This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/collision.c
Bastien Montagne 5f405728bb BLI_task: Cleanup: rename some structs to make them more generic.
TLS and Settings can be used by other types of parallel 'for loops', so
removing 'Range' from their names.

No functional changes expected here.
2019-07-30 14:56:47 +02:00

1754 lines
53 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) Blender Foundation
* All rights reserved.
*/
/** \file
* \ingroup bke
*/
#include "MEM_guardedalloc.h"
#include "DNA_cloth_types.h"
#include "DNA_collection_types.h"
#include "DNA_effect_types.h"
#include "DNA_object_types.h"
#include "DNA_object_force_types.h"
#include "DNA_scene_types.h"
#include "DNA_meshdata_types.h"
#include "BLI_utildefines.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_task.h"
#include "BLI_threads.h"
#include "BKE_cloth.h"
#include "BKE_collection.h"
#include "BKE_effect.h"
#include "BKE_layer.h"
#include "BKE_modifier.h"
#include "BKE_scene.h"
#include "BLI_kdopbvh.h"
#include "BKE_collision.h"
#include "DEG_depsgraph.h"
#include "DEG_depsgraph_physics.h"
#include "DEG_depsgraph_query.h"
#ifdef WITH_ELTOPO
# include "eltopo-capi.h"
#endif
typedef struct ColDetectData {
ClothModifierData *clmd;
CollisionModifierData *collmd;
BVHTreeOverlap *overlap;
CollPair *collisions;
bool culling;
bool use_normal;
bool collided;
} ColDetectData;
typedef struct SelfColDetectData {
ClothModifierData *clmd;
BVHTreeOverlap *overlap;
CollPair *collisions;
bool collided;
} SelfColDetectData;
/***********************************
* Collision modifier code start
***********************************/
/* step is limited from 0 (frame start position) to 1 (frame end position) */
void collision_move_object(CollisionModifierData *collmd, float step, float prevstep)
{
float oldx[3];
unsigned int i = 0;
/* the collider doesn't move this frame */
if (collmd->is_static) {
for (i = 0; i < collmd->mvert_num; i++) {
zero_v3(collmd->current_v[i].co);
}
return;
}
for (i = 0; i < collmd->mvert_num; i++) {
interp_v3_v3v3(oldx, collmd->x[i].co, collmd->xnew[i].co, prevstep);
interp_v3_v3v3(collmd->current_x[i].co, collmd->x[i].co, collmd->xnew[i].co, step);
sub_v3_v3v3(collmd->current_v[i].co, collmd->current_x[i].co, oldx);
}
bvhtree_update_from_mvert(
collmd->bvhtree, collmd->current_x, NULL, collmd->tri, collmd->tri_num, false);
}
BVHTree *bvhtree_build_from_mvert(const MVert *mvert,
const struct MVertTri *tri,
int tri_num,
float epsilon)
{
BVHTree *tree;
const MVertTri *vt;
int i;
tree = BLI_bvhtree_new(tri_num, epsilon, 4, 26);
/* fill tree */
for (i = 0, vt = tri; i < tri_num; i++, vt++) {
float co[3][3];
copy_v3_v3(co[0], mvert[vt->tri[0]].co);
copy_v3_v3(co[1], mvert[vt->tri[1]].co);
copy_v3_v3(co[2], mvert[vt->tri[2]].co);
BLI_bvhtree_insert(tree, i, co[0], 3);
}
/* balance tree */
BLI_bvhtree_balance(tree);
return tree;
}
void bvhtree_update_from_mvert(BVHTree *bvhtree,
const MVert *mvert,
const MVert *mvert_moving,
const MVertTri *tri,
int tri_num,
bool moving)
{
const MVertTri *vt;
int i;
if ((bvhtree == NULL) || (mvert == NULL)) {
return;
}
if (mvert_moving == NULL) {
moving = false;
}
for (i = 0, vt = tri; i < tri_num; i++, vt++) {
float co[3][3];
bool ret;
copy_v3_v3(co[0], mvert[vt->tri[0]].co);
copy_v3_v3(co[1], mvert[vt->tri[1]].co);
copy_v3_v3(co[2], mvert[vt->tri[2]].co);
/* copy new locations into array */
if (moving) {
float co_moving[3][3];
/* update moving positions */
copy_v3_v3(co_moving[0], mvert_moving[vt->tri[0]].co);
copy_v3_v3(co_moving[1], mvert_moving[vt->tri[1]].co);
copy_v3_v3(co_moving[2], mvert_moving[vt->tri[2]].co);
ret = BLI_bvhtree_update_node(bvhtree, i, &co[0][0], &co_moving[0][0], 3);
}
else {
ret = BLI_bvhtree_update_node(bvhtree, i, &co[0][0], NULL, 3);
}
/* check if tree is already full */
if (ret == false) {
break;
}
}
BLI_bvhtree_update_tree(bvhtree);
}
/* ***************************
* Collision modifier code end
* *************************** */
BLI_INLINE int next_ind(int i)
{
return (++i < 3) ? i : 0;
}
static float compute_collision_point(float a1[3],
float a2[3],
float a3[3],
float b1[3],
float b2[3],
float b3[3],
bool culling,
bool use_normal,
float r_a[3],
float r_b[3],
float r_vec[3])
{
float a[3][3];
float b[3][3];
float dist = FLT_MAX;
float tmp_co1[3], tmp_co2[3];
float isect_a[3], isect_b[3];
int isect_count = 0;
float tmp, tmp_vec[3];
float normal[3], cent[3];
bool backside = false;
copy_v3_v3(a[0], a1);
copy_v3_v3(a[1], a2);
copy_v3_v3(a[2], a3);
copy_v3_v3(b[0], b1);
copy_v3_v3(b[1], b2);
copy_v3_v3(b[2], b3);
/* Find intersections. */
for (int i = 0; i < 3; i++) {
if (isect_line_segment_tri_v3(a[i], a[next_ind(i)], b[0], b[1], b[2], &tmp, NULL)) {
interp_v3_v3v3(isect_a, a[i], a[next_ind(i)], tmp);
isect_count++;
}
}
if (isect_count == 0) {
for (int i = 0; i < 3; i++) {
if (isect_line_segment_tri_v3(b[i], b[next_ind(i)], a[0], a[1], a[2], &tmp, NULL)) {
isect_count++;
}
}
}
else if (isect_count == 1) {
for (int i = 0; i < 3; i++) {
if (isect_line_segment_tri_v3(b[i], b[next_ind(i)], a[0], a[1], a[2], &tmp, NULL)) {
interp_v3_v3v3(isect_b, b[i], b[next_ind(i)], tmp);
break;
}
}
}
/* Determine collision side. */
if (culling) {
normal_tri_v3(normal, b[0], b[1], b[2]);
mid_v3_v3v3v3(cent, b[0], b[1], b[2]);
if (isect_count == 2) {
backside = true;
}
else if (isect_count == 0) {
for (int i = 0; i < 3; i++) {
sub_v3_v3v3(tmp_vec, a[i], cent);
if (dot_v3v3(tmp_vec, normal) < 0.0f) {
backside = true;
break;
}
}
}
}
else if (use_normal) {
normal_tri_v3(normal, b[0], b[1], b[2]);
}
if (isect_count == 1) {
/* Edge intersection. */
copy_v3_v3(r_a, isect_a);
copy_v3_v3(r_b, isect_b);
if (use_normal) {
copy_v3_v3(r_vec, normal);
}
else {
sub_v3_v3v3(r_vec, r_b, r_a);
}
return 0.0f;
}
if (backside) {
float maxdist = 0.0f;
bool found = false;
/* Point projections. */
for (int i = 0; i < 3; i++) {
if (isect_ray_tri_v3(a[i], normal, b[0], b[1], b[2], &tmp, NULL)) {
if (tmp > maxdist) {
maxdist = tmp;
copy_v3_v3(r_a, a[i]);
madd_v3_v3v3fl(r_b, a[i], normal, tmp);
found = true;
}
}
}
negate_v3(normal);
for (int i = 0; i < 3; i++) {
if (isect_ray_tri_v3(b[i], normal, a[0], a[1], a[2], &tmp, NULL)) {
if (tmp > maxdist) {
maxdist = tmp;
madd_v3_v3v3fl(r_a, b[i], normal, tmp);
copy_v3_v3(r_b, b[i]);
found = true;
}
}
}
negate_v3(normal);
/* Edge projections. */
for (int i = 0; i < 3; i++) {
float dir[3];
sub_v3_v3v3(tmp_vec, b[next_ind(i)], b[i]);
cross_v3_v3v3(dir, tmp_vec, normal);
for (int j = 0; j < 3; j++) {
if (isect_line_plane_v3(tmp_co1, a[j], a[next_ind(j)], b[i], dir) &&
point_in_slice_seg(tmp_co1, a[j], a[next_ind(j)]) &&
point_in_slice_seg(tmp_co1, b[i], b[next_ind(i)])) {
closest_to_line_v3(tmp_co2, tmp_co1, b[i], b[next_ind(i)]);
sub_v3_v3v3(tmp_vec, tmp_co1, tmp_co2);
tmp = len_v3(tmp_vec);
if ((tmp > maxdist) && (dot_v3v3(tmp_vec, normal) < 0.0f)) {
maxdist = tmp;
copy_v3_v3(r_a, tmp_co1);
copy_v3_v3(r_b, tmp_co2);
found = true;
}
}
}
}
/* If no point is found, will fallback onto regular proximity test below. */
if (found) {
sub_v3_v3v3(r_vec, r_b, r_a);
if (use_normal) {
if (dot_v3v3(normal, r_vec) >= 0.0f) {
copy_v3_v3(r_vec, normal);
}
else {
negate_v3_v3(r_vec, normal);
}
}
return 0.0f;
}
}
/* Closest point. */
for (int i = 0; i < 3; i++) {
closest_on_tri_to_point_v3(tmp_co1, a[i], b[0], b[1], b[2]);
tmp = len_squared_v3v3(tmp_co1, a[i]);
if (tmp < dist) {
dist = tmp;
copy_v3_v3(r_a, a[i]);
copy_v3_v3(r_b, tmp_co1);
}
}
for (int i = 0; i < 3; i++) {
closest_on_tri_to_point_v3(tmp_co1, b[i], a[0], a[1], a[2]);
tmp = len_squared_v3v3(tmp_co1, b[i]);
if (tmp < dist) {
dist = tmp;
copy_v3_v3(r_a, tmp_co1);
copy_v3_v3(r_b, b[i]);
}
}
/* Closest edge. */
if (isect_count == 0) {
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
isect_seg_seg_v3(a[i], a[next_ind(i)], b[j], b[next_ind(j)], tmp_co1, tmp_co2);
tmp = len_squared_v3v3(tmp_co1, tmp_co2);
if (tmp < dist) {
dist = tmp;
copy_v3_v3(r_a, tmp_co1);
copy_v3_v3(r_b, tmp_co2);
}
}
}
}
if (isect_count == 0) {
sub_v3_v3v3(r_vec, r_a, r_b);
dist = sqrtf(dist);
}
else {
sub_v3_v3v3(r_vec, r_b, r_a);
dist = 0.0f;
}
if (culling && use_normal) {
copy_v3_v3(r_vec, normal);
}
else if (use_normal) {
if (dot_v3v3(normal, r_vec) >= 0.0f) {
copy_v3_v3(r_vec, normal);
}
else {
negate_v3_v3(r_vec, normal);
}
}
else if (culling && (dot_v3v3(r_vec, normal) < 0.0f)) {
return FLT_MAX;
}
return dist;
}
// w3 is not perfect
static void collision_compute_barycentric(
float pv[3], float p1[3], float p2[3], float p3[3], float *w1, float *w2, float *w3)
{
/* dot_v3v3 */
#define INPR(v1, v2) ((v1)[0] * (v2)[0] + (v1)[1] * (v2)[1] + (v1)[2] * (v2)[2])
double tempV1[3], tempV2[3], tempV4[3];
double a, b, c, d, e, f;
sub_v3db_v3fl_v3fl(tempV1, p1, p3);
sub_v3db_v3fl_v3fl(tempV2, p2, p3);
sub_v3db_v3fl_v3fl(tempV4, pv, p3);
a = INPR(tempV1, tempV1);
b = INPR(tempV1, tempV2);
c = INPR(tempV2, tempV2);
e = INPR(tempV1, tempV4);
f = INPR(tempV2, tempV4);
d = (a * c - b * b);
if (ABS(d) < (double)ALMOST_ZERO) {
*w1 = *w2 = *w3 = 1.0 / 3.0;
return;
}
w1[0] = (float)((e * c - b * f) / d);
if (w1[0] < 0) {
w1[0] = 0;
}
w2[0] = (float)((f - b * (double)w1[0]) / c);
if (w2[0] < 0) {
w2[0] = 0;
}
w3[0] = 1.0f - w1[0] - w2[0];
#undef INPR
}
#ifdef __GNUC__
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wdouble-promotion"
#endif
DO_INLINE void collision_interpolateOnTriangle(
float to[3], float v1[3], float v2[3], float v3[3], double w1, double w2, double w3)
{
zero_v3(to);
VECADDMUL(to, v1, w1);
VECADDMUL(to, v2, w2);
VECADDMUL(to, v3, w3);
}
static int cloth_collision_response_static(ClothModifierData *clmd,
CollisionModifierData *collmd,
Object *collob,
CollPair *collpair,
uint collision_count,
const float dt)
{
int result = 0;
Cloth *cloth1;
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
float magrelVel;
float epsilon2 = BLI_bvhtree_get_epsilon(collmd->bvhtree);
cloth1 = clmd->clothObject;
for (int i = 0; i < collision_count; i++, collpair++) {
float i1[3], i2[3], i3[3];
zero_v3(i1);
zero_v3(i2);
zero_v3(i3);
/* Only handle static collisions here. */
if (collpair->flag & (COLLISION_IN_FUTURE | COLLISION_INACTIVE)) {
continue;
}
/* Compute barycentric coordinates for both collision points. */
collision_compute_barycentric(collpair->pa,
cloth1->verts[collpair->ap1].tx,
cloth1->verts[collpair->ap2].tx,
cloth1->verts[collpair->ap3].tx,
&w1,
&w2,
&w3);
collision_compute_barycentric(collpair->pb,
collmd->current_x[collpair->bp1].co,
collmd->current_x[collpair->bp2].co,
collmd->current_x[collpair->bp3].co,
&u1,
&u2,
&u3);
/* Calculate relative "velocity". */
collision_interpolateOnTriangle(v1,
cloth1->verts[collpair->ap1].tv,
cloth1->verts[collpair->ap2].tv,
cloth1->verts[collpair->ap3].tv,
w1,
w2,
w3);
collision_interpolateOnTriangle(v2,
collmd->current_v[collpair->bp1].co,
collmd->current_v[collpair->bp2].co,
collmd->current_v[collpair->bp3].co,
u1,
u2,
u3);
sub_v3_v3v3(relativeVelocity, v2, v1);
/* Calculate the normal component of the relative velocity
* (actually only the magnitude - the direction is stored in 'normal'). */
magrelVel = dot_v3v3(relativeVelocity, collpair->normal);
/* If magrelVel < 0 the edges are approaching each other. */
if (magrelVel > 0.0f) {
/* Calculate Impulse magnitude to stop all motion in normal direction. */
float magtangent = 0, repulse = 0, d = 0;
double impulse = 0.0;
float vrel_t_pre[3];
float temp[3];
float time_multiplier;
/* Calculate tangential velocity. */
copy_v3_v3(temp, collpair->normal);
mul_v3_fl(temp, magrelVel);
sub_v3_v3v3(vrel_t_pre, relativeVelocity, temp);
/* Decrease in magnitude of relative tangential velocity due to coulomb friction
* in original formula "magrelVel" should be the
* "change of relative velocity in normal direction". */
magtangent = min_ff(collob->pd->pdef_cfrict * 0.01f * magrelVel, len_v3(vrel_t_pre));
/* Apply friction impulse. */
if (magtangent > ALMOST_ZERO) {
normalize_v3(vrel_t_pre);
impulse = magtangent / 1.5;
VECADDMUL(i1, vrel_t_pre, w1 * impulse);
VECADDMUL(i2, vrel_t_pre, w2 * impulse);
VECADDMUL(i3, vrel_t_pre, w3 * impulse);
}
/* Apply velocity stopping impulse. */
impulse = magrelVel / 1.5f;
VECADDMUL(i1, collpair->normal, w1 * impulse);
cloth1->verts[collpair->ap1].impulse_count++;
VECADDMUL(i2, collpair->normal, w2 * impulse);
cloth1->verts[collpair->ap2].impulse_count++;
VECADDMUL(i3, collpair->normal, w3 * impulse);
cloth1->verts[collpair->ap3].impulse_count++;
time_multiplier = 1.0f / (clmd->sim_parms->dt * clmd->sim_parms->timescale);
d = clmd->coll_parms->epsilon * 8.0f / 9.0f + epsilon2 * 8.0f / 9.0f - collpair->distance;
if ((magrelVel < 0.1f * d * time_multiplier) && (d > ALMOST_ZERO)) {
repulse = MIN2(d / time_multiplier, 0.1f * d * time_multiplier - magrelVel);
/* Stay on the safe side and clamp repulse. */
if (impulse > ALMOST_ZERO) {
repulse = min_ff(repulse, 5.0f * impulse);
}
repulse = max_ff(impulse, repulse);
impulse = repulse / 1.5f;
VECADDMUL(i1, collpair->normal, impulse);
VECADDMUL(i2, collpair->normal, impulse);
VECADDMUL(i3, collpair->normal, impulse);
}
result = 1;
}
else {
float time_multiplier = 1.0f / (clmd->sim_parms->dt * clmd->sim_parms->timescale);
float d;
d = clmd->coll_parms->epsilon * 8.0f / 9.0f + epsilon2 * 8.0f / 9.0f - collpair->distance;
if (d > ALMOST_ZERO) {
/* Stay on the safe side and clamp repulse. */
float repulse = d / time_multiplier;
float impulse = repulse / 4.5f;
VECADDMUL(i1, collpair->normal, w1 * impulse);
VECADDMUL(i2, collpair->normal, w2 * impulse);
VECADDMUL(i3, collpair->normal, w3 * impulse);
cloth1->verts[collpair->ap1].impulse_count++;
cloth1->verts[collpair->ap2].impulse_count++;
cloth1->verts[collpair->ap3].impulse_count++;
result = 1;
}
}
if (result) {
float clamp = clmd->coll_parms->clamp * dt;
if ((clamp > 0.0f) &&
((len_v3(i1) > clamp) || (len_v3(i2) > clamp) || (len_v3(i3) > clamp))) {
return 0;
}
for (int j = 0; j < 3; j++) {
if (cloth1->verts[collpair->ap1].impulse_count > 0 &&
ABS(cloth1->verts[collpair->ap1].impulse[j]) < ABS(i1[j])) {
cloth1->verts[collpair->ap1].impulse[j] = i1[j];
}
if (cloth1->verts[collpair->ap2].impulse_count > 0 &&
ABS(cloth1->verts[collpair->ap2].impulse[j]) < ABS(i2[j])) {
cloth1->verts[collpair->ap2].impulse[j] = i2[j];
}
if (cloth1->verts[collpair->ap3].impulse_count > 0 &&
ABS(cloth1->verts[collpair->ap3].impulse[j]) < ABS(i3[j])) {
cloth1->verts[collpair->ap3].impulse[j] = i3[j];
}
}
}
}
return result;
}
static int cloth_selfcollision_response_static(ClothModifierData *clmd,
CollPair *collpair,
uint collision_count,
const float dt)
{
int result = 0;
Cloth *cloth1;
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
float magrelVel;
cloth1 = clmd->clothObject;
for (int i = 0; i < collision_count; i++, collpair++) {
float i1[3], i2[3], i3[3];
zero_v3(i1);
zero_v3(i2);
zero_v3(i3);
/* Only handle static collisions here. */
if (collpair->flag & (COLLISION_IN_FUTURE | COLLISION_INACTIVE)) {
continue;
}
/* Compute barycentric coordinates for both collision points. */
collision_compute_barycentric(collpair->pa,
cloth1->verts[collpair->ap1].tx,
cloth1->verts[collpair->ap2].tx,
cloth1->verts[collpair->ap3].tx,
&w1,
&w2,
&w3);
collision_compute_barycentric(collpair->pb,
cloth1->verts[collpair->bp1].tx,
cloth1->verts[collpair->bp2].tx,
cloth1->verts[collpair->bp3].tx,
&u1,
&u2,
&u3);
/* Calculate relative "velocity". */
collision_interpolateOnTriangle(v1,
cloth1->verts[collpair->ap1].tv,
cloth1->verts[collpair->ap2].tv,
cloth1->verts[collpair->ap3].tv,
w1,
w2,
w3);
collision_interpolateOnTriangle(v2,
cloth1->verts[collpair->bp1].tv,
cloth1->verts[collpair->bp2].tv,
cloth1->verts[collpair->bp3].tv,
u1,
u2,
u3);
sub_v3_v3v3(relativeVelocity, v2, v1);
/* Calculate the normal component of the relative velocity
* (actually only the magnitude - the direction is stored in 'normal'). */
magrelVel = dot_v3v3(relativeVelocity, collpair->normal);
/* TODO: Impulses should be weighed by mass as this is self col,
* this has to be done after mass distribution is implemented. */
/* If magrelVel < 0 the edges are approaching each other. */
if (magrelVel > 0.0f) {
/* Calculate Impulse magnitude to stop all motion in normal direction. */
float magtangent = 0, repulse = 0, d = 0;
double impulse = 0.0;
float vrel_t_pre[3];
float temp[3], time_multiplier;
/* Calculate tangential velocity. */
copy_v3_v3(temp, collpair->normal);
mul_v3_fl(temp, magrelVel);
sub_v3_v3v3(vrel_t_pre, relativeVelocity, temp);
/* Decrease in magnitude of relative tangential velocity due to coulomb friction
* in original formula "magrelVel" should be the
* "change of relative velocity in normal direction". */
magtangent = min_ff(clmd->coll_parms->self_friction * 0.01f * magrelVel, len_v3(vrel_t_pre));
/* Apply friction impulse. */
if (magtangent > ALMOST_ZERO) {
normalize_v3(vrel_t_pre);
impulse = magtangent / 1.5;
VECADDMUL(i1, vrel_t_pre, w1 * impulse);
VECADDMUL(i2, vrel_t_pre, w2 * impulse);
VECADDMUL(i3, vrel_t_pre, w3 * impulse);
}
/* Apply velocity stopping impulse. */
impulse = magrelVel / 3.0f;
VECADDMUL(i1, collpair->normal, w1 * impulse);
cloth1->verts[collpair->ap1].impulse_count++;
VECADDMUL(i2, collpair->normal, w2 * impulse);
cloth1->verts[collpair->ap2].impulse_count++;
VECADDMUL(i3, collpair->normal, w3 * impulse);
cloth1->verts[collpair->ap3].impulse_count++;
time_multiplier = 1.0f / (clmd->sim_parms->dt * clmd->sim_parms->timescale);
d = clmd->coll_parms->selfepsilon * 8.0f / 9.0f * 2.0f - collpair->distance;
if ((magrelVel < 0.1f * d * time_multiplier) && (d > ALMOST_ZERO)) {
repulse = MIN2(d / time_multiplier, 0.1f * d * time_multiplier - magrelVel);
if (impulse > ALMOST_ZERO) {
repulse = min_ff(repulse, 5.0 * impulse);
}
repulse = max_ff(impulse, repulse);
impulse = repulse / 1.5f;
VECADDMUL(i1, collpair->normal, w1 * impulse);
VECADDMUL(i2, collpair->normal, w2 * impulse);
VECADDMUL(i3, collpair->normal, w3 * impulse);
}
result = 1;
}
else {
float time_multiplier = 1.0f / (clmd->sim_parms->dt * clmd->sim_parms->timescale);
float d;
d = clmd->coll_parms->selfepsilon * 8.0f / 9.0f * 2.0f - collpair->distance;
if (d > ALMOST_ZERO) {
/* Stay on the safe side and clamp repulse. */
float repulse = d * 1.0f / time_multiplier;
float impulse = repulse / 9.0f;
VECADDMUL(i1, collpair->normal, w1 * impulse);
VECADDMUL(i2, collpair->normal, w2 * impulse);
VECADDMUL(i3, collpair->normal, w3 * impulse);
cloth1->verts[collpair->ap1].impulse_count++;
cloth1->verts[collpair->ap2].impulse_count++;
cloth1->verts[collpair->ap3].impulse_count++;
result = 1;
}
}
if (result) {
float clamp = clmd->coll_parms->self_clamp * dt;
if ((clamp > 0.0f) &&
((len_v3(i1) > clamp) || (len_v3(i2) > clamp) || (len_v3(i3) > clamp))) {
return 0;
}
for (int j = 0; j < 3; j++) {
if (cloth1->verts[collpair->ap1].impulse_count > 0 &&
ABS(cloth1->verts[collpair->ap1].impulse[j]) < ABS(i1[j])) {
cloth1->verts[collpair->ap1].impulse[j] = i1[j];
}
if (cloth1->verts[collpair->ap2].impulse_count > 0 &&
ABS(cloth1->verts[collpair->ap2].impulse[j]) < ABS(i2[j])) {
cloth1->verts[collpair->ap2].impulse[j] = i2[j];
}
if (cloth1->verts[collpair->ap3].impulse_count > 0 &&
ABS(cloth1->verts[collpair->ap3].impulse[j]) < ABS(i3[j])) {
cloth1->verts[collpair->ap3].impulse[j] = i3[j];
}
}
}
}
return result;
}
#ifdef __GNUC__
# pragma GCC diagnostic pop
#endif
static void cloth_collision(void *__restrict userdata,
const int index,
const TaskParallelTLS *__restrict UNUSED(tls))
{
ColDetectData *data = (ColDetectData *)userdata;
ClothModifierData *clmd = data->clmd;
CollisionModifierData *collmd = data->collmd;
CollPair *collpair = data->collisions;
const MVertTri *tri_a, *tri_b;
ClothVertex *verts1 = clmd->clothObject->verts;
float distance = 0.0f;
float epsilon1 = clmd->coll_parms->epsilon;
float epsilon2 = BLI_bvhtree_get_epsilon(collmd->bvhtree);
float pa[3], pb[3], vect[3];
tri_a = &clmd->clothObject->tri[data->overlap[index].indexA];
tri_b = &collmd->tri[data->overlap[index].indexB];
/* Compute distance and normal. */
distance = compute_collision_point(verts1[tri_a->tri[0]].tx,
verts1[tri_a->tri[1]].tx,
verts1[tri_a->tri[2]].tx,
collmd->current_x[tri_b->tri[0]].co,
collmd->current_x[tri_b->tri[1]].co,
collmd->current_x[tri_b->tri[2]].co,
data->culling,
data->use_normal,
pa,
pb,
vect);
if ((distance <= (epsilon1 + epsilon2 + ALMOST_ZERO)) && (len_squared_v3(vect) > ALMOST_ZERO)) {
collpair[index].ap1 = tri_a->tri[0];
collpair[index].ap2 = tri_a->tri[1];
collpair[index].ap3 = tri_a->tri[2];
collpair[index].bp1 = tri_b->tri[0];
collpair[index].bp2 = tri_b->tri[1];
collpair[index].bp3 = tri_b->tri[2];
copy_v3_v3(collpair[index].pa, pa);
copy_v3_v3(collpair[index].pb, pb);
copy_v3_v3(collpair[index].vector, vect);
normalize_v3_v3(collpair[index].normal, collpair[index].vector);
collpair[index].distance = distance;
collpair[index].flag = 0;
data->collided = true;
}
else {
collpair[index].flag = COLLISION_INACTIVE;
}
}
static void cloth_selfcollision(void *__restrict userdata,
const int index,
const TaskParallelTLS *__restrict UNUSED(tls))
{
SelfColDetectData *data = (SelfColDetectData *)userdata;
ClothModifierData *clmd = data->clmd;
CollPair *collpair = data->collisions;
const MVertTri *tri_a, *tri_b;
ClothVertex *verts1 = clmd->clothObject->verts;
float distance = 0.0f;
float epsilon = clmd->coll_parms->selfepsilon;
float pa[3], pb[3], vect[3];
tri_a = &clmd->clothObject->tri[data->overlap[index].indexA];
tri_b = &clmd->clothObject->tri[data->overlap[index].indexB];
for (uint i = 0; i < 3; i++) {
for (uint j = 0; j < 3; j++) {
if (tri_a->tri[i] == tri_b->tri[j]) {
collpair[index].flag = COLLISION_INACTIVE;
return;
}
}
}
if (((verts1[tri_a->tri[0]].flags & verts1[tri_a->tri[1]].flags & verts1[tri_a->tri[2]].flags) |
(verts1[tri_b->tri[0]].flags & verts1[tri_b->tri[1]].flags & verts1[tri_b->tri[2]].flags)) &
CLOTH_VERT_FLAG_NOSELFCOLL) {
collpair[index].flag = COLLISION_INACTIVE;
return;
}
/* Compute distance and normal. */
distance = compute_collision_point(verts1[tri_a->tri[0]].tx,
verts1[tri_a->tri[1]].tx,
verts1[tri_a->tri[2]].tx,
verts1[tri_b->tri[0]].tx,
verts1[tri_b->tri[1]].tx,
verts1[tri_b->tri[2]].tx,
false,
false,
pa,
pb,
vect);
if ((distance <= (epsilon * 2.0f + ALMOST_ZERO)) && (len_squared_v3(vect) > ALMOST_ZERO)) {
collpair[index].ap1 = tri_a->tri[0];
collpair[index].ap2 = tri_a->tri[1];
collpair[index].ap3 = tri_a->tri[2];
collpair[index].bp1 = tri_b->tri[0];
collpair[index].bp2 = tri_b->tri[1];
collpair[index].bp3 = tri_b->tri[2];
copy_v3_v3(collpair[index].pa, pa);
copy_v3_v3(collpair[index].pb, pb);
copy_v3_v3(collpair[index].vector, vect);
normalize_v3_v3(collpair[index].normal, collpair[index].vector);
collpair[index].distance = distance;
collpair[index].flag = 0;
data->collided = true;
}
else {
collpair[index].flag = COLLISION_INACTIVE;
}
}
static void add_collision_object(ListBase *relations,
Object *ob,
int level,
unsigned int modifier_type)
{
CollisionModifierData *cmd = NULL;
/* only get objects with collision modifier */
if (((modifier_type == eModifierType_Collision) && ob->pd && ob->pd->deflect) ||
(modifier_type != eModifierType_Collision)) {
cmd = (CollisionModifierData *)modifiers_findByType(ob, modifier_type);
}
if (cmd) {
CollisionRelation *relation = MEM_callocN(sizeof(CollisionRelation), "CollisionRelation");
relation->ob = ob;
BLI_addtail(relations, relation);
}
/* objects in dupli groups, one level only for now */
/* TODO: this doesn't really work, we are not taking into account the
* dupli transforms and can get objects in the list multiple times. */
if (ob->instance_collection && level == 0) {
Collection *collection = ob->instance_collection;
/* add objects */
FOREACH_COLLECTION_OBJECT_RECURSIVE_BEGIN (collection, object) {
add_collision_object(relations, object, level + 1, modifier_type);
}
FOREACH_COLLECTION_OBJECT_RECURSIVE_END;
}
}
/* Create list of collision relations in the collection or entire scene.
* This is used by the depsgraph to build relations, as well as faster
* lookup of colliders during evaluation. */
ListBase *BKE_collision_relations_create(Depsgraph *depsgraph,
Collection *collection,
unsigned int modifier_type)
{
ViewLayer *view_layer = DEG_get_input_view_layer(depsgraph);
Base *base = BKE_collection_or_layer_objects(view_layer, collection);
const bool for_render = (DEG_get_mode(depsgraph) == DAG_EVAL_RENDER);
const int base_flag = (for_render) ? BASE_ENABLED_RENDER : BASE_ENABLED_VIEWPORT;
ListBase *relations = MEM_callocN(sizeof(ListBase), "CollisionRelation list");
for (; base; base = base->next) {
if (base->flag & base_flag) {
add_collision_object(relations, base->object, 0, modifier_type);
}
}
return relations;
}
void BKE_collision_relations_free(ListBase *relations)
{
if (relations) {
BLI_freelistN(relations);
MEM_freeN(relations);
}
}
/* Create effective list of colliders from relations built beforehand.
* Self will be excluded. */
Object **BKE_collision_objects_create(Depsgraph *depsgraph,
Object *self,
Collection *collection,
unsigned int *numcollobj,
unsigned int modifier_type)
{
ListBase *relations = DEG_get_collision_relations(depsgraph, collection, modifier_type);
if (!relations) {
*numcollobj = 0;
return NULL;
}
int maxnum = BLI_listbase_count(relations);
int num = 0;
Object **objects = MEM_callocN(sizeof(Object *) * maxnum, __func__);
for (CollisionRelation *relation = relations->first; relation; relation = relation->next) {
/* Get evaluated object. */
Object *ob = (Object *)DEG_get_evaluated_id(depsgraph, &relation->ob->id);
if (ob != self) {
objects[num] = ob;
num++;
}
}
if (num == 0) {
MEM_freeN(objects);
objects = NULL;
}
*numcollobj = num;
return objects;
}
void BKE_collision_objects_free(Object **objects)
{
if (objects) {
MEM_freeN(objects);
}
}
/* Create effective list of colliders from relations built beforehand.
* Self will be excluded. */
ListBase *BKE_collider_cache_create(Depsgraph *depsgraph, Object *self, Collection *collection)
{
ListBase *relations = DEG_get_collision_relations(
depsgraph, collection, eModifierType_Collision);
ListBase *cache = NULL;
if (!relations) {
return NULL;
}
for (CollisionRelation *relation = relations->first; relation; relation = relation->next) {
/* Get evaluated object. */
Object *ob = (Object *)DEG_get_evaluated_id(depsgraph, &relation->ob->id);
if (ob == self) {
continue;
}
CollisionModifierData *cmd = (CollisionModifierData *)modifiers_findByType(
ob, eModifierType_Collision);
if (cmd && cmd->bvhtree) {
if (cache == NULL) {
cache = MEM_callocN(sizeof(ListBase), "ColliderCache array");
}
ColliderCache *col = MEM_callocN(sizeof(ColliderCache), "ColliderCache");
col->ob = ob;
col->collmd = cmd;
/* make sure collider is properly set up */
collision_move_object(cmd, 1.0, 0.0);
BLI_addtail(cache, col);
}
}
return cache;
}
void BKE_collider_cache_free(ListBase **colliders)
{
if (*colliders) {
BLI_freelistN(*colliders);
MEM_freeN(*colliders);
*colliders = NULL;
}
}
static bool cloth_bvh_objcollisions_nearcheck(ClothModifierData *clmd,
CollisionModifierData *collmd,
CollPair **collisions,
int numresult,
BVHTreeOverlap *overlap,
bool culling,
bool use_normal)
{
*collisions = (CollPair *)MEM_mallocN(sizeof(CollPair) * numresult, "collision array");
ColDetectData data = {
.clmd = clmd,
.collmd = collmd,
.overlap = overlap,
.collisions = *collisions,
.culling = culling,
.use_normal = use_normal,
.collided = false,
};
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
settings.use_threading = true;
BLI_task_parallel_range(0, numresult, &data, cloth_collision, &settings);
return data.collided;
}
static bool cloth_bvh_selfcollisions_nearcheck(ClothModifierData *clmd,
CollPair *collisions,
int numresult,
BVHTreeOverlap *overlap)
{
SelfColDetectData data = {
.clmd = clmd,
.overlap = overlap,
.collisions = collisions,
.collided = false,
};
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
settings.use_threading = true;
BLI_task_parallel_range(0, numresult, &data, cloth_selfcollision, &settings);
return data.collided;
}
static int cloth_bvh_objcollisions_resolve(ClothModifierData *clmd,
Object **collobjs,
CollPair **collisions,
uint *collision_counts,
const uint numcollobj,
const float dt)
{
Cloth *cloth = clmd->clothObject;
int i = 0, j = 0, mvert_num = 0;
ClothVertex *verts = NULL;
int ret = 0;
int result = 0;
mvert_num = clmd->clothObject->mvert_num;
verts = cloth->verts;
result = 1;
for (j = 0; j < 2; j++) {
result = 0;
for (i = 0; i < numcollobj; i++) {
Object *collob = collobjs[i];
CollisionModifierData *collmd = (CollisionModifierData *)modifiers_findByType(
collob, eModifierType_Collision);
if (collmd->bvhtree) {
result += cloth_collision_response_static(
clmd, collmd, collob, collisions[i], collision_counts[i], dt);
}
}
/* Apply impulses in parallel. */
if (result) {
for (i = 0; i < mvert_num; i++) {
// calculate "velocities" (just xnew = xold + v; no dt in v)
if (verts[i].impulse_count) {
add_v3_v3(verts[i].tv, verts[i].impulse);
add_v3_v3(verts[i].dcvel, verts[i].impulse);
zero_v3(verts[i].impulse);
verts[i].impulse_count = 0;
ret++;
}
}
}
else {
break;
}
}
return ret;
}
static int cloth_bvh_selfcollisions_resolve(ClothModifierData *clmd,
CollPair *collisions,
int collision_count,
const float dt)
{
Cloth *cloth = clmd->clothObject;
int i = 0, j = 0, mvert_num = 0;
ClothVertex *verts = NULL;
int ret = 0;
int result = 0;
mvert_num = clmd->clothObject->mvert_num;
verts = cloth->verts;
for (j = 0; j < 2; j++) {
result = 0;
result += cloth_selfcollision_response_static(clmd, collisions, collision_count, dt);
/* Apply impulses in parallel. */
if (result) {
for (i = 0; i < mvert_num; i++) {
if (verts[i].impulse_count) {
// VECADDMUL ( verts[i].tv, verts[i].impulse, 1.0f / verts[i].impulse_count );
add_v3_v3(verts[i].tv, verts[i].impulse);
add_v3_v3(verts[i].dcvel, verts[i].impulse);
zero_v3(verts[i].impulse);
verts[i].impulse_count = 0;
ret++;
}
}
}
if (!result) {
break;
}
}
return ret;
}
int cloth_bvh_collision(
Depsgraph *depsgraph, Object *ob, ClothModifierData *clmd, float step, float dt)
{
Cloth *cloth = clmd->clothObject;
BVHTree *cloth_bvh = cloth->bvhtree;
uint i = 0, mvert_num = 0;
int rounds = 0;
ClothVertex *verts = NULL;
int ret = 0, ret2 = 0;
Object **collobjs = NULL;
unsigned int numcollobj = 0;
uint *coll_counts_obj = NULL;
BVHTreeOverlap **overlap_obj = NULL;
uint coll_count_self = 0;
BVHTreeOverlap *overlap_self = NULL;
if ((clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_COLLOBJ) || cloth_bvh == NULL) {
return 0;
}
verts = cloth->verts;
mvert_num = cloth->mvert_num;
if (clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_ENABLED) {
bvhtree_update_from_cloth(clmd, false, false);
collobjs = BKE_collision_objects_create(
depsgraph, ob, clmd->coll_parms->group, &numcollobj, eModifierType_Collision);
if (collobjs) {
coll_counts_obj = MEM_callocN(sizeof(uint) * numcollobj, "CollCounts");
overlap_obj = MEM_callocN(sizeof(*overlap_obj) * numcollobj, "BVHOverlap");
for (i = 0; i < numcollobj; i++) {
Object *collob = collobjs[i];
CollisionModifierData *collmd = (CollisionModifierData *)modifiers_findByType(
collob, eModifierType_Collision);
if (!collmd->bvhtree) {
continue;
}
/* Move object to position (step) in time. */
collision_move_object(collmd, step + dt, step);
overlap_obj[i] = BLI_bvhtree_overlap(
cloth_bvh, collmd->bvhtree, &coll_counts_obj[i], NULL, NULL);
}
}
}
if (clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_SELF) {
bvhtree_update_from_cloth(clmd, false, true);
overlap_self = BLI_bvhtree_overlap(
cloth->bvhselftree, cloth->bvhselftree, &coll_count_self, NULL, NULL);
}
do {
ret2 = 0;
/* Object collisions. */
if ((clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_ENABLED) && collobjs) {
CollPair **collisions;
bool collided = false;
collisions = MEM_callocN(sizeof(CollPair *) * numcollobj, "CollPair");
for (i = 0; i < numcollobj; i++) {
Object *collob = collobjs[i];
CollisionModifierData *collmd = (CollisionModifierData *)modifiers_findByType(
collob, eModifierType_Collision);
if (!collmd->bvhtree) {
continue;
}
if (coll_counts_obj[i] && overlap_obj[i]) {
collided = cloth_bvh_objcollisions_nearcheck(
clmd,
collmd,
&collisions[i],
coll_counts_obj[i],
overlap_obj[i],
(collob->pd->flag & PFIELD_CLOTH_USE_CULLING),
(collob->pd->flag & PFIELD_CLOTH_USE_NORMAL)) ||
collided;
}
}
if (collided) {
ret += cloth_bvh_objcollisions_resolve(
clmd, collobjs, collisions, coll_counts_obj, numcollobj, dt);
ret2 += ret;
}
for (i = 0; i < numcollobj; i++) {
MEM_SAFE_FREE(collisions[i]);
}
MEM_freeN(collisions);
}
/* Self collisions. */
if (clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_SELF) {
CollPair *collisions = NULL;
verts = cloth->verts;
mvert_num = cloth->mvert_num;
if (cloth->bvhselftree) {
if (coll_count_self && overlap_self) {
collisions = (CollPair *)MEM_mallocN(sizeof(CollPair) * coll_count_self,
"collision array");
if (cloth_bvh_selfcollisions_nearcheck(
clmd, collisions, coll_count_self, overlap_self)) {
ret += cloth_bvh_selfcollisions_resolve(clmd, collisions, coll_count_self, dt);
ret2 += ret;
}
}
}
MEM_SAFE_FREE(collisions);
}
/* Apply all collision resolution. */
if (ret2) {
for (i = 0; i < mvert_num; i++) {
if (clmd->sim_parms->vgroup_mass > 0) {
if (verts[i].flags & CLOTH_VERT_FLAG_PINNED) {
continue;
}
}
add_v3_v3v3(verts[i].tx, verts[i].txold, verts[i].tv);
}
}
rounds++;
} while (ret2 && (clmd->coll_parms->loop_count > rounds));
if (overlap_obj) {
for (i = 0; i < numcollobj; i++) {
MEM_SAFE_FREE(overlap_obj[i]);
}
MEM_freeN(overlap_obj);
}
MEM_SAFE_FREE(coll_counts_obj);
MEM_SAFE_FREE(overlap_self);
BKE_collision_objects_free(collobjs);
return MIN2(ret, 1);
}
BLI_INLINE void max_v3_v3v3(float r[3], const float a[3], const float b[3])
{
r[0] = max_ff(a[0], b[0]);
r[1] = max_ff(a[1], b[1]);
r[2] = max_ff(a[2], b[2]);
}
void collision_get_collider_velocity(float vel_old[3],
float vel_new[3],
CollisionModifierData *collmd,
CollPair *collpair)
{
float u1, u2, u3;
/* compute barycentric coordinates */
collision_compute_barycentric(collpair->pb,
collmd->current_x[collpair->bp1].co,
collmd->current_x[collpair->bp2].co,
collmd->current_x[collpair->bp3].co,
&u1,
&u2,
&u3);
collision_interpolateOnTriangle(vel_new,
collmd->current_v[collpair->bp1].co,
collmd->current_v[collpair->bp2].co,
collmd->current_v[collpair->bp3].co,
u1,
u2,
u3);
/* XXX assume constant velocity of the collider for now */
copy_v3_v3(vel_old, vel_new);
}
BLI_INLINE bool cloth_point_face_collision_params(const float p1[3],
const float p2[3],
const float v0[3],
const float v1[3],
const float v2[3],
float r_nor[3],
float *r_lambda,
float r_w[3])
{
float edge1[3], edge2[3], p2face[3], p1p2[3], v0p2[3];
float nor_v0p2, nor_p1p2;
sub_v3_v3v3(edge1, v1, v0);
sub_v3_v3v3(edge2, v2, v0);
cross_v3_v3v3(r_nor, edge1, edge2);
normalize_v3(r_nor);
sub_v3_v3v3(v0p2, p2, v0);
nor_v0p2 = dot_v3v3(v0p2, r_nor);
madd_v3_v3v3fl(p2face, p2, r_nor, -nor_v0p2);
interp_weights_tri_v3(r_w, v0, v1, v2, p2face);
sub_v3_v3v3(p1p2, p2, p1);
nor_p1p2 = dot_v3v3(p1p2, r_nor);
*r_lambda = (nor_p1p2 != 0.0f ? nor_v0p2 / nor_p1p2 : 0.0f);
return r_w[1] >= 0.0f && r_w[2] >= 0.0f && r_w[1] + r_w[2] <= 1.0f;
}
static CollPair *cloth_point_collpair(float p1[3],
float p2[3],
const MVert *mverts,
int bp1,
int bp2,
int bp3,
int index_cloth,
int index_coll,
float epsilon,
CollPair *collpair)
{
const float *co1 = mverts[bp1].co, *co2 = mverts[bp2].co, *co3 = mverts[bp3].co;
float lambda /*, distance1 */, distance2;
float facenor[3], v1p1[3], v1p2[3];
float w[3];
if (!cloth_point_face_collision_params(p1, p2, co1, co2, co3, facenor, &lambda, w)) {
return collpair;
}
sub_v3_v3v3(v1p1, p1, co1);
// distance1 = dot_v3v3(v1p1, facenor);
sub_v3_v3v3(v1p2, p2, co1);
distance2 = dot_v3v3(v1p2, facenor);
// if (distance2 > epsilon || (distance1 < 0.0f && distance2 < 0.0f))
if (distance2 > epsilon) {
return collpair;
}
collpair->face1 = index_cloth; /* XXX actually not a face, but equivalent index for point */
collpair->face2 = index_coll;
collpair->ap1 = index_cloth;
collpair->ap2 = collpair->ap3 = -1; /* unused */
collpair->bp1 = bp1;
collpair->bp2 = bp2;
collpair->bp3 = bp3;
/* note: using the second point here, which is
* the current updated position that needs to be corrected
*/
copy_v3_v3(collpair->pa, p2);
collpair->distance = distance2;
mul_v3_v3fl(collpair->vector, facenor, -distance2);
interp_v3_v3v3v3(collpair->pb, co1, co2, co3, w);
copy_v3_v3(collpair->normal, facenor);
collpair->time = lambda;
collpair->flag = 0;
collpair++;
return collpair;
}
/* Determines collisions on overlap,
* collisions are written to collpair[i] and collision+number_collision_found is returned. */
static CollPair *cloth_point_collision(ModifierData *md1,
ModifierData *md2,
BVHTreeOverlap *overlap,
float epsilon,
CollPair *collpair,
float UNUSED(dt))
{
ClothModifierData *clmd = (ClothModifierData *)md1;
CollisionModifierData *collmd = (CollisionModifierData *)md2;
/* Cloth *cloth = clmd->clothObject; */ /* UNUSED */
ClothVertex *vert = NULL;
const MVertTri *vt;
const MVert *mverts = collmd->current_x;
vert = &clmd->clothObject->verts[overlap->indexA];
vt = &collmd->tri[overlap->indexB];
collpair = cloth_point_collpair(vert->tx,
vert->x,
mverts,
vt->tri[0],
vt->tri[1],
vt->tri[2],
overlap->indexA,
overlap->indexB,
epsilon,
collpair);
return collpair;
}
static void cloth_points_objcollisions_nearcheck(ClothModifierData *clmd,
CollisionModifierData *collmd,
CollPair **collisions,
CollPair **collisions_index,
int numresult,
BVHTreeOverlap *overlap,
float epsilon,
double dt)
{
int i;
/* can return 2 collisions in total */
*collisions = (CollPair *)MEM_mallocN(sizeof(CollPair) * numresult * 2, "collision array");
*collisions_index = *collisions;
for (i = 0; i < numresult; i++) {
*collisions_index = cloth_point_collision(
(ModifierData *)clmd, (ModifierData *)collmd, overlap + i, epsilon, *collisions_index, dt);
}
}
void cloth_find_point_contacts(Depsgraph *depsgraph,
Object *ob,
ClothModifierData *clmd,
float step,
float dt,
ColliderContacts **r_collider_contacts,
int *r_totcolliders)
{
Cloth *cloth = clmd->clothObject;
BVHTree *cloth_bvh;
unsigned int i = 0, mvert_num = 0;
ClothVertex *verts = NULL;
ColliderContacts *collider_contacts;
Object **collobjs = NULL;
unsigned int numcollobj = 0;
verts = cloth->verts;
mvert_num = cloth->mvert_num;
////////////////////////////////////////////////////////////
// static collisions
////////////////////////////////////////////////////////////
/* Check we do have collision objects to test against, before doing anything else. */
collobjs = BKE_collision_objects_create(
depsgraph, ob, clmd->coll_parms->group, &numcollobj, eModifierType_Collision);
if (!collobjs) {
*r_collider_contacts = NULL;
*r_totcolliders = 0;
return;
}
// create temporary cloth points bvh
cloth_bvh = BLI_bvhtree_new(mvert_num, clmd->coll_parms->epsilon, 4, 6);
/* fill tree */
for (i = 0; i < mvert_num; i++) {
float co[6];
copy_v3_v3(&co[0 * 3], verts[i].x);
copy_v3_v3(&co[1 * 3], verts[i].tx);
BLI_bvhtree_insert(cloth_bvh, i, co, 2);
}
/* balance tree */
BLI_bvhtree_balance(cloth_bvh);
/* move object to position (step) in time */
for (i = 0; i < numcollobj; i++) {
Object *collob = collobjs[i];
CollisionModifierData *collmd = (CollisionModifierData *)modifiers_findByType(
collob, eModifierType_Collision);
if (!collmd->bvhtree) {
continue;
}
/* move object to position (step) in time */
collision_move_object(collmd, step + dt, step);
}
collider_contacts = MEM_callocN(sizeof(ColliderContacts) * numcollobj, "CollPair");
// check all collision objects
for (i = 0; i < numcollobj; i++) {
ColliderContacts *ct = collider_contacts + i;
Object *collob = collobjs[i];
CollisionModifierData *collmd = (CollisionModifierData *)modifiers_findByType(
collob, eModifierType_Collision);
BVHTreeOverlap *overlap;
unsigned int result = 0;
float epsilon;
ct->ob = collob;
ct->collmd = collmd;
ct->collisions = NULL;
ct->totcollisions = 0;
if (!collmd->bvhtree) {
continue;
}
/* search for overlapping collision pairs */
overlap = BLI_bvhtree_overlap(cloth_bvh, collmd->bvhtree, &result, NULL, NULL);
epsilon = BLI_bvhtree_get_epsilon(collmd->bvhtree);
// go to next object if no overlap is there
if (result && overlap) {
CollPair *collisions_index;
/* check if collisions really happen (costly near check) */
cloth_points_objcollisions_nearcheck(
clmd, collmd, &ct->collisions, &collisions_index, result, overlap, epsilon, dt);
ct->totcollisions = (int)(collisions_index - ct->collisions);
/* Resolve nearby collisions. */
#if 0
ret += cloth_points_objcollisions_resolve(
clmd, collmd, collob->pd, collisions[i], collisions_index[i], dt);
#endif
}
if (overlap) {
MEM_freeN(overlap);
}
}
BKE_collision_objects_free(collobjs);
BLI_bvhtree_free(cloth_bvh);
////////////////////////////////////////////////////////////
// update positions
// this is needed for bvh_calc_DOP_hull_moving() [kdop.c]
////////////////////////////////////////////////////////////
// verts come from clmd
for (i = 0; i < mvert_num; i++) {
if (clmd->sim_parms->vgroup_mass > 0) {
if (verts[i].flags & CLOTH_VERT_FLAG_PINNED) {
continue;
}
}
add_v3_v3v3(verts[i].tx, verts[i].txold, verts[i].tv);
}
////////////////////////////////////////////////////////////
*r_collider_contacts = collider_contacts;
*r_totcolliders = numcollobj;
}
void cloth_free_contacts(ColliderContacts *collider_contacts, int totcolliders)
{
if (collider_contacts) {
int i;
for (i = 0; i < totcolliders; ++i) {
ColliderContacts *ct = collider_contacts + i;
if (ct->collisions) {
MEM_freeN(ct->collisions);
}
}
MEM_freeN(collider_contacts);
}
}