This patch adds support for the curve primitive from OptiX to Cycles. It's currently hidden behind a debug option, since there can be some slight rendering differences still (because no backface culling is performed and something seems off with endcaps). The curve primitive was added with the OptiX 7.1 SDK and requires a r450 driver or newer, so this also updates the codebase to be able to build with the new SDK. Reviewed By: brecht Differential Revision: https://developer.blender.org/D8223
799 lines
26 KiB
C++
799 lines
26 KiB
C++
/*
|
|
* Copyright 2009-2020 Intel Corporation. Adapted from Embree with
|
|
* with modifications.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* Curve primitive intersection functions.
|
|
*
|
|
* The code here was adapted from curve_intersector_sweep.h in Embree, to get
|
|
* an exact match between Embree CPU ray-tracing and our GPU ray-tracing. */
|
|
|
|
#define CURVE_NUM_BEZIER_SUBDIVISIONS 3
|
|
#define CURVE_NUM_BEZIER_SUBDIVISIONS_UNSTABLE (CURVE_NUM_BEZIER_SUBDIVISIONS + 1)
|
|
#define CURVE_NUM_BEZIER_STEPS 2
|
|
#define CURVE_NUM_JACOBIAN_ITERATIONS 5
|
|
|
|
#ifdef __HAIR__
|
|
|
|
/* Catmull-rom curve evaluation. */
|
|
|
|
ccl_device_inline float4 catmull_rom_basis_eval(const float4 curve[4], float u)
|
|
{
|
|
const float t = u;
|
|
const float s = 1.0f - u;
|
|
const float n0 = -t * s * s;
|
|
const float n1 = 2.0f + t * t * (3.0f * t - 5.0f);
|
|
const float n2 = 2.0f + s * s * (3.0f * s - 5.0f);
|
|
const float n3 = -s * t * t;
|
|
return 0.5f * (curve[0] * n0 + curve[1] * n1 + curve[2] * n2 + curve[3] * n3);
|
|
}
|
|
|
|
ccl_device_inline float4 catmull_rom_basis_derivative(const float4 curve[4], float u)
|
|
{
|
|
const float t = u;
|
|
const float s = 1.0f - u;
|
|
const float n0 = -s * s + 2.0f * s * t;
|
|
const float n1 = 2.0f * t * (3.0f * t - 5.0f) + 3.0f * t * t;
|
|
const float n2 = 2.0f * s * (3.0f * t + 2.0f) - 3.0f * s * s;
|
|
const float n3 = -2.0f * s * t + t * t;
|
|
return 0.5f * (curve[0] * n0 + curve[1] * n1 + curve[2] * n2 + curve[3] * n3);
|
|
}
|
|
|
|
ccl_device_inline float4 catmull_rom_basis_derivative2(const float4 curve[4], float u)
|
|
{
|
|
|
|
const float t = u;
|
|
const float n0 = -3.0f * t + 2.0f;
|
|
const float n1 = 9.0f * t - 5.0f;
|
|
const float n2 = -9.0f * t + 4.0f;
|
|
const float n3 = 3.0f * t - 1.0f;
|
|
return (curve[0] * n0 + curve[1] * n1 + curve[2] * n2 + curve[3] * n3);
|
|
}
|
|
|
|
/* Thick Curve */
|
|
|
|
ccl_device_inline float3 dnormalize(const float3 p, const float3 dp)
|
|
{
|
|
const float pp = dot(p, p);
|
|
const float pdp = dot(p, dp);
|
|
return (pp * dp - pdp * p) / (pp * sqrtf(pp));
|
|
}
|
|
|
|
ccl_device_inline float sqr_point_to_line_distance(const float3 PmQ0, const float3 Q1mQ0)
|
|
{
|
|
const float3 N = cross(PmQ0, Q1mQ0);
|
|
const float3 D = Q1mQ0;
|
|
return dot(N, N) / dot(D, D);
|
|
}
|
|
|
|
ccl_device_inline bool cylinder_intersect(const float3 cylinder_start,
|
|
const float3 cylinder_end,
|
|
const float cylinder_radius,
|
|
const float3 ray_dir,
|
|
float2 *t_o,
|
|
float *u0_o,
|
|
float3 *Ng0_o,
|
|
float *u1_o,
|
|
float3 *Ng1_o)
|
|
{
|
|
/* Calculate quadratic equation to solve. */
|
|
const float rl = 1.0f / len(cylinder_end - cylinder_start);
|
|
const float3 P0 = cylinder_start, dP = (cylinder_end - cylinder_start) * rl;
|
|
const float3 O = -P0, dO = ray_dir;
|
|
|
|
const float dOdO = dot(dO, dO);
|
|
const float OdO = dot(dO, O);
|
|
const float OO = dot(O, O);
|
|
const float dOz = dot(dP, dO);
|
|
const float Oz = dot(dP, O);
|
|
|
|
const float A = dOdO - sqr(dOz);
|
|
const float B = 2.0f * (OdO - dOz * Oz);
|
|
const float C = OO - sqr(Oz) - sqr(cylinder_radius);
|
|
|
|
/* We miss the cylinder if determinant is smaller than zero. */
|
|
const float D = B * B - 4.0f * A * C;
|
|
if (!(D >= 0.0f)) {
|
|
*t_o = make_float2(FLT_MAX, -FLT_MAX);
|
|
return false;
|
|
}
|
|
|
|
/* Special case for rays that are parallel to the cylinder. */
|
|
const float eps = 16.0f * FLT_EPSILON * max(fabsf(dOdO), fabsf(sqr(dOz)));
|
|
if (fabsf(A) < eps) {
|
|
if (C <= 0.0f) {
|
|
*t_o = make_float2(-FLT_MAX, FLT_MAX);
|
|
return true;
|
|
}
|
|
else {
|
|
*t_o = make_float2(-FLT_MAX, FLT_MAX);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Standard case for rays that are not parallel to the cylinder. */
|
|
const float Q = sqrtf(D);
|
|
const float rcp_2A = 1.0f / (2.0f * A);
|
|
const float t0 = (-B - Q) * rcp_2A;
|
|
const float t1 = (-B + Q) * rcp_2A;
|
|
|
|
/* Calculates u and Ng for near hit. */
|
|
{
|
|
*u0_o = (t0 * dOz + Oz) * rl;
|
|
const float3 Pr = t0 * ray_dir;
|
|
const float3 Pl = (*u0_o) * (cylinder_end - cylinder_start) + cylinder_start;
|
|
*Ng0_o = Pr - Pl;
|
|
}
|
|
|
|
/* Calculates u and Ng for far hit. */
|
|
{
|
|
*u1_o = (t1 * dOz + Oz) * rl;
|
|
const float3 Pr = t1 * ray_dir;
|
|
const float3 Pl = (*u1_o) * (cylinder_end - cylinder_start) + cylinder_start;
|
|
*Ng1_o = Pr - Pl;
|
|
}
|
|
|
|
*t_o = make_float2(t0, t1);
|
|
|
|
return true;
|
|
}
|
|
|
|
ccl_device_inline float2 half_plane_intersect(const float3 P, const float3 N, const float3 ray_dir)
|
|
{
|
|
const float3 O = -P;
|
|
const float3 D = ray_dir;
|
|
const float ON = dot(O, N);
|
|
const float DN = dot(D, N);
|
|
const float min_rcp_input = 1e-18f;
|
|
const bool eps = fabsf(DN) < min_rcp_input;
|
|
const float t = -ON / DN;
|
|
const float lower = (eps || DN < 0.0f) ? -FLT_MAX : t;
|
|
const float upper = (eps || DN > 0.0f) ? FLT_MAX : t;
|
|
return make_float2(lower, upper);
|
|
}
|
|
|
|
ccl_device bool curve_intersect_iterative(const float3 ray_dir,
|
|
const float dt,
|
|
const float4 curve[4],
|
|
float u,
|
|
float t,
|
|
const bool use_backfacing,
|
|
Intersection *isect)
|
|
{
|
|
const float length_ray_dir = len(ray_dir);
|
|
|
|
/* Error of curve evaluations is proportional to largest coordinate. */
|
|
const float4 box_min = min(min(curve[0], curve[1]), min(curve[2], curve[3]));
|
|
const float4 box_max = max(min(curve[0], curve[1]), max(curve[2], curve[3]));
|
|
const float4 box_abs = max(fabs(box_min), fabs(box_max));
|
|
const float P_err = 16.0f * FLT_EPSILON *
|
|
max(box_abs.x, max(box_abs.y, max(box_abs.z, box_abs.w)));
|
|
const float radius_max = box_max.w;
|
|
|
|
for (int i = 0; i < CURVE_NUM_JACOBIAN_ITERATIONS; i++) {
|
|
const float3 Q = ray_dir * t;
|
|
const float3 dQdt = ray_dir;
|
|
const float Q_err = 16.0f * FLT_EPSILON * length_ray_dir * t;
|
|
|
|
const float4 P4 = catmull_rom_basis_eval(curve, u);
|
|
const float4 dPdu4 = catmull_rom_basis_derivative(curve, u);
|
|
|
|
const float3 P = float4_to_float3(P4);
|
|
const float3 dPdu = float4_to_float3(dPdu4);
|
|
const float radius = P4.w;
|
|
const float dradiusdu = dPdu4.w;
|
|
|
|
const float3 ddPdu = float4_to_float3(catmull_rom_basis_derivative2(curve, u));
|
|
|
|
const float3 R = Q - P;
|
|
const float len_R = len(R);
|
|
const float R_err = max(Q_err, P_err);
|
|
const float3 dRdu = -dPdu;
|
|
const float3 dRdt = dQdt;
|
|
|
|
const float3 T = normalize(dPdu);
|
|
const float3 dTdu = dnormalize(dPdu, ddPdu);
|
|
const float cos_err = P_err / len(dPdu);
|
|
|
|
const float f = dot(R, T);
|
|
const float f_err = len_R * P_err + R_err + cos_err * (1.0f + len_R);
|
|
const float dfdu = dot(dRdu, T) + dot(R, dTdu);
|
|
const float dfdt = dot(dRdt, T);
|
|
|
|
const float K = dot(R, R) - sqr(f);
|
|
const float dKdu = (dot(R, dRdu) - f * dfdu);
|
|
const float dKdt = (dot(R, dRdt) - f * dfdt);
|
|
const float rsqrt_K = inversesqrtf(K);
|
|
|
|
const float g = sqrtf(K) - radius;
|
|
const float g_err = R_err + f_err + 16.0f * FLT_EPSILON * radius_max;
|
|
const float dgdu = dKdu * rsqrt_K - dradiusdu;
|
|
const float dgdt = dKdt * rsqrt_K;
|
|
|
|
const float invdet = 1.0f / (dfdu * dgdt - dgdu * dfdt);
|
|
u -= (dgdt * f - dfdt * g) * invdet;
|
|
t -= (-dgdu * f + dfdu * g) * invdet;
|
|
|
|
if (fabsf(f) < f_err && fabsf(g) < g_err) {
|
|
t += dt;
|
|
if (!(0.0f <= t && t <= isect->t)) {
|
|
return false; /* Rejects NaNs */
|
|
}
|
|
if (!(u >= 0.0f && u <= 1.0f)) {
|
|
return false; /* Rejects NaNs */
|
|
}
|
|
|
|
/* Backface culling. */
|
|
const float3 R = normalize(Q - P);
|
|
const float3 U = dradiusdu * R + dPdu;
|
|
const float3 V = cross(dPdu, R);
|
|
const float3 Ng = cross(V, U);
|
|
if (!use_backfacing && dot(ray_dir, Ng) > 0.0f) {
|
|
return false;
|
|
}
|
|
|
|
/* Record intersection. */
|
|
isect->t = t;
|
|
isect->u = u;
|
|
isect->v = 0.0f;
|
|
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
ccl_device bool curve_intersect_recursive(const float3 ray_orig,
|
|
const float3 ray_dir,
|
|
float4 curve[4],
|
|
Intersection *isect)
|
|
{
|
|
/* Move ray closer to make intersection stable. */
|
|
const float3 center = float4_to_float3(0.25f * (curve[0] + curve[1] + curve[2] + curve[3]));
|
|
const float dt = dot(center - ray_orig, ray_dir) / dot(ray_dir, ray_dir);
|
|
const float3 ref = ray_orig + ray_dir * dt;
|
|
const float4 ref4 = make_float4(ref.x, ref.y, ref.z, 0.0f);
|
|
curve[0] -= ref4;
|
|
curve[1] -= ref4;
|
|
curve[2] -= ref4;
|
|
curve[3] -= ref4;
|
|
|
|
const bool use_backfacing = false;
|
|
const float step_size = 1.0f / (float)(CURVE_NUM_BEZIER_STEPS);
|
|
|
|
int depth = 0;
|
|
|
|
/* todo: optimize stack for GPU somehow? Possibly some bitflags are enough, and
|
|
* u0/u1 can be derived from the depth. */
|
|
struct {
|
|
float u0, u1;
|
|
int i;
|
|
} stack[CURVE_NUM_BEZIER_SUBDIVISIONS_UNSTABLE];
|
|
|
|
bool found = false;
|
|
|
|
float u0 = 0.0f;
|
|
float u1 = 1.0f;
|
|
int i = 0;
|
|
|
|
while (1) {
|
|
for (; i < CURVE_NUM_BEZIER_STEPS; i++) {
|
|
const float step = i * step_size;
|
|
|
|
/* Subdivide curve. */
|
|
const float dscale = (u1 - u0) * (1.0f / 3.0f) * step_size;
|
|
const float vu0 = mix(u0, u1, step);
|
|
const float vu1 = mix(u0, u1, step + step_size);
|
|
|
|
const float4 P0 = catmull_rom_basis_eval(curve, vu0);
|
|
const float4 dP0du = dscale * catmull_rom_basis_derivative(curve, vu0);
|
|
const float4 P3 = catmull_rom_basis_eval(curve, vu1);
|
|
const float4 dP3du = dscale * catmull_rom_basis_derivative(curve, vu1);
|
|
|
|
const float4 P1 = P0 + dP0du;
|
|
const float4 P2 = P3 - dP3du;
|
|
|
|
/* Calculate bounding cylinders. */
|
|
const float rr1 = sqr_point_to_line_distance(float4_to_float3(dP0du),
|
|
float4_to_float3(P3 - P0));
|
|
const float rr2 = sqr_point_to_line_distance(float4_to_float3(dP3du),
|
|
float4_to_float3(P3 - P0));
|
|
const float maxr12 = sqrtf(max(rr1, rr2));
|
|
const float one_plus_ulp = 1.0f + 2.0f * FLT_EPSILON;
|
|
const float one_minus_ulp = 1.0f - 2.0f * FLT_EPSILON;
|
|
float r_outer = max(max(P0.w, P1.w), max(P2.w, P3.w)) + maxr12;
|
|
float r_inner = min(min(P0.w, P1.w), min(P2.w, P3.w)) - maxr12;
|
|
r_outer = one_plus_ulp * r_outer;
|
|
r_inner = max(0.0f, one_minus_ulp * r_inner);
|
|
bool valid = true;
|
|
|
|
/* Intersect with outer cylinder. */
|
|
float2 tc_outer;
|
|
float u_outer0, u_outer1;
|
|
float3 Ng_outer0, Ng_outer1;
|
|
valid = cylinder_intersect(float4_to_float3(P0),
|
|
float4_to_float3(P3),
|
|
r_outer,
|
|
ray_dir,
|
|
&tc_outer,
|
|
&u_outer0,
|
|
&Ng_outer0,
|
|
&u_outer1,
|
|
&Ng_outer1);
|
|
if (!valid) {
|
|
continue;
|
|
}
|
|
|
|
/* Intersect with cap-planes. */
|
|
float2 tp = make_float2(-dt, isect->t - dt);
|
|
tp = make_float2(max(tp.x, tc_outer.x), min(tp.y, tc_outer.y));
|
|
const float2 h0 = half_plane_intersect(
|
|
float4_to_float3(P0), float4_to_float3(dP0du), ray_dir);
|
|
tp = make_float2(max(tp.x, h0.x), min(tp.y, h0.y));
|
|
const float2 h1 = half_plane_intersect(
|
|
float4_to_float3(P3), -float4_to_float3(dP3du), ray_dir);
|
|
tp = make_float2(max(tp.x, h1.x), min(tp.y, h1.y));
|
|
valid = tp.x <= tp.y;
|
|
if (!valid) {
|
|
continue;
|
|
}
|
|
|
|
/* Clamp and correct u parameter. */
|
|
u_outer0 = clamp(u_outer0, 0.0f, 1.0f);
|
|
u_outer1 = clamp(u_outer1, 0.0f, 1.0f);
|
|
u_outer0 = mix(u0, u1, (step + u_outer0) * (1.0f / (float)(CURVE_NUM_BEZIER_STEPS + 1)));
|
|
u_outer1 = mix(u0, u1, (step + u_outer1) * (1.0f / (float)(CURVE_NUM_BEZIER_STEPS + 1)));
|
|
|
|
/* Intersect with inner cylinder. */
|
|
float2 tc_inner;
|
|
float u_inner0, u_inner1;
|
|
float3 Ng_inner0, Ng_inner1;
|
|
const bool valid_inner = cylinder_intersect(float4_to_float3(P0),
|
|
float4_to_float3(P3),
|
|
r_inner,
|
|
ray_dir,
|
|
&tc_inner,
|
|
&u_inner0,
|
|
&Ng_inner0,
|
|
&u_inner1,
|
|
&Ng_inner1);
|
|
|
|
/* At the unstable area we subdivide deeper. */
|
|
# if 0
|
|
const bool unstable0 = (!valid_inner) |
|
|
(fabsf(dot(normalize(ray_dir), normalize(Ng_inner0))) < 0.3f);
|
|
const bool unstable1 = (!valid_inner) |
|
|
(fabsf(dot(normalize(ray_dir), normalize(Ng_inner1))) < 0.3f);
|
|
# else
|
|
/* On the GPU appears to be a little faster if always enabled. */
|
|
(void)valid_inner;
|
|
|
|
const bool unstable0 = true;
|
|
const bool unstable1 = true;
|
|
# endif
|
|
|
|
/* Subtract the inner interval from the current hit interval. */
|
|
float2 tp0 = make_float2(tp.x, min(tp.y, tc_inner.x));
|
|
float2 tp1 = make_float2(max(tp.x, tc_inner.y), tp.y);
|
|
bool valid0 = valid && (tp0.x <= tp0.y);
|
|
bool valid1 = valid && (tp1.x <= tp1.y);
|
|
if (!(valid0 || valid1)) {
|
|
continue;
|
|
}
|
|
|
|
/* Process one or two hits. */
|
|
bool recurse = false;
|
|
if (valid0) {
|
|
const int termDepth = unstable0 ? CURVE_NUM_BEZIER_SUBDIVISIONS_UNSTABLE :
|
|
CURVE_NUM_BEZIER_SUBDIVISIONS;
|
|
if (depth >= termDepth) {
|
|
found |= curve_intersect_iterative(
|
|
ray_dir, dt, curve, u_outer0, tp0.x, use_backfacing, isect);
|
|
}
|
|
else {
|
|
recurse = true;
|
|
}
|
|
}
|
|
|
|
if (valid1 && (tp1.x + dt <= isect->t)) {
|
|
const int termDepth = unstable1 ? CURVE_NUM_BEZIER_SUBDIVISIONS_UNSTABLE :
|
|
CURVE_NUM_BEZIER_SUBDIVISIONS;
|
|
if (depth >= termDepth) {
|
|
found |= curve_intersect_iterative(
|
|
ray_dir, dt, curve, u_outer1, tp1.y, use_backfacing, isect);
|
|
}
|
|
else {
|
|
recurse = true;
|
|
}
|
|
}
|
|
|
|
if (recurse) {
|
|
stack[depth].u0 = u0;
|
|
stack[depth].u1 = u1;
|
|
stack[depth].i = i + 1;
|
|
depth++;
|
|
|
|
u0 = vu0;
|
|
u1 = vu1;
|
|
i = -1;
|
|
}
|
|
}
|
|
|
|
if (depth > 0) {
|
|
depth--;
|
|
u0 = stack[depth].u0;
|
|
u1 = stack[depth].u1;
|
|
i = stack[depth].i;
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
/* Ribbons */
|
|
|
|
ccl_device_inline bool cylinder_culling_test(const float2 p1, const float2 p2, const float r)
|
|
{
|
|
/* Performs culling against a cylinder. */
|
|
const float2 dp = p2 - p1;
|
|
const float num = dp.x * p1.y - dp.y * p1.x;
|
|
const float den2 = dot(p2 - p1, p2 - p1);
|
|
return num * num <= r * r * den2;
|
|
}
|
|
|
|
/*! Intersects a ray with a quad with backface culling
|
|
* enabled. The quad v0,v1,v2,v3 is split into two triangles
|
|
* v0,v1,v3 and v2,v3,v1. The edge v1,v2 decides which of the two
|
|
* triangles gets intersected. */
|
|
ccl_device_inline bool ribbon_intersect_quad(const float ray_tfar,
|
|
const float3 quad_v0,
|
|
const float3 quad_v1,
|
|
const float3 quad_v2,
|
|
const float3 quad_v3,
|
|
float *u_o,
|
|
float *v_o,
|
|
float *t_o)
|
|
{
|
|
/* Calculate vertices relative to ray origin? */
|
|
const float3 O = make_float3(0.0f, 0.0f, 0.0f);
|
|
const float3 D = make_float3(0.0f, 0.0f, 1.0f);
|
|
const float3 va = quad_v0 - O;
|
|
const float3 vb = quad_v1 - O;
|
|
const float3 vc = quad_v2 - O;
|
|
const float3 vd = quad_v3 - O;
|
|
|
|
const float3 edb = vb - vd;
|
|
const float WW = dot(cross(vd, edb), D);
|
|
const float3 v0 = (WW <= 0.0f) ? va : vc;
|
|
const float3 v1 = (WW <= 0.0f) ? vb : vd;
|
|
const float3 v2 = (WW <= 0.0f) ? vd : vb;
|
|
|
|
/* Calculate edges? */
|
|
const float3 e0 = v2 - v0;
|
|
const float3 e1 = v0 - v1;
|
|
|
|
/* perform edge tests */
|
|
const float U = dot(cross(v0, e0), D);
|
|
const float V = dot(cross(v1, e1), D);
|
|
if (!(max(U, V) <= 0.0f)) {
|
|
return false;
|
|
}
|
|
|
|
/* Calculate geometry normal and denominator? */
|
|
const float3 Ng = cross(e1, e0);
|
|
const float den = dot(Ng, D);
|
|
const float rcpDen = 1.0f / den;
|
|
|
|
/* Perform depth test? */
|
|
const float t = rcpDen * dot(v0, Ng);
|
|
if (!(0.0f <= t && t <= ray_tfar)) {
|
|
return false;
|
|
}
|
|
|
|
/* Avoid division by 0? */
|
|
if (!(den != 0.0f)) {
|
|
return false;
|
|
}
|
|
|
|
/* Update hit information? */
|
|
*t_o = t;
|
|
*u_o = U * rcpDen;
|
|
*v_o = V * rcpDen;
|
|
*u_o = (WW <= 0.0f) ? *u_o : 1.0f - *u_o;
|
|
*v_o = (WW <= 0.0f) ? *v_o : 1.0f - *v_o;
|
|
return true;
|
|
}
|
|
|
|
ccl_device_inline void ribbon_ray_space(const float3 ray_dir, float3 ray_space[3])
|
|
{
|
|
const float3 dx0 = make_float3(0, ray_dir.z, -ray_dir.y);
|
|
const float3 dx1 = make_float3(-ray_dir.z, 0, ray_dir.x);
|
|
ray_space[0] = normalize(dot(dx0, dx0) > dot(dx1, dx1) ? dx0 : dx1);
|
|
ray_space[1] = normalize(cross(ray_dir, ray_space[0]));
|
|
ray_space[2] = ray_dir;
|
|
}
|
|
|
|
ccl_device_inline float4 ribbon_to_ray_space(const float3 ray_space[3],
|
|
const float3 ray_org,
|
|
const float4 P4)
|
|
{
|
|
float3 P = float4_to_float3(P4) - ray_org;
|
|
return make_float4(dot(ray_space[0], P), dot(ray_space[1], P), dot(ray_space[2], P), P4.w);
|
|
}
|
|
|
|
ccl_device_inline bool ribbon_intersect(const float3 ray_org,
|
|
const float3 ray_dir,
|
|
const float ray_tfar,
|
|
const int N,
|
|
float4 curve[4],
|
|
Intersection *isect)
|
|
{
|
|
/* Transform control points into ray space. */
|
|
float3 ray_space[3];
|
|
ribbon_ray_space(ray_dir, ray_space);
|
|
|
|
curve[0] = ribbon_to_ray_space(ray_space, ray_org, curve[0]);
|
|
curve[1] = ribbon_to_ray_space(ray_space, ray_org, curve[1]);
|
|
curve[2] = ribbon_to_ray_space(ray_space, ray_org, curve[2]);
|
|
curve[3] = ribbon_to_ray_space(ray_space, ray_org, curve[3]);
|
|
|
|
const float4 mx = max(max(fabs(curve[0]), fabs(curve[1])), max(fabs(curve[2]), fabs(curve[3])));
|
|
const float eps = 4.0f * FLT_EPSILON * max(max(mx.x, mx.y), max(mx.z, mx.w));
|
|
const float step_size = 1.0f / (float)N;
|
|
|
|
/* Evaluate first point and radius scaled normal direction. */
|
|
float4 p0 = catmull_rom_basis_eval(curve, 0.0f);
|
|
float3 dp0dt = float4_to_float3(catmull_rom_basis_derivative(curve, 0.0f));
|
|
if (max3(fabs(dp0dt)) < eps) {
|
|
const float4 p1 = catmull_rom_basis_eval(curve, step_size);
|
|
dp0dt = float4_to_float3(p1 - p0);
|
|
}
|
|
float3 wn0 = normalize(make_float3(dp0dt.y, -dp0dt.x, 0.0f)) * p0.w;
|
|
|
|
/* Evaluate the bezier curve. */
|
|
for (int i = 0; i < N; i++) {
|
|
const float u = i * step_size;
|
|
const float4 p1 = catmull_rom_basis_eval(curve, u + step_size);
|
|
bool valid = cylinder_culling_test(
|
|
make_float2(p0.x, p0.y), make_float2(p1.x, p1.y), max(p0.w, p1.w));
|
|
if (!valid) {
|
|
continue;
|
|
}
|
|
|
|
/* Evaluate next point. */
|
|
float3 dp1dt = float4_to_float3(catmull_rom_basis_derivative(curve, u + step_size));
|
|
dp1dt = (max3(fabs(dp1dt)) < eps) ? float4_to_float3(p1 - p0) : dp1dt;
|
|
const float3 wn1 = normalize(make_float3(dp1dt.y, -dp1dt.x, 0.0f)) * p1.w;
|
|
|
|
/* Construct quad coordinates. */
|
|
const float3 lp0 = float4_to_float3(p0) + wn0;
|
|
const float3 lp1 = float4_to_float3(p1) + wn1;
|
|
const float3 up0 = float4_to_float3(p0) - wn0;
|
|
const float3 up1 = float4_to_float3(p1) - wn1;
|
|
|
|
/* Intersect quad. */
|
|
float vu, vv, vt;
|
|
bool valid0 = ribbon_intersect_quad(isect->t, lp0, lp1, up1, up0, &vu, &vv, &vt);
|
|
|
|
if (valid0) {
|
|
/* ignore self intersections */
|
|
const float avoidance_factor = 2.0f;
|
|
if (avoidance_factor != 0.0f) {
|
|
float r = mix(p0.w, p1.w, vu);
|
|
valid0 = vt > avoidance_factor * r;
|
|
}
|
|
|
|
if (valid0) {
|
|
vv = 2.0f * vv - 1.0f;
|
|
|
|
/* Record intersection. */
|
|
isect->t = vt;
|
|
isect->u = u + vu * step_size;
|
|
isect->v = vv;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
p0 = p1;
|
|
wn0 = wn1;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
ccl_device_forceinline bool curve_intersect(KernelGlobals *kg,
|
|
Intersection *isect,
|
|
const float3 P,
|
|
const float3 dir,
|
|
uint visibility,
|
|
int object,
|
|
int curveAddr,
|
|
float time,
|
|
int type)
|
|
{
|
|
const bool is_motion = (type & PRIMITIVE_ALL_MOTION);
|
|
|
|
# ifndef __KERNEL_OPTIX__ /* See OptiX motion flag OPTIX_MOTION_FLAG_[START|END]_VANISH */
|
|
if (is_motion && kernel_data.bvh.use_bvh_steps) {
|
|
const float2 prim_time = kernel_tex_fetch(__prim_time, curveAddr);
|
|
if (time < prim_time.x || time > prim_time.y) {
|
|
return false;
|
|
}
|
|
}
|
|
# endif
|
|
|
|
int segment = PRIMITIVE_UNPACK_SEGMENT(type);
|
|
int prim = kernel_tex_fetch(__prim_index, curveAddr);
|
|
|
|
float4 v00 = kernel_tex_fetch(__curves, prim);
|
|
|
|
int k0 = __float_as_int(v00.x) + segment;
|
|
int k1 = k0 + 1;
|
|
|
|
int ka = max(k0 - 1, __float_as_int(v00.x));
|
|
int kb = min(k1 + 1, __float_as_int(v00.x) + __float_as_int(v00.y) - 1);
|
|
|
|
float4 curve[4];
|
|
if (!is_motion) {
|
|
curve[0] = kernel_tex_fetch(__curve_keys, ka);
|
|
curve[1] = kernel_tex_fetch(__curve_keys, k0);
|
|
curve[2] = kernel_tex_fetch(__curve_keys, k1);
|
|
curve[3] = kernel_tex_fetch(__curve_keys, kb);
|
|
}
|
|
else {
|
|
int fobject = (object == OBJECT_NONE) ? kernel_tex_fetch(__prim_object, curveAddr) : object;
|
|
motion_curve_keys(kg, fobject, prim, time, ka, k0, k1, kb, curve);
|
|
}
|
|
|
|
# ifdef __VISIBILITY_FLAG__
|
|
if (!(kernel_tex_fetch(__prim_visibility, curveAddr) & visibility)) {
|
|
return false;
|
|
}
|
|
# endif
|
|
|
|
if (type & (PRIMITIVE_CURVE_RIBBON | PRIMITIVE_MOTION_CURVE_RIBBON)) {
|
|
/* todo: adaptive number of subdivisions could help performance here. */
|
|
const int subdivisions = kernel_data.bvh.curve_subdivisions;
|
|
if (ribbon_intersect(P, dir, isect->t, subdivisions, curve, isect)) {
|
|
isect->prim = curveAddr;
|
|
isect->object = object;
|
|
isect->type = type;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
else {
|
|
if (curve_intersect_recursive(P, dir, curve, isect)) {
|
|
isect->prim = curveAddr;
|
|
isect->object = object;
|
|
isect->type = type;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
ccl_device_inline void curve_shader_setup(KernelGlobals *kg,
|
|
ShaderData *sd,
|
|
const Intersection *isect,
|
|
const Ray *ray)
|
|
{
|
|
float t = isect->t;
|
|
float3 P = ray->P;
|
|
float3 D = ray->D;
|
|
|
|
if (isect->object != OBJECT_NONE) {
|
|
# ifdef __OBJECT_MOTION__
|
|
Transform tfm = sd->ob_itfm;
|
|
# else
|
|
Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_INVERSE_TRANSFORM);
|
|
# endif
|
|
|
|
P = transform_point(&tfm, P);
|
|
D = transform_direction(&tfm, D * t);
|
|
D = normalize_len(D, &t);
|
|
}
|
|
|
|
int prim = kernel_tex_fetch(__prim_index, isect->prim);
|
|
float4 v00 = kernel_tex_fetch(__curves, prim);
|
|
|
|
int k0 = __float_as_int(v00.x) + PRIMITIVE_UNPACK_SEGMENT(sd->type);
|
|
int k1 = k0 + 1;
|
|
|
|
int ka = max(k0 - 1, __float_as_int(v00.x));
|
|
int kb = min(k1 + 1, __float_as_int(v00.x) + __float_as_int(v00.y) - 1);
|
|
|
|
float4 P_curve[4];
|
|
|
|
if (!(sd->type & PRIMITIVE_ALL_MOTION)) {
|
|
P_curve[0] = kernel_tex_fetch(__curve_keys, ka);
|
|
P_curve[1] = kernel_tex_fetch(__curve_keys, k0);
|
|
P_curve[2] = kernel_tex_fetch(__curve_keys, k1);
|
|
P_curve[3] = kernel_tex_fetch(__curve_keys, kb);
|
|
}
|
|
else {
|
|
motion_curve_keys(kg, sd->object, sd->prim, sd->time, ka, k0, k1, kb, P_curve);
|
|
}
|
|
|
|
sd->u = isect->u;
|
|
|
|
P = P + D * t;
|
|
|
|
const float4 dPdu4 = catmull_rom_basis_derivative(P_curve, isect->u);
|
|
const float3 dPdu = float4_to_float3(dPdu4);
|
|
|
|
if (sd->type & (PRIMITIVE_CURVE_RIBBON | PRIMITIVE_MOTION_CURVE_RIBBON)) {
|
|
/* Rounded smooth normals for ribbons, to approximate thick curve shape. */
|
|
const float3 tangent = normalize(dPdu);
|
|
const float3 bitangent = normalize(cross(tangent, -D));
|
|
const float sine = isect->v;
|
|
const float cosine = safe_sqrtf(1.0f - sine * sine);
|
|
|
|
sd->N = normalize(sine * bitangent - cosine * normalize(cross(tangent, bitangent)));
|
|
sd->Ng = -D;
|
|
sd->v = isect->v;
|
|
|
|
# if 0
|
|
/* This approximates the position and geometric normal of a thick curve too,
|
|
* but gives too many issues with wrong self intersections. */
|
|
const float dPdu_radius = dPdu4.w;
|
|
sd->Ng = sd->N;
|
|
P += sd->N * dPdu_radius;
|
|
# endif
|
|
}
|
|
else {
|
|
/* Thick curves, compute normal using direction from inside the curve.
|
|
* This could be optimized by recording the normal in the intersection,
|
|
* however for Optix this would go beyond the size of the payload. */
|
|
const float3 P_inside = float4_to_float3(catmull_rom_basis_eval(P_curve, isect->u));
|
|
const float3 Ng = normalize(P - P_inside);
|
|
|
|
sd->N = Ng;
|
|
sd->Ng = Ng;
|
|
sd->v = 0.0f;
|
|
}
|
|
|
|
# ifdef __DPDU__
|
|
/* dPdu/dPdv */
|
|
sd->dPdu = dPdu;
|
|
sd->dPdv = cross(dPdu, sd->Ng);
|
|
# endif
|
|
|
|
if (isect->object != OBJECT_NONE) {
|
|
# ifdef __OBJECT_MOTION__
|
|
Transform tfm = sd->ob_tfm;
|
|
# else
|
|
Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_TRANSFORM);
|
|
# endif
|
|
|
|
P = transform_point(&tfm, P);
|
|
}
|
|
|
|
sd->P = P;
|
|
|
|
float4 curvedata = kernel_tex_fetch(__curves, sd->prim);
|
|
sd->shader = __float_as_int(curvedata.z);
|
|
}
|
|
|
|
#endif
|
|
|
|
CCL_NAMESPACE_END
|