This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/draw/engines/eevee/eevee_volumes.c
2019-08-01 14:02:41 +10:00

679 lines
29 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright 2016, Blender Foundation.
*/
/** \file
* \ingroup draw_engine
*
* Volumetric effects rendering using frostbite approach.
*/
#include "DRW_render.h"
#include "BLI_rand.h"
#include "BLI_string_utils.h"
#include "DNA_object_force_types.h"
#include "DNA_smoke_types.h"
#include "DNA_world_types.h"
#include "BKE_modifier.h"
#include "BKE_mesh.h"
#include "BKE_smoke.h"
#include "ED_screen.h"
#include "DEG_depsgraph_query.h"
#include "eevee_private.h"
#include "GPU_draw.h"
#include "GPU_texture.h"
#include "GPU_material.h"
static struct {
char *volumetric_common_lib;
char *volumetric_common_lights_lib;
struct GPUShader *volumetric_clear_sh;
struct GPUShader *scatter_sh;
struct GPUShader *scatter_with_lights_sh;
struct GPUShader *volumetric_integration_sh;
struct GPUShader *volumetric_resolve_sh;
GPUTexture *color_src;
GPUTexture *depth_src;
GPUTexture *dummy_density;
GPUTexture *dummy_flame;
GPUTexture *dummy_scatter;
GPUTexture *dummy_transmit;
/* List of all smoke domains rendered within this frame. */
ListBase smoke_domains;
} e_data = {NULL}; /* Engine data */
extern char datatoc_bsdf_common_lib_glsl[];
extern char datatoc_common_uniforms_lib_glsl[];
extern char datatoc_common_view_lib_glsl[];
extern char datatoc_octahedron_lib_glsl[];
extern char datatoc_irradiance_lib_glsl[];
extern char datatoc_lights_lib_glsl[];
extern char datatoc_volumetric_frag_glsl[];
extern char datatoc_volumetric_geom_glsl[];
extern char datatoc_volumetric_vert_glsl[];
extern char datatoc_volumetric_resolve_frag_glsl[];
extern char datatoc_volumetric_scatter_frag_glsl[];
extern char datatoc_volumetric_integration_frag_glsl[];
extern char datatoc_volumetric_lib_glsl[];
extern char datatoc_common_fullscreen_vert_glsl[];
static void eevee_create_shader_volumes(void)
{
e_data.volumetric_common_lib = BLI_string_joinN(datatoc_common_view_lib_glsl,
datatoc_common_uniforms_lib_glsl,
datatoc_bsdf_common_lib_glsl,
datatoc_volumetric_lib_glsl);
e_data.volumetric_common_lights_lib = BLI_string_joinN(datatoc_common_view_lib_glsl,
datatoc_common_uniforms_lib_glsl,
datatoc_bsdf_common_lib_glsl,
datatoc_octahedron_lib_glsl,
datatoc_irradiance_lib_glsl,
datatoc_lights_lib_glsl,
datatoc_volumetric_lib_glsl);
e_data.volumetric_clear_sh = DRW_shader_create_with_lib(datatoc_volumetric_vert_glsl,
datatoc_volumetric_geom_glsl,
datatoc_volumetric_frag_glsl,
e_data.volumetric_common_lib,
"#define VOLUMETRICS\n"
"#define CLEAR\n");
e_data.scatter_sh = DRW_shader_create_with_lib(datatoc_volumetric_vert_glsl,
datatoc_volumetric_geom_glsl,
datatoc_volumetric_scatter_frag_glsl,
e_data.volumetric_common_lights_lib,
SHADER_DEFINES
"#define VOLUMETRICS\n"
"#define VOLUME_SHADOW\n");
e_data.scatter_with_lights_sh = DRW_shader_create_with_lib(datatoc_volumetric_vert_glsl,
datatoc_volumetric_geom_glsl,
datatoc_volumetric_scatter_frag_glsl,
e_data.volumetric_common_lights_lib,
SHADER_DEFINES
"#define VOLUMETRICS\n"
"#define VOLUME_LIGHTING\n"
"#define VOLUME_SHADOW\n");
e_data.volumetric_integration_sh = DRW_shader_create_with_lib(
datatoc_volumetric_vert_glsl,
datatoc_volumetric_geom_glsl,
datatoc_volumetric_integration_frag_glsl,
e_data.volumetric_common_lib,
NULL);
e_data.volumetric_resolve_sh = DRW_shader_create_with_lib(datatoc_common_fullscreen_vert_glsl,
NULL,
datatoc_volumetric_resolve_frag_glsl,
e_data.volumetric_common_lib,
NULL);
float color[4] = {1.0f, 1.0f, 1.0f, 1.0f};
e_data.dummy_density = DRW_texture_create_3d(1, 1, 1, GPU_RGBA8, DRW_TEX_WRAP, color);
float flame = 0.0f;
e_data.dummy_flame = DRW_texture_create_3d(1, 1, 1, GPU_R8, DRW_TEX_WRAP, &flame);
}
void EEVEE_volumes_set_jitter(EEVEE_ViewLayerData *sldata, uint current_sample)
{
EEVEE_CommonUniformBuffer *common_data = &sldata->common_data;
double ht_point[3];
double ht_offset[3] = {0.0, 0.0};
uint ht_primes[3] = {3, 7, 2};
BLI_halton_3d(ht_primes, ht_offset, current_sample, ht_point);
common_data->vol_jitter[0] = (float)ht_point[0];
common_data->vol_jitter[1] = (float)ht_point[1];
common_data->vol_jitter[2] = (float)ht_point[2];
}
void EEVEE_volumes_init(EEVEE_ViewLayerData *sldata, EEVEE_Data *vedata)
{
EEVEE_StorageList *stl = vedata->stl;
EEVEE_FramebufferList *fbl = vedata->fbl;
EEVEE_TextureList *txl = vedata->txl;
EEVEE_EffectsInfo *effects = stl->effects;
EEVEE_CommonUniformBuffer *common_data = &sldata->common_data;
const DRWContextState *draw_ctx = DRW_context_state_get();
const Scene *scene_eval = DEG_get_evaluated_scene(draw_ctx->depsgraph);
const float *viewport_size = DRW_viewport_size_get();
BLI_listbase_clear(&e_data.smoke_domains);
const int tile_size = scene_eval->eevee.volumetric_tile_size;
/* Find Froxel Texture resolution. */
int tex_size[3];
tex_size[0] = (int)ceilf(fmaxf(1.0f, viewport_size[0] / (float)tile_size));
tex_size[1] = (int)ceilf(fmaxf(1.0f, viewport_size[1] / (float)tile_size));
tex_size[2] = max_ii(scene_eval->eevee.volumetric_samples, 1);
common_data->vol_coord_scale[0] = viewport_size[0] / (float)(tile_size * tex_size[0]);
common_data->vol_coord_scale[1] = viewport_size[1] / (float)(tile_size * tex_size[1]);
common_data->vol_coord_scale[2] = 1.0f / viewport_size[0];
common_data->vol_coord_scale[3] = 1.0f / viewport_size[1];
/* TODO compute snap to maxZBuffer for clustered rendering */
if ((common_data->vol_tex_size[0] != tex_size[0]) ||
(common_data->vol_tex_size[1] != tex_size[1]) ||
(common_data->vol_tex_size[2] != tex_size[2])) {
DRW_TEXTURE_FREE_SAFE(txl->volume_prop_scattering);
DRW_TEXTURE_FREE_SAFE(txl->volume_prop_extinction);
DRW_TEXTURE_FREE_SAFE(txl->volume_prop_emission);
DRW_TEXTURE_FREE_SAFE(txl->volume_prop_phase);
DRW_TEXTURE_FREE_SAFE(txl->volume_scatter);
DRW_TEXTURE_FREE_SAFE(txl->volume_transmit);
DRW_TEXTURE_FREE_SAFE(txl->volume_scatter_history);
DRW_TEXTURE_FREE_SAFE(txl->volume_transmit_history);
GPU_FRAMEBUFFER_FREE_SAFE(fbl->volumetric_fb);
GPU_FRAMEBUFFER_FREE_SAFE(fbl->volumetric_scat_fb);
GPU_FRAMEBUFFER_FREE_SAFE(fbl->volumetric_integ_fb);
copy_v3_v3_int(common_data->vol_tex_size, tex_size);
common_data->vol_inv_tex_size[0] = 1.0f / (float)(tex_size[0]);
common_data->vol_inv_tex_size[1] = 1.0f / (float)(tex_size[1]);
common_data->vol_inv_tex_size[2] = 1.0f / (float)(tex_size[2]);
}
/* Like frostbite's paper, 5% blend of the new frame. */
common_data->vol_history_alpha = (txl->volume_prop_scattering == NULL) ? 0.0f : 0.95f;
/* Temporal Super sampling jitter */
uint ht_primes[3] = {3, 7, 2};
uint current_sample = 0;
/* If TAA is in use do not use the history buffer. */
bool do_taa = ((effects->enabled_effects & EFFECT_TAA) != 0);
if (draw_ctx->evil_C != NULL) {
struct wmWindowManager *wm = CTX_wm_manager(draw_ctx->evil_C);
do_taa = do_taa && (ED_screen_animation_no_scrub(wm) == NULL);
}
if (do_taa) {
common_data->vol_history_alpha = 0.0f;
current_sample = effects->taa_current_sample - 1;
effects->volume_current_sample = -1;
}
else if (DRW_state_is_image_render()) {
const uint max_sample = (ht_primes[0] * ht_primes[1] * ht_primes[2]);
current_sample = effects->volume_current_sample = (effects->volume_current_sample + 1) %
max_sample;
if (current_sample != max_sample - 1) {
DRW_viewport_request_redraw();
}
}
EEVEE_volumes_set_jitter(sldata, current_sample);
float integration_start = scene_eval->eevee.volumetric_start;
float integration_end = scene_eval->eevee.volumetric_end;
common_data->vol_light_clamp = scene_eval->eevee.volumetric_light_clamp;
common_data->vol_shadow_steps = (float)scene_eval->eevee.volumetric_shadow_samples;
if ((scene_eval->eevee.flag & SCE_EEVEE_VOLUMETRIC_SHADOWS) == 0) {
common_data->vol_shadow_steps = 0;
}
/* Update view_vecs */
float invproj[4][4], winmat[4][4];
DRW_view_winmat_get(NULL, winmat, false);
DRW_view_winmat_get(NULL, invproj, true);
EEVEE_update_viewvecs(invproj, winmat, sldata->common_data.view_vecs);
if (DRW_view_is_persp_get(NULL)) {
float sample_distribution = scene_eval->eevee.volumetric_sample_distribution;
sample_distribution = 4.0f * (1.00001f - sample_distribution);
const float clip_start = common_data->view_vecs[0][2];
/* Negate */
float near = integration_start = min_ff(-integration_start, clip_start - 1e-4f);
float far = integration_end = min_ff(-integration_end, near - 1e-4f);
common_data->vol_depth_param[0] = (far - near * exp2(1.0f / sample_distribution)) /
(far - near);
common_data->vol_depth_param[1] = (1.0f - common_data->vol_depth_param[0]) / near;
common_data->vol_depth_param[2] = sample_distribution;
}
else {
const float clip_start = common_data->view_vecs[0][2];
const float clip_end = clip_start + common_data->view_vecs[1][2];
integration_start = min_ff(integration_end, clip_start);
integration_end = max_ff(-integration_end, clip_end);
common_data->vol_depth_param[0] = integration_start;
common_data->vol_depth_param[1] = integration_end;
common_data->vol_depth_param[2] = 1.0f / (integration_end - integration_start);
}
/* Disable clamp if equal to 0. */
if (common_data->vol_light_clamp == 0.0) {
common_data->vol_light_clamp = FLT_MAX;
}
common_data->vol_use_lights = (scene_eval->eevee.flag & SCE_EEVEE_VOLUMETRIC_LIGHTS) != 0;
if (!e_data.dummy_scatter) {
float scatter[4] = {0.0f, 0.0f, 0.0f, 0.0f};
float transmit[4] = {1.0f, 1.0f, 1.0f, 1.0f};
e_data.dummy_scatter = DRW_texture_create_3d(1, 1, 1, GPU_RGBA8, DRW_TEX_WRAP, scatter);
e_data.dummy_transmit = DRW_texture_create_3d(1, 1, 1, GPU_RGBA8, DRW_TEX_WRAP, transmit);
}
}
void EEVEE_volumes_cache_init(EEVEE_ViewLayerData *sldata, EEVEE_Data *vedata)
{
EEVEE_PassList *psl = vedata->psl;
EEVEE_StorageList *stl = vedata->stl;
EEVEE_EffectsInfo *effects = stl->effects;
EEVEE_CommonUniformBuffer *common_data = &sldata->common_data;
const DRWContextState *draw_ctx = DRW_context_state_get();
Scene *scene = draw_ctx->scene;
DRWShadingGroup *grp = NULL;
/* Shaders */
if (!e_data.scatter_sh) {
eevee_create_shader_volumes();
}
/* Quick breakdown of the Volumetric rendering:
*
* The rendering is separated in 4 stages:
*
* - Material Parameters : we collect volume properties of
* all participating media in the scene and store them in
* a 3D texture aligned with the 3D frustum.
* This is done in 2 passes, one that clear the texture
* and/or evaluate the world volumes, and the 2nd one that
* additively render object volumes.
*
* - Light Scattering : the volume properties then are sampled
* and light scattering is evaluated for each cell of the
* volume texture. Temporal super-sampling (if enabled) occurs here.
*
* - Volume Integration : the scattered light and extinction is
* integrated (accumulated) along the view-rays. The result is stored
* for every cell in another texture.
*
* - Full-screen Resolve : From the previous stage, we get two
* 3D textures that contains integrated scattered light and extinction
* for "every" positions in the frustum. We only need to sample
* them and blend the scene color with those factors. This also
* work for alpha blended materials.
*/
/* World pass is not additive as it also clear the buffer. */
DRW_PASS_CREATE(psl->volumetric_world_ps, DRW_STATE_WRITE_COLOR);
DRW_PASS_CREATE(psl->volumetric_objects_ps, DRW_STATE_WRITE_COLOR | DRW_STATE_BLEND_ADD);
/* World Volumetric */
struct World *wo = scene->world;
if (wo != NULL && wo->use_nodes && wo->nodetree &&
!LOOK_DEV_STUDIO_LIGHT_ENABLED(draw_ctx->v3d)) {
struct GPUMaterial *mat = EEVEE_material_world_volume_get(scene, wo);
if (GPU_material_use_domain_volume(mat)) {
grp = DRW_shgroup_material_create(mat, psl->volumetric_world_ps);
}
if (grp) {
DRW_shgroup_uniform_block(grp, "common_block", sldata->common_ubo);
/* TODO (fclem): remove those (need to clean the GLSL files). */
DRW_shgroup_uniform_block(grp, "grid_block", sldata->grid_ubo);
DRW_shgroup_uniform_block(grp, "probe_block", sldata->probe_ubo);
DRW_shgroup_uniform_block(grp, "planar_block", sldata->planar_ubo);
DRW_shgroup_uniform_block(grp, "light_block", sldata->light_ubo);
DRW_shgroup_uniform_block(grp, "shadow_block", sldata->shadow_ubo);
/* Fix principle volumetric not working with world materials. */
DRW_shgroup_uniform_texture(grp, "sampdensity", e_data.dummy_density);
DRW_shgroup_uniform_texture(grp, "sampflame", e_data.dummy_flame);
DRW_shgroup_uniform_vec2_copy(grp, "unftemperature", (float[2]){0.0f, 1.0f});
DRW_shgroup_call_procedural_triangles(grp, NULL, common_data->vol_tex_size[2]);
effects->enabled_effects |= (EFFECT_VOLUMETRIC | EFFECT_POST_BUFFER);
}
}
if (grp == NULL) {
/* If no world or volume material is present just clear the buffer with this drawcall */
grp = DRW_shgroup_create(e_data.volumetric_clear_sh, psl->volumetric_world_ps);
DRW_shgroup_uniform_block(grp, "common_block", sldata->common_ubo);
DRW_shgroup_call_procedural_triangles(grp, NULL, common_data->vol_tex_size[2]);
}
}
typedef struct EEVEE_InstanceVolumeMatrix {
DrawData dd;
float volume_mat[4][4];
} EEVEE_InstanceVolumeMatrix;
void EEVEE_volumes_cache_object_add(EEVEE_ViewLayerData *sldata,
EEVEE_Data *vedata,
Scene *scene,
Object *ob)
{
const DRWContextState *draw_ctx = DRW_context_state_get();
static float white[3] = {1.0f, 1.0f, 1.0f};
float *texcoloc = NULL;
float *texcosize = NULL;
struct ModifierData *md = NULL;
Material *ma = give_current_material(ob, 1);
if (ma == NULL) {
return;
}
struct GPUMaterial *mat = EEVEE_material_mesh_volume_get(scene, ma);
eGPUMaterialStatus status = GPU_material_status(mat);
if (status == GPU_MAT_QUEUED) {
vedata->stl->g_data->queued_shaders_count++;
}
/* If shader failed to compile or is currently compiling. */
if (status != GPU_MAT_SUCCESS) {
return;
}
DRWShadingGroup *grp = DRW_shgroup_material_create(mat, vedata->psl->volumetric_objects_ps);
BKE_mesh_texspace_get_reference((struct Mesh *)ob->data, NULL, &texcoloc, NULL, &texcosize);
/* TODO(fclem) remove those "unnecessary" UBOs */
DRW_shgroup_uniform_block(grp, "planar_block", sldata->planar_ubo);
DRW_shgroup_uniform_block(grp, "probe_block", sldata->probe_ubo);
DRW_shgroup_uniform_block(grp, "shadow_block", sldata->shadow_ubo);
DRW_shgroup_uniform_block(grp, "light_block", sldata->light_ubo);
DRW_shgroup_uniform_block(grp, "grid_block", sldata->grid_ubo);
DRW_shgroup_uniform_block(grp, "common_block", sldata->common_ubo);
DRW_shgroup_uniform_vec3(grp, "volumeOrcoLoc", texcoloc, 1);
DRW_shgroup_uniform_vec3(grp, "volumeOrcoSize", texcosize, 1);
/* Smoke Simulation */
if (((ob->base_flag & BASE_FROM_DUPLI) == 0) &&
(md = modifiers_findByType(ob, eModifierType_Smoke)) &&
(modifier_isEnabled(scene, md, eModifierMode_Realtime)) &&
((SmokeModifierData *)md)->domain != NULL) {
SmokeModifierData *smd = (SmokeModifierData *)md;
SmokeDomainSettings *sds = smd->domain;
/* Don't show smoke before simulation starts, this could be made an option in the future. */
const bool show_smoke = ((int)DEG_get_ctime(draw_ctx->depsgraph) >=
sds->point_cache[0]->startframe);
if (sds->fluid && show_smoke) {
const bool show_highres = BKE_smoke_show_highres(scene, sds);
if (!sds->wt || !show_highres) {
GPU_create_smoke(smd, 0);
}
else if (sds->wt && show_highres) {
GPU_create_smoke(smd, 1);
}
BLI_addtail(&e_data.smoke_domains, BLI_genericNodeN(smd));
}
DRW_shgroup_uniform_texture_ref(
grp, "sampdensity", sds->tex ? &sds->tex : &e_data.dummy_density);
DRW_shgroup_uniform_texture_ref(
grp, "sampflame", sds->tex_flame ? &sds->tex_flame : &e_data.dummy_flame);
/* Constant Volume color. */
bool use_constant_color = ((sds->active_fields & SM_ACTIVE_COLORS) == 0 &&
(sds->active_fields & SM_ACTIVE_COLOR_SET) != 0);
DRW_shgroup_uniform_vec3(
grp, "volumeColor", (use_constant_color) ? sds->active_color : white, 1);
/* Output is such that 0..1 maps to 0..1000K */
DRW_shgroup_uniform_vec2(grp, "unftemperature", &sds->flame_ignition, 1);
}
else {
DRW_shgroup_uniform_texture(grp, "sampdensity", e_data.dummy_density);
DRW_shgroup_uniform_texture(grp, "sampflame", e_data.dummy_flame);
DRW_shgroup_uniform_vec3(grp, "volumeColor", white, 1);
DRW_shgroup_uniform_vec2(grp, "unftemperature", (float[2]){0.0f, 1.0f}, 1);
}
/* TODO Reduce to number of slices intersecting. */
/* TODO Preemptive culling. */
DRW_shgroup_call_procedural_triangles(grp, ob, sldata->common_data.vol_tex_size[2]);
vedata->stl->effects->enabled_effects |= (EFFECT_VOLUMETRIC | EFFECT_POST_BUFFER);
}
void EEVEE_volumes_cache_finish(EEVEE_ViewLayerData *sldata, EEVEE_Data *vedata)
{
EEVEE_PassList *psl = vedata->psl;
EEVEE_TextureList *txl = vedata->txl;
EEVEE_EffectsInfo *effects = vedata->stl->effects;
LightCache *lcache = vedata->stl->g_data->light_cache;
EEVEE_CommonUniformBuffer *common_data = &sldata->common_data;
if ((effects->enabled_effects & EFFECT_VOLUMETRIC) != 0) {
DRWShadingGroup *grp;
struct GPUShader *sh;
DRW_PASS_CREATE(psl->volumetric_scatter_ps, DRW_STATE_WRITE_COLOR);
sh = (common_data->vol_use_lights) ? e_data.scatter_with_lights_sh : e_data.scatter_sh;
grp = DRW_shgroup_create(sh, psl->volumetric_scatter_ps);
DRW_shgroup_uniform_texture_ref(grp, "irradianceGrid", &lcache->grid_tx.tex);
DRW_shgroup_uniform_texture_ref(grp, "shadowCubeTexture", &sldata->shadow_cube_pool);
DRW_shgroup_uniform_texture_ref(grp, "shadowCascadeTexture", &sldata->shadow_cascade_pool);
DRW_shgroup_uniform_texture_ref(grp, "volumeScattering", &txl->volume_prop_scattering);
DRW_shgroup_uniform_texture_ref(grp, "volumeExtinction", &txl->volume_prop_extinction);
DRW_shgroup_uniform_texture_ref(grp, "volumeEmission", &txl->volume_prop_emission);
DRW_shgroup_uniform_texture_ref(grp, "volumePhase", &txl->volume_prop_phase);
DRW_shgroup_uniform_texture_ref(grp, "historyScattering", &txl->volume_scatter_history);
DRW_shgroup_uniform_texture_ref(grp, "historyTransmittance", &txl->volume_transmit_history);
DRW_shgroup_uniform_block(grp, "light_block", sldata->light_ubo);
DRW_shgroup_uniform_block(grp, "shadow_block", sldata->shadow_ubo);
DRW_shgroup_uniform_block(grp, "common_block", sldata->common_ubo);
DRW_shgroup_call_procedural_triangles(grp, NULL, common_data->vol_tex_size[2]);
DRW_PASS_CREATE(psl->volumetric_integration_ps, DRW_STATE_WRITE_COLOR);
grp = DRW_shgroup_create(e_data.volumetric_integration_sh, psl->volumetric_integration_ps);
DRW_shgroup_uniform_texture_ref(grp, "volumeScattering", &txl->volume_scatter);
DRW_shgroup_uniform_texture_ref(grp, "volumeExtinction", &txl->volume_transmit);
DRW_shgroup_uniform_block(grp, "common_block", sldata->common_ubo);
DRW_shgroup_call_procedural_triangles(grp, NULL, common_data->vol_tex_size[2]);
DRW_PASS_CREATE(psl->volumetric_resolve_ps, DRW_STATE_WRITE_COLOR | DRW_STATE_BLEND_CUSTOM);
grp = DRW_shgroup_create(e_data.volumetric_resolve_sh, psl->volumetric_resolve_ps);
DRW_shgroup_uniform_texture_ref(grp, "inScattering", &txl->volume_scatter);
DRW_shgroup_uniform_texture_ref(grp, "inTransmittance", &txl->volume_transmit);
DRW_shgroup_uniform_texture_ref(grp, "inSceneDepth", &e_data.depth_src);
DRW_shgroup_uniform_block(grp, "common_block", sldata->common_ubo);
DRW_shgroup_call_procedural_triangles(grp, NULL, 1);
}
}
void EEVEE_volumes_draw_init(EEVEE_ViewLayerData *sldata, EEVEE_Data *vedata)
{
EEVEE_FramebufferList *fbl = vedata->fbl;
EEVEE_TextureList *txl = vedata->txl;
EEVEE_EffectsInfo *effects = vedata->stl->effects;
EEVEE_CommonUniformBuffer *common_data = &sldata->common_data;
if ((effects->enabled_effects & EFFECT_VOLUMETRIC) != 0) {
int *tex_size = common_data->vol_tex_size;
if (txl->volume_prop_scattering == NULL) {
/* Volume properties: We evaluate all volumetric objects
* and store their final properties into each froxel */
txl->volume_prop_scattering = DRW_texture_create_3d(
tex_size[0], tex_size[1], tex_size[2], GPU_R11F_G11F_B10F, DRW_TEX_FILTER, NULL);
txl->volume_prop_extinction = DRW_texture_create_3d(
tex_size[0], tex_size[1], tex_size[2], GPU_R11F_G11F_B10F, DRW_TEX_FILTER, NULL);
txl->volume_prop_emission = DRW_texture_create_3d(
tex_size[0], tex_size[1], tex_size[2], GPU_R11F_G11F_B10F, DRW_TEX_FILTER, NULL);
txl->volume_prop_phase = DRW_texture_create_3d(
tex_size[0], tex_size[1], tex_size[2], GPU_RG16F, DRW_TEX_FILTER, NULL);
/* Volume scattering: We compute for each froxel the
* Scattered light towards the view. We also resolve temporal
* super sampling during this stage. */
txl->volume_scatter = DRW_texture_create_3d(
tex_size[0], tex_size[1], tex_size[2], GPU_R11F_G11F_B10F, DRW_TEX_FILTER, NULL);
txl->volume_transmit = DRW_texture_create_3d(
tex_size[0], tex_size[1], tex_size[2], GPU_R11F_G11F_B10F, DRW_TEX_FILTER, NULL);
/* Final integration: We compute for each froxel the
* amount of scattered light and extinction coef at this
* given depth. We use these textures as double buffer
* for the volumetric history. */
txl->volume_scatter_history = DRW_texture_create_3d(
tex_size[0], tex_size[1], tex_size[2], GPU_R11F_G11F_B10F, DRW_TEX_FILTER, NULL);
txl->volume_transmit_history = DRW_texture_create_3d(
tex_size[0], tex_size[1], tex_size[2], GPU_R11F_G11F_B10F, DRW_TEX_FILTER, NULL);
}
GPU_framebuffer_ensure_config(&fbl->volumetric_fb,
{GPU_ATTACHMENT_NONE,
GPU_ATTACHMENT_TEXTURE(txl->volume_prop_scattering),
GPU_ATTACHMENT_TEXTURE(txl->volume_prop_extinction),
GPU_ATTACHMENT_TEXTURE(txl->volume_prop_emission),
GPU_ATTACHMENT_TEXTURE(txl->volume_prop_phase)});
GPU_framebuffer_ensure_config(&fbl->volumetric_scat_fb,
{GPU_ATTACHMENT_NONE,
GPU_ATTACHMENT_TEXTURE(txl->volume_scatter),
GPU_ATTACHMENT_TEXTURE(txl->volume_transmit)});
GPU_framebuffer_ensure_config(&fbl->volumetric_integ_fb,
{GPU_ATTACHMENT_NONE,
GPU_ATTACHMENT_TEXTURE(txl->volume_scatter_history),
GPU_ATTACHMENT_TEXTURE(txl->volume_transmit_history)});
}
else {
DRW_TEXTURE_FREE_SAFE(txl->volume_prop_scattering);
DRW_TEXTURE_FREE_SAFE(txl->volume_prop_extinction);
DRW_TEXTURE_FREE_SAFE(txl->volume_prop_emission);
DRW_TEXTURE_FREE_SAFE(txl->volume_prop_phase);
DRW_TEXTURE_FREE_SAFE(txl->volume_scatter);
DRW_TEXTURE_FREE_SAFE(txl->volume_transmit);
DRW_TEXTURE_FREE_SAFE(txl->volume_scatter_history);
DRW_TEXTURE_FREE_SAFE(txl->volume_transmit_history);
GPU_FRAMEBUFFER_FREE_SAFE(fbl->volumetric_fb);
GPU_FRAMEBUFFER_FREE_SAFE(fbl->volumetric_scat_fb);
GPU_FRAMEBUFFER_FREE_SAFE(fbl->volumetric_integ_fb);
}
effects->volume_scatter = e_data.dummy_scatter;
effects->volume_transmit = e_data.dummy_transmit;
}
void EEVEE_volumes_compute(EEVEE_ViewLayerData *UNUSED(sldata), EEVEE_Data *vedata)
{
EEVEE_PassList *psl = vedata->psl;
EEVEE_TextureList *txl = vedata->txl;
EEVEE_FramebufferList *fbl = vedata->fbl;
EEVEE_StorageList *stl = vedata->stl;
EEVEE_EffectsInfo *effects = stl->effects;
if ((effects->enabled_effects & EFFECT_VOLUMETRIC) != 0) {
DRW_stats_group_start("Volumetrics");
GPU_framebuffer_bind(fbl->volumetric_fb);
DRW_draw_pass(psl->volumetric_world_ps);
DRW_draw_pass(psl->volumetric_objects_ps);
GPU_framebuffer_bind(fbl->volumetric_scat_fb);
DRW_draw_pass(psl->volumetric_scatter_ps);
GPU_framebuffer_bind(fbl->volumetric_integ_fb);
DRW_draw_pass(psl->volumetric_integration_ps);
SWAP(struct GPUFrameBuffer *, fbl->volumetric_scat_fb, fbl->volumetric_integ_fb);
SWAP(GPUTexture *, txl->volume_scatter, txl->volume_scatter_history);
SWAP(GPUTexture *, txl->volume_transmit, txl->volume_transmit_history);
effects->volume_scatter = txl->volume_scatter;
effects->volume_transmit = txl->volume_transmit;
/* Restore */
GPU_framebuffer_bind(fbl->main_fb);
DRW_stats_group_end();
}
}
void EEVEE_volumes_resolve(EEVEE_ViewLayerData *UNUSED(sldata), EEVEE_Data *vedata)
{
EEVEE_PassList *psl = vedata->psl;
EEVEE_FramebufferList *fbl = vedata->fbl;
EEVEE_StorageList *stl = vedata->stl;
EEVEE_EffectsInfo *effects = stl->effects;
if ((effects->enabled_effects & EFFECT_VOLUMETRIC) != 0) {
DefaultTextureList *dtxl = DRW_viewport_texture_list_get();
e_data.depth_src = dtxl->depth;
/* Apply for opaque geometry. */
GPU_framebuffer_bind(fbl->main_color_fb);
DRW_draw_pass(psl->volumetric_resolve_ps);
/* Restore. */
GPU_framebuffer_bind(fbl->main_fb);
}
}
void EEVEE_volumes_free_smoke_textures(void)
{
/* Free Smoke Textures after rendering */
for (LinkData *link = e_data.smoke_domains.first; link; link = link->next) {
SmokeModifierData *smd = (SmokeModifierData *)link->data;
GPU_free_smoke(smd);
}
BLI_freelistN(&e_data.smoke_domains);
}
void EEVEE_volumes_free(void)
{
MEM_SAFE_FREE(e_data.volumetric_common_lib);
MEM_SAFE_FREE(e_data.volumetric_common_lights_lib);
DRW_TEXTURE_FREE_SAFE(e_data.dummy_scatter);
DRW_TEXTURE_FREE_SAFE(e_data.dummy_transmit);
DRW_TEXTURE_FREE_SAFE(e_data.dummy_density);
DRW_TEXTURE_FREE_SAFE(e_data.dummy_flame);
DRW_SHADER_FREE_SAFE(e_data.volumetric_clear_sh);
DRW_SHADER_FREE_SAFE(e_data.scatter_sh);
DRW_SHADER_FREE_SAFE(e_data.scatter_with_lights_sh);
DRW_SHADER_FREE_SAFE(e_data.volumetric_integration_sh);
DRW_SHADER_FREE_SAFE(e_data.volumetric_resolve_sh);
}