefac= 0.0;
|
|
else lifefac= (float)(wav->height*(1.0 - sqrt(lifefac/wav->damp)));
|
|
}
|
|
}
|
|
if(lifefac==0.0) return;
|
|
|
|
x= co[0]-wav->startx;
|
|
y= co[1]-wav->starty;
|
|
|
|
if(wav->flag & WAV_X) {
|
|
if(wav->flag & WAV_Y) amplit= (float)sqrt( (x*x + y*y));
|
|
else amplit= x;
|
|
}
|
|
else amplit= y;
|
|
|
|
/* this way it makes nice circles */
|
|
amplit-= (ctime-wav->timeoffs)*wav->speed;
|
|
|
|
if(wav->flag & WAV_CYCL) {
|
|
amplit = (float)fmod(amplit-wav->width, 2.0*wav->width) + wav->width;
|
|
}
|
|
|
|
/* GAUSSIAN */
|
|
|
|
if(amplit> -wav->width && amplit<wav->width) {
|
|
|
|
amplit = amplit*wav->narrow;
|
|
amplit= (float)(1.0/exp(amplit*amplit) - wav->minfac);
|
|
|
|
co[2]+= lifefac*amplit;
|
|
}
|
|
}
|
|
|
|
int SoftBodyDetectCollision(float opco[3], float npco[3], float colco[3],
|
|
float facenormal[3], float *damp, float force[3], int mode,
|
|
float cur_time, unsigned int par_layer,struct Object *vertexowner)
|
|
{
|
|
Base *base;
|
|
Object *ob, *deflection_object = NULL;
|
|
Mesh *def_mesh;
|
|
MFace *mface, *deflection_face = NULL;
|
|
float *v1, *v2, *v3, *v4, *vcache=NULL;
|
|
float mat[3][3];
|
|
float nv1[3], nv2[3], nv3[3], nv4[3], edge1[3], edge2[3],d_nvect[3], obloc[3];
|
|
float dv1[3], dv2[3], dv3[3];
|
|
float facedist,n_mag,t,t2, min_t,force_mag_norm;
|
|
int a, deflected=0, deflected_now=0;
|
|
short cur_frame;
|
|
int d_object=0, d_face=0, ds_object=0, ds_face=0;
|
|
|
|
// i'm going to rearrange it to declaration rules when WIP is finished (BM)
|
|
float innerfacethickness = -0.5f;
|
|
float outerfacethickness = 0.2f;
|
|
float ee = 5.0f;
|
|
float ff = 0.1f;
|
|
float fa;
|
|
|
|
min_t = 200000;
|
|
|
|
/* The first part of the code, finding the first intersected face*/
|
|
base= G.scene->base.first;
|
|
while (base) {
|
|
/*Only proceed for mesh object in same layer */
|
|
if(base->object->type==OB_MESH && (base->lay & par_layer)) {
|
|
ob= base->object;
|
|
if((vertexowner) && (ob == vertexowner)){
|
|
/* if vertexowner is given
|
|
* we don't want to check collision with owner object */
|
|
base = base->next;
|
|
continue;
|
|
}
|
|
/* only with deflecting set */
|
|
if(ob->pd && ob->pd->deflect) {
|
|
def_mesh= ob->data;
|
|
|
|
d_object = d_object + 1;
|
|
|
|
d_face = d_face + 1;
|
|
mface= def_mesh->mface;
|
|
a = def_mesh->totface;
|
|
/* need to have user control for that since it depends on model scale */
|
|
|
|
innerfacethickness =-ob->pd->pdef_sbift;
|
|
outerfacethickness =ob->pd->pdef_sboft;
|
|
fa = (ff*outerfacethickness-outerfacethickness);
|
|
fa *= fa;
|
|
fa = 1.0f/fa;
|
|
|
|
if(ob->parent==NULL && ob->ipo==NULL) { // static
|
|
if(ob->sumohandle==NULL) cache_object_vertices(ob);
|
|
vcache= ob->sumohandle;
|
|
}
|
|
else {
|
|
/*Find out where the object is at this time*/
|
|
cur_frame = G.scene->r.cfra;
|
|
G.scene->r.cfra = (short)cur_time;
|
|
where_is_object_time(ob, cur_time);
|
|
G.scene->r.cfra = cur_frame;
|
|
|
|
/*Pass the values from ob->obmat to mat*/
|
|
/*and the location values to obloc */
|
|
Mat3CpyMat4(mat,ob->obmat);
|
|
obloc[0] = ob->obmat[3][0];
|
|
obloc[1] = ob->obmat[3][1];
|
|
obloc[2] = ob->obmat[3][2];
|
|
/* not cachable */
|
|
vcache= NULL;
|
|
|
|
}
|
|
|
|
while (a--) {
|
|
|
|
if(vcache) {
|
|
v1= vcache+ 3*(mface->v1);
|
|
VECCOPY(nv1, v1);
|
|
v1= vcache+ 3*(mface->v2);
|
|
VECCOPY(nv2, v1);
|
|
v1= vcache+ 3*(mface->v3);
|
|
VECCOPY(nv3, v1);
|
|
v1= vcache+ 3*(mface->v4);
|
|
VECCOPY(nv4, v1);
|
|
}
|
|
else {
|
|
/* Calculate the global co-ordinates of the vertices*/
|
|
v1= (def_mesh->mvert+(mface->v1))->co;
|
|
v2= (def_mesh->mvert+(mface->v2))->co;
|
|
v3= (def_mesh->mvert+(mface->v3))->co;
|
|
v4= (def_mesh->mvert+(mface->v4))->co;
|
|
|
|
VECCOPY(nv1, v1);
|
|
VECCOPY(nv2, v2);
|
|
VECCOPY(nv3, v3);
|
|
VECCOPY(nv4, v4);
|
|
|
|
/*Apply the objects deformation matrix*/
|
|
Mat3MulVecfl(mat, nv1);
|
|
Mat3MulVecfl(mat, nv2);
|
|
Mat3MulVecfl(mat, nv3);
|
|
Mat3MulVecfl(mat, nv4);
|
|
|
|
VECADD(nv1, nv1, obloc);
|
|
VECADD(nv2, nv2, obloc);
|
|
VECADD(nv3, nv3, obloc);
|
|
VECADD(nv4, nv4, obloc);
|
|
}
|
|
|
|
deflected_now = 0;
|
|
|
|
if (mode == 1){ // face intrusion test
|
|
// switch origin to be nv2
|
|
VECSUB(edge1, nv1, nv2);
|
|
VECSUB(edge2, nv3, nv2);
|
|
VECSUB(dv1,opco,nv2); // abuse dv1 to have vertex in question at *origin* of triangle
|
|
|
|
Crossf(d_nvect, edge2, edge1);
|
|
n_mag = Normalise(d_nvect);
|
|
facedist = Inpf(dv1,d_nvect);
|
|
|
|
if ((facedist > innerfacethickness) && (facedist < outerfacethickness)){
|
|
dv2[0] = opco[0] - 2.0f*facedist*d_nvect[0];
|
|
dv2[1] = opco[1] - 2.0f*facedist*d_nvect[1];
|
|
dv2[2] = opco[2] - 2.0f*facedist*d_nvect[2];
|
|
if ( linetriangle( opco, dv2, nv1, nv2, nv3, &t)){
|
|
force_mag_norm =(float)exp(-ee*facedist);
|
|
if (facedist > outerfacethickness*ff)
|
|
force_mag_norm =(float)force_mag_norm*fa*(facedist - outerfacethickness)*(facedist - outerfacethickness);
|
|
|
|
force[0] += force_mag_norm*d_nvect[0] ;
|
|
force[1] += force_mag_norm*d_nvect[1] ;
|
|
force[2] += force_mag_norm*d_nvect[2] ;
|
|
*damp=ob->pd->pdef_sbdamp;
|
|
deflected = 2;
|
|
}
|
|
}
|
|
if (mface->v4){ // quad
|
|
// switch origin to be nv4
|
|
VECSUB(edge1, nv3, nv4);
|
|
VECSUB(edge2, nv1, nv4);
|
|
VECSUB(dv1,opco,nv4); // abuse dv1 to have vertex in question at *origin* of triangle
|
|
|
|
Crossf(d_nvect, edge2, edge1);
|
|
n_mag = Normalise(d_nvect);
|
|
facedist = Inpf(dv1,d_nvect);
|
|
|
|
if ((facedist > innerfacethickness) && (facedist < outerfacethickness)){
|
|
dv2[0] = opco[0] - 2.0f*facedist*d_nvect[0];
|
|
dv2[1] = opco[1] - 2.0f*facedist*d_nvect[1];
|
|
dv2[2] = opco[2] - 2.0f*facedist*d_nvect[2];
|
|
if ( linetriangle( opco, dv2, nv1, nv3, nv4, &t)){
|
|
force_mag_norm =(float)exp(-ee*facedist);
|
|
if (facedist > outerfacethickness*ff)
|
|
force_mag_norm =(float)force_mag_norm*fa*(facedist - outerfacethickness)*(facedist - outerfacethickness);
|
|
|
|
force[0] += force_mag_norm*d_nvect[0] ;
|
|
force[1] += force_mag_norm*d_nvect[1] ;
|
|
force[2] += force_mag_norm*d_nvect[2] ;
|
|
*damp=ob->pd->pdef_sbdamp;
|
|
deflected = 2;
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
if (mode == 2){ // edge intrusion test
|
|
|
|
|
|
//t= 0.5; // this is labda of line, can use it optimize quad intersection
|
|
// sorry but no .. see below (BM)
|
|
if( linetriangle(opco, npco, nv1, nv2, nv3, &t) ) {
|
|
if (t < min_t) {
|
|
deflected = 1;
|
|
deflected_now = 1;
|
|
}
|
|
}
|
|
// else if (mface->v4 && (t>=0.0 && t<=1.0)) {
|
|
// no, you can't skip testing the other triangle
|
|
// it might give a smaller t on (close to) the edge .. this is numerics not esoteric maths :)
|
|
// note: the 2 triangles don't need to share a plane ! (BM)
|
|
if (mface->v4) {
|
|
if( linetriangle(opco, npco, nv1, nv3, nv4, &t2) ) {
|
|
if (t2 < min_t) {
|
|
deflected = 1;
|
|
deflected_now = 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((deflected_now > 0) && ((t < min_t) ||(t2 < min_t))) {
|
|
min_t = t;
|
|
ds_object = d_object;
|
|
ds_face = d_face;
|
|
deflection_object = ob;
|
|
deflection_face = mface;
|
|
if (deflected_now==1) {
|
|
min_t = t;
|
|
VECCOPY(dv1, nv1);
|
|
VECCOPY(dv2, nv2);
|
|
VECCOPY(dv3, nv3);
|
|
}
|
|
else {
|
|
min_t = t2;
|
|
VECCOPY(dv1, nv1);
|
|
VECCOPY(dv2, nv3);
|
|
VECCOPY(dv3, nv4);
|
|
}
|
|
}
|
|
}
|
|
mface++;
|
|
}
|
|
}
|
|
}
|
|
base = base->next;
|
|
} // while (base)
|
|
|
|
if (mode == 1){ // face
|
|
return deflected;
|
|
}
|
|
|
|
if (mode == 2){ // edge intrusion test
|
|
if (deflected) {
|
|
VECSUB(edge1, dv1, dv2);
|
|
VECSUB(edge2, dv3, dv2);
|
|
Crossf(d_nvect, edge2, edge1);
|
|
n_mag = Normalise(d_nvect);
|
|
// return point of intersection
|
|
colco[0] = opco[0] + (min_t * (npco[0] - opco[0]));
|
|
colco[1] = opco[1] + (min_t * (npco[1] - opco[1]));
|
|
colco[2] = opco[2] + (min_t * (npco[2] - opco[2]));
|
|
|
|
VECCOPY(facenormal,d_nvect);
|
|
}
|
|
}
|
|
return deflected;
|
|
}
|
|
|