This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/cryptomatte.cc
Ray molenkamp de60dc84e2 Fix: Build error with MSVC 2017
BKE_cryptomatte_extract_layer_name was using std::isdigit
without including <cctype> somehow only MSVC 2017 had a
problem with that.
2021-01-15 12:36:03 -07:00

385 lines
12 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2020 Blender Foundation.
* All rights reserved.
*/
/** \file
* \ingroup bke
*/
#include "BKE_cryptomatte.h"
#include "BKE_cryptomatte.hh"
#include "BKE_image.h"
#include "BKE_main.h"
#include "DNA_layer_types.h"
#include "DNA_material_types.h"
#include "DNA_node_types.h"
#include "DNA_object_types.h"
#include "BLI_compiler_attrs.h"
#include "BLI_dynstr.h"
#include "BLI_hash_mm3.h"
#include "BLI_listbase.h"
#include "BLI_set.hh"
#include "BLI_string.h"
#include "MEM_guardedalloc.h"
#include <cctype>
#include <cstring>
#include <iomanip>
#include <sstream>
#include <string>
#include <string_view>
enum CryptomatteLayerState {
EMPTY,
FILLED,
CLOSED,
};
struct CryptomatteLayer {
CryptomatteLayerState state = CryptomatteLayerState::EMPTY;
blender::Set<std::string> names;
std::stringstream manifest;
#ifdef WITH_CXX_GUARDEDALLOC
MEM_CXX_CLASS_ALLOC_FUNCS("cryptomatte:CryptomatteLayer")
#endif
void add_hash(std::string name, uint32_t cryptomatte_hash)
{
BLI_assert(state != CryptomatteLayerState::CLOSED);
const bool first_item = names.is_empty();
if (!names.add(name)) {
return;
}
if (first_item) {
state = CryptomatteLayerState::FILLED;
manifest << "{";
}
else {
manifest << ",";
}
manifest << quoted(name) << ":\"";
manifest << std::setfill('0') << std::setw(sizeof(uint32_t) * 2) << std::hex
<< cryptomatte_hash;
manifest << "\"";
}
void close_manifest()
{
BLI_assert(state != CryptomatteLayerState::CLOSED);
if (state == CryptomatteLayerState::FILLED) {
manifest << "}";
}
state = CryptomatteLayerState::CLOSED;
}
std::string manifest_get_string()
{
BLI_assert(state == CryptomatteLayerState::CLOSED);
return manifest.str();
}
};
struct CryptomatteSession {
CryptomatteLayer objects;
CryptomatteLayer assets;
CryptomatteLayer materials;
#ifdef WITH_CXX_GUARDEDALLOC
MEM_CXX_CLASS_ALLOC_FUNCS("cryptomatte:CryptomatteSession")
#endif
void finish()
{
objects.close_manifest();
materials.close_manifest();
assets.close_manifest();
}
};
CryptomatteSession *BKE_cryptomatte_init(void)
{
CryptomatteSession *session = new CryptomatteSession();
return session;
}
void BKE_cryptomatte_finish(CryptomatteSession *session)
{
BLI_assert(session != nullptr);
session->finish();
}
void BKE_cryptomatte_free(CryptomatteSession *session)
{
BLI_assert(session != nullptr);
delete session;
}
uint32_t BKE_cryptomatte_hash(const char *name, const int name_len)
{
uint32_t cryptohash_int = BLI_hash_mm3((const unsigned char *)name, name_len, 0);
return cryptohash_int;
}
static uint32_t cryptomatte_hash(CryptomatteLayer *layer, const ID *id)
{
const char *name = &id->name[2];
const int name_len = BLI_strnlen(name, MAX_NAME - 2);
uint32_t cryptohash_int = BKE_cryptomatte_hash(name, name_len);
if (layer != nullptr) {
layer->add_hash(std::string(name, name_len), cryptohash_int);
}
return cryptohash_int;
}
uint32_t BKE_cryptomatte_object_hash(CryptomatteSession *session, const Object *object)
{
return cryptomatte_hash(&session->objects, &object->id);
}
uint32_t BKE_cryptomatte_material_hash(CryptomatteSession *session, const Material *material)
{
if (material == nullptr) {
return 0.0f;
}
return cryptomatte_hash(&session->materials, &material->id);
}
uint32_t BKE_cryptomatte_asset_hash(CryptomatteSession *session, const Object *object)
{
const Object *asset_object = object;
while (asset_object->parent != nullptr) {
asset_object = asset_object->parent;
}
return cryptomatte_hash(&session->assets, &asset_object->id);
}
/* Convert a cryptomatte hash to a float.
*
* Cryptomatte hashes are stored in float textures and images. The conversion is taken from the
* cryptomatte specification. See Floating point conversion section in
* https://github.com/Psyop/Cryptomatte/blob/master/specification/cryptomatte_specification.pdf.
*
* The conversion uses as many 32 bit floating point values as possible to minimize hash
* collisions. Unfortunately not all 32 bits can be as NaN and Inf can be problematic.
*
* Note that this conversion assumes to be running on a L-endian system. */
float BKE_cryptomatte_hash_to_float(uint32_t cryptomatte_hash)
{
uint32_t mantissa = cryptomatte_hash & ((1 << 23) - 1);
uint32_t exponent = (cryptomatte_hash >> 23) & ((1 << 8) - 1);
exponent = MAX2(exponent, (uint32_t)1);
exponent = MIN2(exponent, (uint32_t)254);
exponent = exponent << 23;
uint32_t sign = (cryptomatte_hash >> 31);
sign = sign << 31;
uint32_t float_bits = sign | exponent | mantissa;
float f;
memcpy(&f, &float_bits, sizeof(uint32_t));
return f;
}
static ID *cryptomatte_find_id(const ListBase *ids, const float encoded_hash)
{
LISTBASE_FOREACH (ID *, id, ids) {
uint32_t hash = BKE_cryptomatte_hash((id->name + 2), BLI_strnlen(id->name + 2, MAX_NAME));
if (BKE_cryptomatte_hash_to_float(hash) == encoded_hash) {
return id;
}
}
return nullptr;
}
/* Find an ID in the given main that matches the given encoded float. */
static struct ID *BKE_cryptomatte_find_id(const Main *bmain, const float encoded_hash)
{
ID *result;
result = cryptomatte_find_id(&bmain->objects, encoded_hash);
if (result == nullptr) {
result = cryptomatte_find_id(&bmain->materials, encoded_hash);
}
return result;
}
char *BKE_cryptomatte_entries_to_matte_id(NodeCryptomatte *node_storage)
{
DynStr *matte_id = BLI_dynstr_new();
bool first = true;
LISTBASE_FOREACH (CryptomatteEntry *, entry, &node_storage->entries) {
if (!first) {
BLI_dynstr_append(matte_id, ",");
}
if (BLI_strnlen(entry->name, sizeof(entry->name)) != 0) {
BLI_dynstr_nappend(matte_id, entry->name, sizeof(entry->name));
}
else {
BLI_dynstr_appendf(matte_id, "<%.9g>", entry->encoded_hash);
}
first = false;
}
char *result = BLI_dynstr_get_cstring(matte_id);
BLI_dynstr_free(matte_id);
return result;
}
void BKE_cryptomatte_matte_id_to_entries(const Main *bmain,
NodeCryptomatte *node_storage,
const char *matte_id)
{
BLI_freelistN(&node_storage->entries);
std::istringstream ss(matte_id);
while (ss.good()) {
CryptomatteEntry *entry = nullptr;
std::string token;
getline(ss, token, ',');
/* Ignore empty tokens. */
if (token.length() > 0) {
size_t first = token.find_first_not_of(' ');
size_t last = token.find_last_not_of(' ');
if (first == std::string::npos || last == std::string::npos) {
break;
}
token = token.substr(first, (last - first + 1));
if (*token.begin() == '<' && *(--token.end()) == '>') {
float encoded_hash = atof(token.substr(1, token.length() - 2).c_str());
entry = (CryptomatteEntry *)MEM_callocN(sizeof(CryptomatteEntry), __func__);
entry->encoded_hash = encoded_hash;
if (bmain) {
ID *id = BKE_cryptomatte_find_id(bmain, encoded_hash);
if (id != nullptr) {
BLI_strncpy(entry->name, id->name + 2, sizeof(entry->name));
}
}
}
else {
const char *name = token.c_str();
int name_len = token.length();
entry = (CryptomatteEntry *)MEM_callocN(sizeof(CryptomatteEntry), __func__);
BLI_strncpy(entry->name, name, sizeof(entry->name));
uint32_t hash = BKE_cryptomatte_hash(name, name_len);
entry->encoded_hash = BKE_cryptomatte_hash_to_float(hash);
}
}
if (entry != nullptr) {
BLI_addtail(&node_storage->entries, entry);
}
}
}
static std::string cryptomatte_determine_name(const ViewLayer *view_layer,
const std::string cryptomatte_layer_name)
{
std::stringstream stream;
const size_t view_layer_name_len = BLI_strnlen(view_layer->name, sizeof(view_layer->name));
stream << std::string(view_layer->name, view_layer_name_len) << "." << cryptomatte_layer_name;
return stream.str();
}
static uint32_t cryptomatte_determine_identifier(const std::string name)
{
return BLI_hash_mm3(reinterpret_cast<const unsigned char *>(name.c_str()), name.length(), 0);
}
static void add_render_result_meta_data(RenderResult *render_result,
const blender::StringRef layer_name,
const blender::StringRefNull key_name,
const blender::StringRefNull value)
{
BKE_render_result_stamp_data(
render_result,
blender::BKE_cryptomatte_meta_data_key(layer_name, key_name).c_str(),
value.data());
}
void BKE_cryptomatte_store_metadata(struct CryptomatteSession *session,
RenderResult *render_result,
const ViewLayer *view_layer,
eViewLayerCryptomatteFlags cryptomatte_layer,
const char *cryptomatte_layer_name)
{
/* Create Manifest. */
CryptomatteLayer *layer = nullptr;
switch (cryptomatte_layer) {
case VIEW_LAYER_CRYPTOMATTE_OBJECT:
layer = &session->objects;
break;
case VIEW_LAYER_CRYPTOMATTE_MATERIAL:
layer = &session->materials;
break;
case VIEW_LAYER_CRYPTOMATTE_ASSET:
layer = &session->assets;
break;
default:
BLI_assert(!"Incorrect cryptomatte layer");
break;
}
const std::string manifest = layer->manifest_get_string();
const std::string name = cryptomatte_determine_name(view_layer, cryptomatte_layer_name);
/* Store the meta data into the render result. */
add_render_result_meta_data(render_result, name, "name", name);
add_render_result_meta_data(render_result, name, "hash", "MurmurHash3_32");
add_render_result_meta_data(render_result, name, "conversion", "uint32_to_float32");
add_render_result_meta_data(render_result, name, "manifest", manifest);
}
namespace blender {
/* Return the hash of the given cryptomatte layer name.
*
* The cryptomatte specification limits the hash to 7 characters.
* The 7 position limitation solves issues when using cryptomatte together with OpenEXR.
* The specification suggests to use the first 7 chars of the hashed layer_name.
*/
static std::string cryptomatte_layer_name_hash(const StringRef layer_name)
{
std::stringstream stream;
const uint32_t render_pass_identifier = cryptomatte_determine_identifier(layer_name);
stream << std::setfill('0') << std::setw(sizeof(uint32_t) * 2) << std::hex
<< render_pass_identifier;
return stream.str().substr(0, 7);
}
std::string BKE_cryptomatte_meta_data_key(const StringRef layer_name, const StringRefNull key_name)
{
return "cryptomatte/" + cryptomatte_layer_name_hash(layer_name) + "/" + key_name;
}
/* Extracts the cryptomatte name from a render pass name.
*
* Example: A render pass could be named `CryptoObject00`. This
* function would remove the trailing digits and return `CryptoObject`. */
StringRef BKE_cryptomatte_extract_layer_name(const StringRef render_pass_name)
{
int64_t last_token = render_pass_name.size();
while (last_token > 0 && std::isdigit(render_pass_name[last_token - 1])) {
last_token -= 1;
}
return render_pass_name.substr(0, last_token);
}
} // namespace blender