This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/key.c
Bastien Montagne f5a019ed43 LibOverride: Do not store some heavy data from override IDs.
This commit removes geometry from meshes and shapekeys, and embedded
files, from liboverride IDs.

This data is never overrideable, there is no reason to store extra
useless copies of it in production files.

See T78944.

Note that we may add more data to be skipped on write for liboverrides
in the future, but this commit should address all the most important
cases already.

Reviewed By: brecht

Differential Revision: https://developer.blender.org/D9810
2020-12-14 11:37:01 +01:00

2612 lines
63 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*/
/** \file
* \ingroup bke
*/
#include <math.h>
#include <stddef.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BLI_endian_switch.h"
#include "BLI_math_vector.h"
#include "BLI_string_utils.h"
#include "BLI_utildefines.h"
#include "BLT_translation.h"
/* Allow using deprecated functionality for .blend file I/O. */
#define DNA_DEPRECATED_ALLOW
#include "DNA_ID.h"
#include "DNA_anim_types.h"
#include "DNA_key_types.h"
#include "DNA_lattice_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "BKE_anim_data.h"
#include "BKE_curve.h"
#include "BKE_customdata.h"
#include "BKE_deform.h"
#include "BKE_editmesh.h"
#include "BKE_idtype.h"
#include "BKE_key.h"
#include "BKE_lattice.h"
#include "BKE_lib_id.h"
#include "BKE_lib_query.h"
#include "BKE_main.h"
#include "BKE_mesh.h"
#include "BKE_scene.h"
#include "RNA_access.h"
#include "BLO_read_write.h"
static void shapekey_copy_data(Main *UNUSED(bmain),
ID *id_dst,
const ID *id_src,
const int UNUSED(flag))
{
Key *key_dst = (Key *)id_dst;
const Key *key_src = (const Key *)id_src;
BLI_duplicatelist(&key_dst->block, &key_src->block);
KeyBlock *kb_dst, *kb_src;
for (kb_src = key_src->block.first, kb_dst = key_dst->block.first; kb_dst;
kb_src = kb_src->next, kb_dst = kb_dst->next) {
if (kb_dst->data) {
kb_dst->data = MEM_dupallocN(kb_dst->data);
}
if (kb_src == key_src->refkey) {
key_dst->refkey = kb_dst;
}
}
}
static void shapekey_free_data(ID *id)
{
Key *key = (Key *)id;
KeyBlock *kb;
while ((kb = BLI_pophead(&key->block))) {
if (kb->data) {
MEM_freeN(kb->data);
}
MEM_freeN(kb);
}
}
static void shapekey_foreach_id(ID *id, LibraryForeachIDData *data)
{
Key *key = (Key *)id;
BKE_LIB_FOREACHID_PROCESS_ID(data, key->from, IDWALK_CB_LOOPBACK);
}
static void shapekey_blend_write(BlendWriter *writer, ID *id, const void *id_address)
{
Key *key = (Key *)id;
const bool is_undo = BLO_write_is_undo(writer);
if (key->id.us > 0 || is_undo) {
/* write LibData */
BLO_write_id_struct(writer, Key, id_address, &key->id);
BKE_id_blend_write(writer, &key->id);
if (key->adt) {
BKE_animdata_blend_write(writer, key->adt);
}
/* direct data */
LISTBASE_FOREACH (KeyBlock *, kb, &key->block) {
KeyBlock tmp_kb = *kb;
/* Do not store actual geometry data in case this is a library override ID. */
if (ID_IS_OVERRIDE_LIBRARY(key) && !is_undo) {
tmp_kb.totelem = 0;
tmp_kb.data = NULL;
}
BLO_write_struct_at_address(writer, KeyBlock, kb, &tmp_kb);
if (tmp_kb.data != NULL) {
BLO_write_raw(writer, tmp_kb.totelem * key->elemsize, tmp_kb.data);
}
}
}
}
/* old defines from DNA_ipo_types.h for data-type, stored in DNA - don't modify! */
#define IPO_FLOAT 4
#define IPO_BEZTRIPLE 100
#define IPO_BPOINT 101
static void switch_endian_keyblock(Key *key, KeyBlock *kb)
{
int elemsize = key->elemsize;
char *data = kb->data;
for (int a = 0; a < kb->totelem; a++) {
const char *cp = key->elemstr;
char *poin = data;
while (cp[0]) { /* cp[0] == amount */
switch (cp[1]) { /* cp[1] = type */
case IPO_FLOAT:
case IPO_BPOINT:
case IPO_BEZTRIPLE: {
int b = cp[0];
BLI_endian_switch_float_array((float *)poin, b);
poin += sizeof(float) * b;
break;
}
}
cp += 2;
}
data += elemsize;
}
}
static void shapekey_blend_read_data(BlendDataReader *reader, ID *id)
{
Key *key = (Key *)id;
BLO_read_list(reader, &(key->block));
BLO_read_data_address(reader, &key->adt);
BKE_animdata_blend_read_data(reader, key->adt);
BLO_read_data_address(reader, &key->refkey);
LISTBASE_FOREACH (KeyBlock *, kb, &key->block) {
BLO_read_data_address(reader, &kb->data);
if (BLO_read_requires_endian_switch(reader)) {
switch_endian_keyblock(key, kb);
}
}
}
static void shapekey_blend_read_lib(BlendLibReader *reader, ID *id)
{
Key *key = (Key *)id;
BLI_assert((key->id.tag & LIB_TAG_EXTERN) == 0);
BLO_read_id_address(reader, key->id.lib, &key->ipo); /* XXX deprecated - old animation system */
BLO_read_id_address(reader, key->id.lib, &key->from);
}
static void shapekey_blend_read_expand(BlendExpander *expander, ID *id)
{
Key *key = (Key *)id;
BLO_expand(expander, key->ipo); /* XXX deprecated - old animation system */
}
IDTypeInfo IDType_ID_KE = {
.id_code = ID_KE,
.id_filter = 0,
.main_listbase_index = INDEX_ID_KE,
.struct_size = sizeof(Key),
.name = "Key",
.name_plural = "shape_keys",
.translation_context = BLT_I18NCONTEXT_ID_SHAPEKEY,
.flags = IDTYPE_FLAGS_NO_LIBLINKING | IDTYPE_FLAGS_NO_MAKELOCAL,
.init_data = NULL,
.copy_data = shapekey_copy_data,
.free_data = shapekey_free_data,
.make_local = NULL,
.foreach_id = shapekey_foreach_id,
.foreach_cache = NULL,
.blend_write = shapekey_blend_write,
.blend_read_data = shapekey_blend_read_data,
.blend_read_lib = shapekey_blend_read_lib,
.blend_read_expand = shapekey_blend_read_expand,
.blend_read_undo_preserve = NULL,
};
#define KEY_MODE_DUMMY 0 /* use where mode isn't checked for */
#define KEY_MODE_BPOINT 1
#define KEY_MODE_BEZTRIPLE 2
/* Internal use only. */
typedef struct WeightsArrayCache {
int num_defgroup_weights;
float **defgroup_weights;
} WeightsArrayCache;
/** Free (or release) any data used by this shapekey (does not free the key itself). */
void BKE_key_free(Key *key)
{
shapekey_free_data(&key->id);
}
void BKE_key_free_nolib(Key *key)
{
KeyBlock *kb;
while ((kb = BLI_pophead(&key->block))) {
if (kb->data) {
MEM_freeN(kb->data);
}
MEM_freeN(kb);
}
}
Key *BKE_key_add(Main *bmain, ID *id) /* common function */
{
Key *key;
char *el;
key = BKE_id_new(bmain, ID_KE, "Key");
key->type = KEY_NORMAL;
key->from = id;
key->uidgen = 1;
/* XXX the code here uses some defines which will soon be deprecated... */
switch (GS(id->name)) {
case ID_ME:
el = key->elemstr;
el[0] = KEYELEM_FLOAT_LEN_COORD;
el[1] = IPO_FLOAT;
el[2] = 0;
key->elemsize = sizeof(float[KEYELEM_FLOAT_LEN_COORD]);
break;
case ID_LT:
el = key->elemstr;
el[0] = KEYELEM_FLOAT_LEN_COORD;
el[1] = IPO_FLOAT;
el[2] = 0;
key->elemsize = sizeof(float[KEYELEM_FLOAT_LEN_COORD]);
break;
case ID_CU:
el = key->elemstr;
el[0] = KEYELEM_ELEM_SIZE_CURVE;
el[1] = IPO_BPOINT;
el[2] = 0;
key->elemsize = sizeof(float[KEYELEM_ELEM_SIZE_CURVE]);
break;
default:
break;
}
return key;
}
/* Sort shape keys and Ipo curves after a change. This assumes that at most
* one key was moved, which is a valid assumption for the places it's
* currently being called.
*/
void BKE_key_sort(Key *key)
{
KeyBlock *kb;
KeyBlock *kb2;
/* locate the key which is out of position */
for (kb = key->block.first; kb; kb = kb->next) {
if ((kb->next) && (kb->pos > kb->next->pos)) {
break;
}
}
/* if we find a key, move it */
if (kb) {
kb = kb->next; /* next key is the out-of-order one */
BLI_remlink(&key->block, kb);
/* find the right location and insert before */
for (kb2 = key->block.first; kb2; kb2 = kb2->next) {
if (kb2->pos > kb->pos) {
BLI_insertlinkafter(&key->block, kb2->prev, kb);
break;
}
}
}
/* new rule; first key is refkey, this to match drawing channels... */
key->refkey = key->block.first;
}
/**************** do the key ****************/
void key_curve_position_weights(float t, float data[4], int type)
{
float t2, t3, fc;
if (type == KEY_LINEAR) {
data[0] = 0.0f;
data[1] = -t + 1.0f;
data[2] = t;
data[3] = 0.0f;
}
else if (type == KEY_CARDINAL) {
t2 = t * t;
t3 = t2 * t;
fc = 0.71f;
data[0] = -fc * t3 + 2.0f * fc * t2 - fc * t;
data[1] = (2.0f - fc) * t3 + (fc - 3.0f) * t2 + 1.0f;
data[2] = (fc - 2.0f) * t3 + (3.0f - 2.0f * fc) * t2 + fc * t;
data[3] = fc * t3 - fc * t2;
}
else if (type == KEY_BSPLINE) {
t2 = t * t;
t3 = t2 * t;
data[0] = -0.16666666f * t3 + 0.5f * t2 - 0.5f * t + 0.16666666f;
data[1] = 0.5f * t3 - t2 + 0.66666666f;
data[2] = -0.5f * t3 + 0.5f * t2 + 0.5f * t + 0.16666666f;
data[3] = 0.16666666f * t3;
}
else if (type == KEY_CATMULL_ROM) {
t2 = t * t;
t3 = t2 * t;
fc = 0.5f;
data[0] = -fc * t3 + 2.0f * fc * t2 - fc * t;
data[1] = (2.0f - fc) * t3 + (fc - 3.0f) * t2 + 1.0f;
data[2] = (fc - 2.0f) * t3 + (3.0f - 2.0f * fc) * t2 + fc * t;
data[3] = fc * t3 - fc * t2;
}
}
/* first derivative */
void key_curve_tangent_weights(float t, float data[4], int type)
{
float t2, fc;
if (type == KEY_LINEAR) {
data[0] = 0.0f;
data[1] = -1.0f;
data[2] = 1.0f;
data[3] = 0.0f;
}
else if (type == KEY_CARDINAL) {
t2 = t * t;
fc = 0.71f;
data[0] = -3.0f * fc * t2 + 4.0f * fc * t - fc;
data[1] = 3.0f * (2.0f - fc) * t2 + 2.0f * (fc - 3.0f) * t;
data[2] = 3.0f * (fc - 2.0f) * t2 + 2.0f * (3.0f - 2.0f * fc) * t + fc;
data[3] = 3.0f * fc * t2 - 2.0f * fc * t;
}
else if (type == KEY_BSPLINE) {
t2 = t * t;
data[0] = -0.5f * t2 + t - 0.5f;
data[1] = 1.5f * t2 - t * 2.0f;
data[2] = -1.5f * t2 + t + 0.5f;
data[3] = 0.5f * t2;
}
else if (type == KEY_CATMULL_ROM) {
t2 = t * t;
fc = 0.5f;
data[0] = -3.0f * fc * t2 + 4.0f * fc * t - fc;
data[1] = 3.0f * (2.0f - fc) * t2 + 2.0f * (fc - 3.0f) * t;
data[2] = 3.0f * (fc - 2.0f) * t2 + 2.0f * (3.0f - 2.0f * fc) * t + fc;
data[3] = 3.0f * fc * t2 - 2.0f * fc * t;
}
}
/* second derivative */
void key_curve_normal_weights(float t, float data[4], int type)
{
float fc;
if (type == KEY_LINEAR) {
data[0] = 0.0f;
data[1] = 0.0f;
data[2] = 0.0f;
data[3] = 0.0f;
}
else if (type == KEY_CARDINAL) {
fc = 0.71f;
data[0] = -6.0f * fc * t + 4.0f * fc;
data[1] = 6.0f * (2.0f - fc) * t + 2.0f * (fc - 3.0f);
data[2] = 6.0f * (fc - 2.0f) * t + 2.0f * (3.0f - 2.0f * fc);
data[3] = 6.0f * fc * t - 2.0f * fc;
}
else if (type == KEY_BSPLINE) {
data[0] = -1.0f * t + 1.0f;
data[1] = 3.0f * t - 2.0f;
data[2] = -3.0f * t + 1.0f;
data[3] = 1.0f * t;
}
else if (type == KEY_CATMULL_ROM) {
fc = 0.5f;
data[0] = -6.0f * fc * t + 4.0f * fc;
data[1] = 6.0f * (2.0f - fc) * t + 2.0f * (fc - 3.0f);
data[2] = 6.0f * (fc - 2.0f) * t + 2.0f * (3.0f - 2.0f * fc);
data[3] = 6.0f * fc * t - 2.0f * fc;
}
}
static int setkeys(float fac, ListBase *lb, KeyBlock *k[], float t[4], int cycl)
{
/* return 1 means k[2] is the position, return 0 means interpolate */
KeyBlock *k1, *firstkey;
float d, dpos, ofs = 0, lastpos;
short bsplinetype;
firstkey = lb->first;
k1 = lb->last;
lastpos = k1->pos;
dpos = lastpos - firstkey->pos;
if (fac < firstkey->pos) {
fac = firstkey->pos;
}
else if (fac > k1->pos) {
fac = k1->pos;
}
k1 = k[0] = k[1] = k[2] = k[3] = firstkey;
t[0] = t[1] = t[2] = t[3] = k1->pos;
/* if (fac < 0.0 || fac > 1.0) return 1; */
if (k1->next == NULL) {
return 1;
}
if (cycl) { /* pre-sort */
k[2] = k1->next;
k[3] = k[2]->next;
if (k[3] == NULL) {
k[3] = k1;
}
while (k1) {
if (k1->next == NULL) {
k[0] = k1;
}
k1 = k1->next;
}
/* k1 = k[1]; */ /* UNUSED */
t[0] = k[0]->pos;
t[1] += dpos;
t[2] = k[2]->pos + dpos;
t[3] = k[3]->pos + dpos;
fac += dpos;
ofs = dpos;
if (k[3] == k[1]) {
t[3] += dpos;
ofs = 2.0f * dpos;
}
if (fac < t[1]) {
fac += dpos;
}
k1 = k[3];
}
else { /* pre-sort */
k[2] = k1->next;
t[2] = k[2]->pos;
k[3] = k[2]->next;
if (k[3] == NULL) {
k[3] = k[2];
}
t[3] = k[3]->pos;
k1 = k[3];
}
while (t[2] < fac) { /* find correct location */
if (k1->next == NULL) {
if (cycl) {
k1 = firstkey;
ofs += dpos;
}
else if (t[2] == t[3]) {
break;
}
}
else {
k1 = k1->next;
}
t[0] = t[1];
k[0] = k[1];
t[1] = t[2];
k[1] = k[2];
t[2] = t[3];
k[2] = k[3];
t[3] = k1->pos + ofs;
k[3] = k1;
if (ofs > 2.1f + lastpos) {
break;
}
}
bsplinetype = 0;
if (k[1]->type == KEY_BSPLINE || k[2]->type == KEY_BSPLINE) {
bsplinetype = 1;
}
if (cycl == 0) {
if (bsplinetype == 0) { /* B spline doesn't go through the control points */
if (fac <= t[1]) { /* fac for 1st key */
t[2] = t[1];
k[2] = k[1];
return 1;
}
if (fac >= t[2]) { /* fac after 2nd key */
return 1;
}
}
else if (fac > t[2]) { /* last key */
fac = t[2];
k[3] = k[2];
t[3] = t[2];
}
}
d = t[2] - t[1];
if (d == 0.0f) {
if (bsplinetype == 0) {
return 1; /* both keys equal */
}
}
else {
d = (fac - t[1]) / d;
}
/* interpolation */
key_curve_position_weights(d, t, k[1]->type);
if (k[1]->type != k[2]->type) {
float t_other[4];
key_curve_position_weights(d, t_other, k[2]->type);
interp_v4_v4v4(t, t, t_other, d);
}
return 0;
}
static void flerp(int tot,
float *in,
const float *f0,
const float *f1,
const float *f2,
const float *f3,
const float *t)
{
int a;
for (a = 0; a < tot; a++) {
in[a] = t[0] * f0[a] + t[1] * f1[a] + t[2] * f2[a] + t[3] * f3[a];
}
}
static void rel_flerp(int tot, float *in, const float *ref, const float *out, float fac)
{
int a;
for (a = 0; a < tot; a++) {
in[a] -= fac * (ref[a] - out[a]);
}
}
static char *key_block_get_data(Key *key, KeyBlock *actkb, KeyBlock *kb, char **freedata)
{
if (kb == actkb) {
/* this hack makes it possible to edit shape keys in
* edit mode with shape keys blending applied */
if (GS(key->from->name) == ID_ME) {
Mesh *me;
BMVert *eve;
BMIter iter;
float(*co)[3];
int a;
me = (Mesh *)key->from;
if (me->edit_mesh && me->edit_mesh->bm->totvert == kb->totelem) {
a = 0;
co = MEM_mallocN(sizeof(float[3]) * me->edit_mesh->bm->totvert, "key_block_get_data");
BM_ITER_MESH (eve, &iter, me->edit_mesh->bm, BM_VERTS_OF_MESH) {
copy_v3_v3(co[a], eve->co);
a++;
}
*freedata = (char *)co;
return (char *)co;
}
}
}
*freedata = NULL;
return kb->data;
}
/* currently only the first value of 'ofs' may be set. */
static bool key_pointer_size(const Key *key, const int mode, int *poinsize, int *ofs, int *step)
{
if (key->from == NULL) {
return false;
}
*step = 1;
switch (GS(key->from->name)) {
case ID_ME:
*ofs = sizeof(float[KEYELEM_FLOAT_LEN_COORD]);
*poinsize = *ofs;
break;
case ID_LT:
*ofs = sizeof(float[KEYELEM_FLOAT_LEN_COORD]);
*poinsize = *ofs;
break;
case ID_CU:
if (mode == KEY_MODE_BPOINT) {
*ofs = sizeof(float[KEYELEM_FLOAT_LEN_BPOINT]);
*step = KEYELEM_ELEM_LEN_BPOINT;
}
else {
*ofs = sizeof(float[KEYELEM_FLOAT_LEN_BEZTRIPLE]);
*step = KEYELEM_ELEM_LEN_BEZTRIPLE;
}
*poinsize = sizeof(float[KEYELEM_ELEM_SIZE_CURVE]);
break;
default:
BLI_assert(!"invalid 'key->from' ID type");
return false;
}
return true;
}
static void cp_key(const int start,
int end,
const int tot,
char *poin,
Key *key,
KeyBlock *actkb,
KeyBlock *kb,
float *weights,
const int mode)
{
float ktot = 0.0, kd = 0.0;
int elemsize, poinsize = 0, a, step, *ofsp, ofs[32], flagflo = 0;
char *k1, *kref, *freek1, *freekref;
char *cp, elemstr[8];
/* currently always 0, in future key_pointer_size may assign */
ofs[1] = 0;
if (!key_pointer_size(key, mode, &poinsize, &ofs[0], &step)) {
return;
}
if (end > tot) {
end = tot;
}
if (tot != kb->totelem) {
ktot = 0.0;
flagflo = 1;
if (kb->totelem) {
kd = kb->totelem / (float)tot;
}
else {
return;
}
}
k1 = key_block_get_data(key, actkb, kb, &freek1);
kref = key_block_get_data(key, actkb, key->refkey, &freekref);
/* this exception is needed curves with multiple splines */
if (start != 0) {
poin += poinsize * start;
if (flagflo) {
ktot += start * kd;
a = (int)floor(ktot);
if (a) {
ktot -= a;
k1 += a * key->elemsize;
}
}
else {
k1 += start * key->elemsize;
}
}
if (mode == KEY_MODE_BEZTRIPLE) {
elemstr[0] = 1;
elemstr[1] = IPO_BEZTRIPLE;
elemstr[2] = 0;
}
/* just do it here, not above! */
elemsize = key->elemsize * step;
for (a = start; a < end; a += step) {
cp = key->elemstr;
if (mode == KEY_MODE_BEZTRIPLE) {
cp = elemstr;
}
ofsp = ofs;
while (cp[0]) {
switch (cp[1]) {
case IPO_FLOAT:
if (weights) {
memcpy(poin, kref, sizeof(float[KEYELEM_FLOAT_LEN_COORD]));
if (*weights != 0.0f) {
rel_flerp(
KEYELEM_FLOAT_LEN_COORD, (float *)poin, (float *)kref, (float *)k1, *weights);
}
weights++;
}
else {
memcpy(poin, k1, sizeof(float[KEYELEM_FLOAT_LEN_COORD]));
}
break;
case IPO_BPOINT:
memcpy(poin, k1, sizeof(float[KEYELEM_FLOAT_LEN_BPOINT]));
break;
case IPO_BEZTRIPLE:
memcpy(poin, k1, sizeof(float[KEYELEM_FLOAT_LEN_BEZTRIPLE]));
break;
default:
/* should never happen */
if (freek1) {
MEM_freeN(freek1);
}
if (freekref) {
MEM_freeN(freekref);
}
BLI_assert(!"invalid 'cp[1]'");
return;
}
poin += *ofsp;
cp += 2;
ofsp++;
}
/* are we going to be nasty? */
if (flagflo) {
ktot += kd;
while (ktot >= 1.0f) {
ktot -= 1.0f;
k1 += elemsize;
kref += elemsize;
}
}
else {
k1 += elemsize;
kref += elemsize;
}
}
if (freek1) {
MEM_freeN(freek1);
}
if (freekref) {
MEM_freeN(freekref);
}
}
static void cp_cu_key(Curve *cu,
Key *key,
KeyBlock *actkb,
KeyBlock *kb,
const int start,
int end,
char *out,
const int tot)
{
Nurb *nu;
int a, step, a1, a2;
for (a = 0, nu = cu->nurb.first; nu; nu = nu->next, a += step) {
if (nu->bp) {
step = KEYELEM_ELEM_LEN_BPOINT * nu->pntsu * nu->pntsv;
a1 = max_ii(a, start);
a2 = min_ii(a + step, end);
if (a1 < a2) {
cp_key(a1, a2, tot, out, key, actkb, kb, NULL, KEY_MODE_BPOINT);
}
}
else if (nu->bezt) {
step = KEYELEM_ELEM_LEN_BEZTRIPLE * nu->pntsu;
/* exception because keys prefer to work with complete blocks */
a1 = max_ii(a, start);
a2 = min_ii(a + step, end);
if (a1 < a2) {
cp_key(a1, a2, tot, out, key, actkb, kb, NULL, KEY_MODE_BEZTRIPLE);
}
}
else {
step = 0;
}
}
}
static void key_evaluate_relative(const int start,
int end,
const int tot,
char *basispoin,
Key *key,
KeyBlock *actkb,
float **per_keyblock_weights,
const int mode)
{
KeyBlock *kb;
int *ofsp, ofs[3], elemsize, b, step;
char *cp, *poin, *reffrom, *from, elemstr[8];
int poinsize, keyblock_index;
/* currently always 0, in future key_pointer_size may assign */
ofs[1] = 0;
if (!key_pointer_size(key, mode, &poinsize, &ofs[0], &step)) {
return;
}
if (end > tot) {
end = tot;
}
/* in case of beztriple */
elemstr[0] = 1; /* nr of ipofloats */
elemstr[1] = IPO_BEZTRIPLE;
elemstr[2] = 0;
/* just here, not above! */
elemsize = key->elemsize * step;
/* step 1 init */
cp_key(start, end, tot, basispoin, key, actkb, key->refkey, NULL, mode);
/* step 2: do it */
for (kb = key->block.first, keyblock_index = 0; kb; kb = kb->next, keyblock_index++) {
if (kb != key->refkey) {
float icuval = kb->curval;
/* only with value, and no difference allowed */
if (!(kb->flag & KEYBLOCK_MUTE) && icuval != 0.0f && kb->totelem == tot) {
KeyBlock *refb;
float weight,
*weights = per_keyblock_weights ? per_keyblock_weights[keyblock_index] : NULL;
char *freefrom = NULL;
/* reference now can be any block */
refb = BLI_findlink(&key->block, kb->relative);
if (refb == NULL) {
continue;
}
poin = basispoin;
from = key_block_get_data(key, actkb, kb, &freefrom);
/* For meshes, use the original values instead of the bmesh values to
* maintain a constant offset. */
reffrom = refb->data;
poin += start * poinsize;
reffrom += key->elemsize * start; /* key elemsize yes! */
from += key->elemsize * start;
for (b = start; b < end; b += step) {
weight = weights ? (*weights * icuval) : icuval;
cp = key->elemstr;
if (mode == KEY_MODE_BEZTRIPLE) {
cp = elemstr;
}
ofsp = ofs;
while (cp[0]) { /* (cp[0] == amount) */
switch (cp[1]) {
case IPO_FLOAT:
rel_flerp(KEYELEM_FLOAT_LEN_COORD,
(float *)poin,
(float *)reffrom,
(float *)from,
weight);
break;
case IPO_BPOINT:
rel_flerp(KEYELEM_FLOAT_LEN_BPOINT,
(float *)poin,
(float *)reffrom,
(float *)from,
weight);
break;
case IPO_BEZTRIPLE:
rel_flerp(KEYELEM_FLOAT_LEN_BEZTRIPLE,
(float *)poin,
(float *)reffrom,
(float *)from,
weight);
break;
default:
/* should never happen */
if (freefrom) {
MEM_freeN(freefrom);
}
BLI_assert(!"invalid 'cp[1]'");
return;
}
poin += *ofsp;
cp += 2;
ofsp++;
}
reffrom += elemsize;
from += elemsize;
if (weights) {
weights++;
}
}
if (freefrom) {
MEM_freeN(freefrom);
}
}
}
}
}
static void do_key(const int start,
int end,
const int tot,
char *poin,
Key *key,
KeyBlock *actkb,
KeyBlock **k,
float *t,
const int mode)
{
float k1tot = 0.0, k2tot = 0.0, k3tot = 0.0, k4tot = 0.0;
float k1d = 0.0, k2d = 0.0, k3d = 0.0, k4d = 0.0;
int a, step, ofs[32], *ofsp;
int flagdo = 15, flagflo = 0, elemsize, poinsize = 0;
char *k1, *k2, *k3, *k4, *freek1, *freek2, *freek3, *freek4;
char *cp, elemstr[8];
/* currently always 0, in future key_pointer_size may assign */
ofs[1] = 0;
if (!key_pointer_size(key, mode, &poinsize, &ofs[0], &step)) {
return;
}
if (end > tot) {
end = tot;
}
k1 = key_block_get_data(key, actkb, k[0], &freek1);
k2 = key_block_get_data(key, actkb, k[1], &freek2);
k3 = key_block_get_data(key, actkb, k[2], &freek3);
k4 = key_block_get_data(key, actkb, k[3], &freek4);
/* Test for more or less points (per key!) */
if (tot != k[0]->totelem) {
k1tot = 0.0;
flagflo |= 1;
if (k[0]->totelem) {
k1d = k[0]->totelem / (float)tot;
}
else {
flagdo -= 1;
}
}
if (tot != k[1]->totelem) {
k2tot = 0.0;
flagflo |= 2;
if (k[0]->totelem) {
k2d = k[1]->totelem / (float)tot;
}
else {
flagdo -= 2;
}
}
if (tot != k[2]->totelem) {
k3tot = 0.0;
flagflo |= 4;
if (k[0]->totelem) {
k3d = k[2]->totelem / (float)tot;
}
else {
flagdo -= 4;
}
}
if (tot != k[3]->totelem) {
k4tot = 0.0;
flagflo |= 8;
if (k[0]->totelem) {
k4d = k[3]->totelem / (float)tot;
}
else {
flagdo -= 8;
}
}
/* this exception is needed for curves with multiple splines */
if (start != 0) {
poin += poinsize * start;
if (flagdo & 1) {
if (flagflo & 1) {
k1tot += start * k1d;
a = (int)floor(k1tot);
if (a) {
k1tot -= a;
k1 += a * key->elemsize;
}
}
else {
k1 += start * key->elemsize;
}
}
if (flagdo & 2) {
if (flagflo & 2) {
k2tot += start * k2d;
a = (int)floor(k2tot);
if (a) {
k2tot -= a;
k2 += a * key->elemsize;
}
}
else {
k2 += start * key->elemsize;
}
}
if (flagdo & 4) {
if (flagflo & 4) {
k3tot += start * k3d;
a = (int)floor(k3tot);
if (a) {
k3tot -= a;
k3 += a * key->elemsize;
}
}
else {
k3 += start * key->elemsize;
}
}
if (flagdo & 8) {
if (flagflo & 8) {
k4tot += start * k4d;
a = (int)floor(k4tot);
if (a) {
k4tot -= a;
k4 += a * key->elemsize;
}
}
else {
k4 += start * key->elemsize;
}
}
}
/* in case of beztriple */
elemstr[0] = 1; /* nr of ipofloats */
elemstr[1] = IPO_BEZTRIPLE;
elemstr[2] = 0;
/* only here, not above! */
elemsize = key->elemsize * step;
for (a = start; a < end; a += step) {
cp = key->elemstr;
if (mode == KEY_MODE_BEZTRIPLE) {
cp = elemstr;
}
ofsp = ofs;
while (cp[0]) { /* (cp[0] == amount) */
switch (cp[1]) {
case IPO_FLOAT:
flerp(KEYELEM_FLOAT_LEN_COORD,
(float *)poin,
(float *)k1,
(float *)k2,
(float *)k3,
(float *)k4,
t);
break;
case IPO_BPOINT:
flerp(KEYELEM_FLOAT_LEN_BPOINT,
(float *)poin,
(float *)k1,
(float *)k2,
(float *)k3,
(float *)k4,
t);
break;
case IPO_BEZTRIPLE:
flerp(KEYELEM_FLOAT_LEN_BEZTRIPLE,
(void *)poin,
(void *)k1,
(void *)k2,
(void *)k3,
(void *)k4,
t);
break;
default:
/* should never happen */
if (freek1) {
MEM_freeN(freek1);
}
if (freek2) {
MEM_freeN(freek2);
}
if (freek3) {
MEM_freeN(freek3);
}
if (freek4) {
MEM_freeN(freek4);
}
BLI_assert(!"invalid 'cp[1]'");
return;
}
poin += *ofsp;
cp += 2;
ofsp++;
}
/* lets do it the difficult way: when keys have a different size */
if (flagdo & 1) {
if (flagflo & 1) {
k1tot += k1d;
while (k1tot >= 1.0f) {
k1tot -= 1.0f;
k1 += elemsize;
}
}
else {
k1 += elemsize;
}
}
if (flagdo & 2) {
if (flagflo & 2) {
k2tot += k2d;
while (k2tot >= 1.0f) {
k2tot -= 1.0f;
k2 += elemsize;
}
}
else {
k2 += elemsize;
}
}
if (flagdo & 4) {
if (flagflo & 4) {
k3tot += k3d;
while (k3tot >= 1.0f) {
k3tot -= 1.0f;
k3 += elemsize;
}
}
else {
k3 += elemsize;
}
}
if (flagdo & 8) {
if (flagflo & 8) {
k4tot += k4d;
while (k4tot >= 1.0f) {
k4tot -= 1.0f;
k4 += elemsize;
}
}
else {
k4 += elemsize;
}
}
}
if (freek1) {
MEM_freeN(freek1);
}
if (freek2) {
MEM_freeN(freek2);
}
if (freek3) {
MEM_freeN(freek3);
}
if (freek4) {
MEM_freeN(freek4);
}
}
static float *get_weights_array(Object *ob, char *vgroup, WeightsArrayCache *cache)
{
MDeformVert *dvert = NULL;
BMEditMesh *em = NULL;
BMIter iter;
BMVert *eve;
int totvert = 0, defgrp_index = 0;
/* no vgroup string set? */
if (vgroup[0] == 0) {
return NULL;
}
/* gather dvert and totvert */
if (ob->type == OB_MESH) {
Mesh *me = ob->data;
dvert = me->dvert;
totvert = me->totvert;
if (me->edit_mesh && me->edit_mesh->bm->totvert == totvert) {
em = me->edit_mesh;
}
}
else if (ob->type == OB_LATTICE) {
Lattice *lt = ob->data;
dvert = lt->dvert;
totvert = lt->pntsu * lt->pntsv * lt->pntsw;
}
if (dvert == NULL) {
return NULL;
}
/* find the group (weak loop-in-loop) */
defgrp_index = BKE_object_defgroup_name_index(ob, vgroup);
if (defgrp_index != -1) {
float *weights;
if (cache) {
if (cache->defgroup_weights == NULL) {
int num_defgroup = BLI_listbase_count(&ob->defbase);
cache->defgroup_weights = MEM_callocN(sizeof(*cache->defgroup_weights) * num_defgroup,
"cached defgroup weights");
cache->num_defgroup_weights = num_defgroup;
}
if (cache->defgroup_weights[defgrp_index]) {
return cache->defgroup_weights[defgrp_index];
}
}
weights = MEM_mallocN(totvert * sizeof(float), "weights");
if (em) {
int i;
const int cd_dvert_offset = CustomData_get_offset(&em->bm->vdata, CD_MDEFORMVERT);
BM_ITER_MESH_INDEX (eve, &iter, em->bm, BM_VERTS_OF_MESH, i) {
dvert = BM_ELEM_CD_GET_VOID_P(eve, cd_dvert_offset);
weights[i] = BKE_defvert_find_weight(dvert, defgrp_index);
}
}
else {
for (int i = 0; i < totvert; i++, dvert++) {
weights[i] = BKE_defvert_find_weight(dvert, defgrp_index);
}
}
if (cache) {
cache->defgroup_weights[defgrp_index] = weights;
}
return weights;
}
return NULL;
}
static float **keyblock_get_per_block_weights(Object *ob, Key *key, WeightsArrayCache *cache)
{
KeyBlock *keyblock;
float **per_keyblock_weights;
int keyblock_index;
per_keyblock_weights = MEM_mallocN(sizeof(*per_keyblock_weights) * key->totkey,
"per keyblock weights");
for (keyblock = key->block.first, keyblock_index = 0; keyblock;
keyblock = keyblock->next, keyblock_index++) {
per_keyblock_weights[keyblock_index] = get_weights_array(ob, keyblock->vgroup, cache);
}
return per_keyblock_weights;
}
static void keyblock_free_per_block_weights(Key *key,
float **per_keyblock_weights,
WeightsArrayCache *cache)
{
int a;
if (cache) {
if (cache->num_defgroup_weights) {
for (a = 0; a < cache->num_defgroup_weights; a++) {
if (cache->defgroup_weights[a]) {
MEM_freeN(cache->defgroup_weights[a]);
}
}
MEM_freeN(cache->defgroup_weights);
}
cache->defgroup_weights = NULL;
}
else {
for (a = 0; a < key->totkey; a++) {
if (per_keyblock_weights[a]) {
MEM_freeN(per_keyblock_weights[a]);
}
}
}
MEM_freeN(per_keyblock_weights);
}
static void do_mesh_key(Object *ob, Key *key, char *out, const int tot)
{
KeyBlock *k[4], *actkb = BKE_keyblock_from_object(ob);
float t[4];
int flag = 0;
if (key->type == KEY_RELATIVE) {
WeightsArrayCache cache = {0, NULL};
float **per_keyblock_weights;
per_keyblock_weights = keyblock_get_per_block_weights(ob, key, &cache);
key_evaluate_relative(
0, tot, tot, (char *)out, key, actkb, per_keyblock_weights, KEY_MODE_DUMMY);
keyblock_free_per_block_weights(key, per_keyblock_weights, &cache);
}
else {
const float ctime_scaled = key->ctime / 100.0f;
flag = setkeys(ctime_scaled, &key->block, k, t, 0);
if (flag == 0) {
do_key(0, tot, tot, (char *)out, key, actkb, k, t, KEY_MODE_DUMMY);
}
else {
cp_key(0, tot, tot, (char *)out, key, actkb, k[2], NULL, KEY_MODE_DUMMY);
}
}
}
static void do_cu_key(
Curve *cu, Key *key, KeyBlock *actkb, KeyBlock **k, float *t, char *out, const int tot)
{
Nurb *nu;
int a, step;
for (a = 0, nu = cu->nurb.first; nu; nu = nu->next, a += step) {
if (nu->bp) {
step = KEYELEM_ELEM_LEN_BPOINT * nu->pntsu * nu->pntsv;
do_key(a, a + step, tot, out, key, actkb, k, t, KEY_MODE_BPOINT);
}
else if (nu->bezt) {
step = KEYELEM_ELEM_LEN_BEZTRIPLE * nu->pntsu;
do_key(a, a + step, tot, out, key, actkb, k, t, KEY_MODE_BEZTRIPLE);
}
else {
step = 0;
}
}
}
static void do_rel_cu_key(Curve *cu, Key *key, KeyBlock *actkb, char *out, const int tot)
{
Nurb *nu;
int a, step;
for (a = 0, nu = cu->nurb.first; nu; nu = nu->next, a += step) {
if (nu->bp) {
step = KEYELEM_ELEM_LEN_BPOINT * nu->pntsu * nu->pntsv;
key_evaluate_relative(a, a + step, tot, out, key, actkb, NULL, KEY_MODE_BPOINT);
}
else if (nu->bezt) {
step = KEYELEM_ELEM_LEN_BEZTRIPLE * nu->pntsu;
key_evaluate_relative(a, a + step, tot, out, key, actkb, NULL, KEY_MODE_BEZTRIPLE);
}
else {
step = 0;
}
}
}
static void do_curve_key(Object *ob, Key *key, char *out, const int tot)
{
Curve *cu = ob->data;
KeyBlock *k[4], *actkb = BKE_keyblock_from_object(ob);
float t[4];
int flag = 0;
if (key->type == KEY_RELATIVE) {
do_rel_cu_key(cu, cu->key, actkb, out, tot);
}
else {
const float ctime_scaled = key->ctime / 100.0f;
flag = setkeys(ctime_scaled, &key->block, k, t, 0);
if (flag == 0) {
do_cu_key(cu, key, actkb, k, t, out, tot);
}
else {
cp_cu_key(cu, key, actkb, k[2], 0, tot, out, tot);
}
}
}
static void do_latt_key(Object *ob, Key *key, char *out, const int tot)
{
Lattice *lt = ob->data;
KeyBlock *k[4], *actkb = BKE_keyblock_from_object(ob);
float t[4];
int flag;
if (key->type == KEY_RELATIVE) {
float **per_keyblock_weights;
per_keyblock_weights = keyblock_get_per_block_weights(ob, key, NULL);
key_evaluate_relative(
0, tot, tot, (char *)out, key, actkb, per_keyblock_weights, KEY_MODE_DUMMY);
keyblock_free_per_block_weights(key, per_keyblock_weights, NULL);
}
else {
const float ctime_scaled = key->ctime / 100.0f;
flag = setkeys(ctime_scaled, &key->block, k, t, 0);
if (flag == 0) {
do_key(0, tot, tot, (char *)out, key, actkb, k, t, KEY_MODE_DUMMY);
}
else {
cp_key(0, tot, tot, (char *)out, key, actkb, k[2], NULL, KEY_MODE_DUMMY);
}
}
if (lt->flag & LT_OUTSIDE) {
outside_lattice(lt);
}
}
/* returns key coordinates (+ tilt) when key applied, NULL otherwise */
float *BKE_key_evaluate_object_ex(Object *ob, int *r_totelem, float *arr, size_t arr_size)
{
Key *key = BKE_key_from_object(ob);
KeyBlock *actkb = BKE_keyblock_from_object(ob);
char *out;
int tot = 0, size = 0;
if (key == NULL || BLI_listbase_is_empty(&key->block)) {
return NULL;
}
/* compute size of output array */
if (ob->type == OB_MESH) {
Mesh *me = ob->data;
tot = me->totvert;
size = tot * sizeof(float[KEYELEM_FLOAT_LEN_COORD]);
}
else if (ob->type == OB_LATTICE) {
Lattice *lt = ob->data;
tot = lt->pntsu * lt->pntsv * lt->pntsw;
size = tot * sizeof(float[KEYELEM_FLOAT_LEN_COORD]);
}
else if (ELEM(ob->type, OB_CURVE, OB_SURF)) {
Curve *cu = ob->data;
tot = BKE_keyblock_curve_element_count(&cu->nurb);
size = tot * sizeof(float[KEYELEM_ELEM_SIZE_CURVE]);
}
/* if nothing to interpolate, cancel */
if (tot == 0 || size == 0) {
return NULL;
}
/* allocate array */
if (arr == NULL) {
out = MEM_callocN(size, "BKE_key_evaluate_object out");
}
else {
if (arr_size != size) {
return NULL;
}
out = (char *)arr;
}
if (ob->shapeflag & OB_SHAPE_LOCK) {
/* shape locked, copy the locked shape instead of blending */
KeyBlock *kb = BLI_findlink(&key->block, ob->shapenr - 1);
if (kb && (kb->flag & KEYBLOCK_MUTE)) {
kb = key->refkey;
}
if (kb == NULL) {
kb = key->block.first;
ob->shapenr = 1;
}
if (OB_TYPE_SUPPORT_VGROUP(ob->type)) {
float *weights = get_weights_array(ob, kb->vgroup, NULL);
cp_key(0, tot, tot, out, key, actkb, kb, weights, 0);
if (weights) {
MEM_freeN(weights);
}
}
else if (ELEM(ob->type, OB_CURVE, OB_SURF)) {
cp_cu_key(ob->data, key, actkb, kb, 0, tot, out, tot);
}
}
else {
if (ob->type == OB_MESH) {
do_mesh_key(ob, key, out, tot);
}
else if (ob->type == OB_LATTICE) {
do_latt_key(ob, key, out, tot);
}
else if (ob->type == OB_CURVE) {
do_curve_key(ob, key, out, tot);
}
else if (ob->type == OB_SURF) {
do_curve_key(ob, key, out, tot);
}
}
if (r_totelem) {
*r_totelem = tot;
}
return (float *)out;
}
float *BKE_key_evaluate_object(Object *ob, int *r_totelem)
{
return BKE_key_evaluate_object_ex(ob, r_totelem, NULL, 0);
}
/**
* \param shape_index: The index to use or all (when -1).
*/
int BKE_keyblock_element_count_from_shape(const Key *key, const int shape_index)
{
int result = 0;
int index = 0;
for (const KeyBlock *kb = key->block.first; kb; kb = kb->next, index++) {
if (ELEM(shape_index, -1, index)) {
result += kb->totelem;
}
}
return result;
}
int BKE_keyblock_element_count(const Key *key)
{
return BKE_keyblock_element_count_from_shape(key, -1);
}
/**
* \param shape_index: The index to use or all (when -1).
*/
size_t BKE_keyblock_element_calc_size_from_shape(const Key *key, const int shape_index)
{
return (size_t)BKE_keyblock_element_count_from_shape(key, shape_index) * key->elemsize;
}
size_t BKE_keyblock_element_calc_size(const Key *key)
{
return BKE_keyblock_element_calc_size_from_shape(key, -1);
}
/* -------------------------------------------------------------------- */
/** \name Key-Block Data Access
*
* Utilities for getting/setting key data as a single array,
* use #BKE_keyblock_element_calc_size to allocate the size of the data needed.
* \{ */
/**
* \param shape_index: The index to use or all (when -1).
*/
void BKE_keyblock_data_get_from_shape(const Key *key, float (*arr)[3], const int shape_index)
{
uint8_t *elements = (uint8_t *)arr;
int index = 0;
for (const KeyBlock *kb = key->block.first; kb; kb = kb->next, index++) {
if (ELEM(shape_index, -1, index)) {
const int block_elem_len = kb->totelem * key->elemsize;
memcpy(elements, kb->data, block_elem_len);
elements += block_elem_len;
}
}
}
void BKE_keyblock_data_get(const Key *key, float (*arr)[3])
{
BKE_keyblock_data_get_from_shape(key, arr, -1);
}
/**
* Set the data to all key-blocks (or shape_index if != -1).
*/
void BKE_keyblock_data_set_with_mat4(Key *key,
const int shape_index,
const float (*coords)[3],
const float mat[4][4])
{
if (key->elemsize != sizeof(float[3])) {
BLI_assert(!"Invalid elemsize");
return;
}
const float(*elements)[3] = coords;
int index = 0;
for (KeyBlock *kb = key->block.first; kb; kb = kb->next, index++) {
if (ELEM(shape_index, -1, index)) {
const int block_elem_len = kb->totelem;
float(*block_data)[3] = (float(*)[3])kb->data;
for (int data_offset = 0; data_offset < block_elem_len; ++data_offset) {
const float *src_data = (const float *)(elements + data_offset);
float *dst_data = (float *)(block_data + data_offset);
mul_v3_m4v3(dst_data, mat, src_data);
}
elements += block_elem_len;
}
}
}
/**
* Set the data for all key-blocks (or shape_index if != -1),
* transforming by \a mat.
*/
void BKE_keyblock_curve_data_set_with_mat4(
Key *key, const ListBase *nurb, const int shape_index, const void *data, const float mat[4][4])
{
const uint8_t *elements = data;
int index = 0;
for (KeyBlock *kb = key->block.first; kb; kb = kb->next, index++) {
if (ELEM(shape_index, -1, index)) {
const int block_elem_size = kb->totelem * key->elemsize;
BKE_keyblock_curve_data_transform(nurb, mat, elements, kb->data);
elements += block_elem_size;
}
}
}
/**
* Set the data for all key-blocks (or shape_index if != -1).
*/
void BKE_keyblock_data_set(Key *key, const int shape_index, const void *data)
{
const uint8_t *elements = data;
int index = 0;
for (KeyBlock *kb = key->block.first; kb; kb = kb->next, index++) {
if (ELEM(shape_index, -1, index)) {
const int block_elem_size = kb->totelem * key->elemsize;
memcpy(kb->data, elements, block_elem_size);
elements += block_elem_size;
}
}
}
/** \} */
bool BKE_key_idtype_support(const short id_type)
{
switch (id_type) {
case ID_ME:
case ID_CU:
case ID_LT:
return true;
default:
return false;
}
}
Key **BKE_key_from_id_p(ID *id)
{
switch (GS(id->name)) {
case ID_ME: {
Mesh *me = (Mesh *)id;
return &me->key;
}
case ID_CU: {
Curve *cu = (Curve *)id;
if (cu->vfont == NULL) {
return &cu->key;
}
break;
}
case ID_LT: {
Lattice *lt = (Lattice *)id;
return &lt->key;
}
default:
break;
}
return NULL;
}
Key *BKE_key_from_id(ID *id)
{
Key **key_p;
key_p = BKE_key_from_id_p(id);
if (key_p) {
return *key_p;
}
return NULL;
}
Key **BKE_key_from_object_p(const Object *ob)
{
if (ob == NULL || ob->data == NULL) {
return NULL;
}
return BKE_key_from_id_p(ob->data);
}
Key *BKE_key_from_object(const Object *ob)
{
Key **key_p;
key_p = BKE_key_from_object_p(ob);
if (key_p) {
return *key_p;
}
return NULL;
}
KeyBlock *BKE_keyblock_add(Key *key, const char *name)
{
KeyBlock *kb;
float curpos = -0.1;
int tot;
kb = key->block.last;
if (kb) {
curpos = kb->pos;
}
kb = MEM_callocN(sizeof(KeyBlock), "Keyblock");
BLI_addtail(&key->block, kb);
kb->type = KEY_LINEAR;
tot = BLI_listbase_count(&key->block);
if (name) {
BLI_strncpy(kb->name, name, sizeof(kb->name));
}
else {
if (tot == 1) {
BLI_strncpy(kb->name, DATA_("Basis"), sizeof(kb->name));
}
else {
BLI_snprintf(kb->name, sizeof(kb->name), DATA_("Key %d"), tot - 1);
}
}
BLI_uniquename(&key->block, kb, DATA_("Key"), '.', offsetof(KeyBlock, name), sizeof(kb->name));
kb->uid = key->uidgen++;
key->totkey++;
if (key->totkey == 1) {
key->refkey = kb;
}
kb->slidermin = 0.0f;
kb->slidermax = 1.0f;
/**
* \note caller may want to set this to current time, but don't do it here since we need to sort
* which could cause problems in some cases, see #BKE_keyblock_add_ctime */
kb->pos = curpos + 0.1f; /* only used for absolute shape keys */
return kb;
}
/**
* \note sorting is a problematic side effect in some cases,
* better only do this explicitly by having its own function,
*
* \param key: The key datablock to add to.
* \param name: Optional name for the new keyblock.
* \param do_force: always use ctime even for relative keys.
*/
KeyBlock *BKE_keyblock_add_ctime(Key *key, const char *name, const bool do_force)
{
KeyBlock *kb = BKE_keyblock_add(key, name);
const float cpos = key->ctime / 100.0f;
/* In case of absolute keys, there is no point in adding more than one key with the same pos.
* Hence only set new keybloc pos to current time if none previous one already use it.
* Now at least people just adding absolute keys without touching to ctime
* won't have to systematically use retiming func (and have ordering issues, too). See T39897.
*/
if (!do_force && (key->type != KEY_RELATIVE)) {
KeyBlock *it_kb;
for (it_kb = key->block.first; it_kb; it_kb = it_kb->next) {
/* Use epsilon to avoid floating point precision issues.
* 1e-3 because the position is stored as frame * 1e-2. */
if (compare_ff(it_kb->pos, cpos, 1e-3f)) {
return kb;
}
}
}
if (do_force || (key->type != KEY_RELATIVE)) {
kb->pos = cpos;
BKE_key_sort(key);
}
return kb;
}
/* only the active keyblock */
KeyBlock *BKE_keyblock_from_object(Object *ob)
{
Key *key = BKE_key_from_object(ob);
if (key) {
KeyBlock *kb = BLI_findlink(&key->block, ob->shapenr - 1);
return kb;
}
return NULL;
}
KeyBlock *BKE_keyblock_from_object_reference(Object *ob)
{
Key *key = BKE_key_from_object(ob);
if (key) {
return key->refkey;
}
return NULL;
}
/* get the appropriate KeyBlock given an index */
KeyBlock *BKE_keyblock_from_key(Key *key, int index)
{
if (key) {
KeyBlock *kb = key->block.first;
for (int i = 1; i < key->totkey; i++) {
kb = kb->next;
if (index == i) {
return kb;
}
}
}
return NULL;
}
/* get the appropriate KeyBlock given a name to search for */
KeyBlock *BKE_keyblock_find_name(Key *key, const char name[])
{
return BLI_findstring(&key->block, name, offsetof(KeyBlock, name));
}
/**
* \brief copy shape-key attributes, but not key data.or name/uid
*/
void BKE_keyblock_copy_settings(KeyBlock *kb_dst, const KeyBlock *kb_src)
{
kb_dst->pos = kb_src->pos;
kb_dst->curval = kb_src->curval;
kb_dst->type = kb_src->type;
kb_dst->relative = kb_src->relative;
BLI_strncpy(kb_dst->vgroup, kb_src->vgroup, sizeof(kb_dst->vgroup));
kb_dst->slidermin = kb_src->slidermin;
kb_dst->slidermax = kb_src->slidermax;
}
/* Get RNA-Path for 'value' setting of the given ShapeKey
* NOTE: the user needs to free the returned string once they're finish with it
*/
char *BKE_keyblock_curval_rnapath_get(Key *key, KeyBlock *kb)
{
PointerRNA ptr;
PropertyRNA *prop;
/* sanity checks */
if (ELEM(NULL, key, kb)) {
return NULL;
}
/* create the RNA pointer */
RNA_pointer_create(&key->id, &RNA_ShapeKey, kb, &ptr);
/* get pointer to the property too */
prop = RNA_struct_find_property(&ptr, "value");
/* return the path */
return RNA_path_from_ID_to_property(&ptr, prop);
}
/* conversion functions */
/************************* Lattice ************************/
void BKE_keyblock_update_from_lattice(Lattice *lt, KeyBlock *kb)
{
BPoint *bp;
float(*fp)[3];
int a, tot;
BLI_assert(kb->totelem == lt->pntsu * lt->pntsv * lt->pntsw);
tot = kb->totelem;
if (tot == 0) {
return;
}
bp = lt->def;
fp = kb->data;
for (a = 0; a < kb->totelem; a++, fp++, bp++) {
copy_v3_v3(*fp, bp->vec);
}
}
void BKE_keyblock_convert_from_lattice(Lattice *lt, KeyBlock *kb)
{
int tot;
tot = lt->pntsu * lt->pntsv * lt->pntsw;
if (tot == 0) {
return;
}
MEM_SAFE_FREE(kb->data);
kb->data = MEM_mallocN(lt->key->elemsize * tot, __func__);
kb->totelem = tot;
BKE_keyblock_update_from_lattice(lt, kb);
}
void BKE_keyblock_convert_to_lattice(KeyBlock *kb, Lattice *lt)
{
BPoint *bp;
const float(*fp)[3];
int a, tot;
bp = lt->def;
fp = kb->data;
tot = lt->pntsu * lt->pntsv * lt->pntsw;
tot = min_ii(kb->totelem, tot);
for (a = 0; a < tot; a++, fp++, bp++) {
copy_v3_v3(bp->vec, *fp);
}
}
/************************* Curve ************************/
int BKE_keyblock_curve_element_count(ListBase *nurb)
{
Nurb *nu;
int tot = 0;
nu = nurb->first;
while (nu) {
if (nu->bezt) {
tot += KEYELEM_ELEM_LEN_BEZTRIPLE * nu->pntsu;
}
else if (nu->bp) {
tot += KEYELEM_ELEM_LEN_BPOINT * nu->pntsu * nu->pntsv;
}
nu = nu->next;
}
return tot;
}
void BKE_keyblock_update_from_curve(Curve *UNUSED(cu), KeyBlock *kb, ListBase *nurb)
{
Nurb *nu;
BezTriple *bezt;
BPoint *bp;
float *fp;
int a, tot;
/* count */
BLI_assert(BKE_keyblock_curve_element_count(nurb) == kb->totelem);
tot = kb->totelem;
if (tot == 0) {
return;
}
fp = kb->data;
for (nu = nurb->first; nu; nu = nu->next) {
if (nu->bezt) {
for (a = nu->pntsu, bezt = nu->bezt; a; a--, bezt++) {
for (int i = 0; i < 3; i++) {
copy_v3_v3(&fp[i * 3], bezt->vec[i]);
}
fp[9] = bezt->tilt;
fp[10] = bezt->radius;
fp += KEYELEM_FLOAT_LEN_BEZTRIPLE;
}
}
else {
for (a = nu->pntsu * nu->pntsv, bp = nu->bp; a; a--, bp++) {
copy_v3_v3(fp, bp->vec);
fp[3] = bp->tilt;
fp[4] = bp->radius;
fp += KEYELEM_FLOAT_LEN_BPOINT;
}
}
}
}
void BKE_keyblock_curve_data_transform(const ListBase *nurb,
const float mat[4][4],
const void *src_data,
void *dst_data)
{
const float *src = src_data;
float *dst = dst_data;
for (Nurb *nu = nurb->first; nu; nu = nu->next) {
if (nu->bezt) {
for (int a = nu->pntsu; a; a--) {
for (int i = 0; i < 3; i++) {
mul_v3_m4v3(&dst[i * 3], mat, &src[i * 3]);
}
dst[9] = src[9];
dst[10] = src[10];
src += KEYELEM_FLOAT_LEN_BEZTRIPLE;
dst += KEYELEM_FLOAT_LEN_BEZTRIPLE;
}
}
else {
for (int a = nu->pntsu * nu->pntsv; a; a--) {
mul_v3_m4v3(dst, mat, src);
dst[3] = src[3];
dst[4] = src[4];
src += KEYELEM_FLOAT_LEN_BPOINT;
dst += KEYELEM_FLOAT_LEN_BPOINT;
}
}
}
}
void BKE_keyblock_convert_from_curve(Curve *cu, KeyBlock *kb, ListBase *nurb)
{
int tot;
/* count */
tot = BKE_keyblock_curve_element_count(nurb);
if (tot == 0) {
return;
}
MEM_SAFE_FREE(kb->data);
kb->data = MEM_mallocN(cu->key->elemsize * tot, __func__);
kb->totelem = tot;
BKE_keyblock_update_from_curve(cu, kb, nurb);
}
void BKE_keyblock_convert_to_curve(KeyBlock *kb, Curve *UNUSED(cu), ListBase *nurb)
{
Nurb *nu;
BezTriple *bezt;
BPoint *bp;
const float *fp;
int a, tot;
tot = BKE_keyblock_curve_element_count(nurb);
tot = min_ii(kb->totelem, tot);
fp = kb->data;
for (nu = nurb->first; nu && tot > 0; nu = nu->next) {
if (nu->bezt) {
for (a = nu->pntsu, bezt = nu->bezt; a && (tot -= KEYELEM_ELEM_LEN_BEZTRIPLE) >= 0;
a--, bezt++) {
for (int i = 0; i < 3; i++) {
copy_v3_v3(bezt->vec[i], &fp[i * 3]);
}
bezt->tilt = fp[9];
bezt->radius = fp[10];
fp += KEYELEM_FLOAT_LEN_BEZTRIPLE;
}
}
else {
for (a = nu->pntsu * nu->pntsv, bp = nu->bp; a && (tot -= KEYELEM_ELEM_LEN_BPOINT) >= 0;
a--, bp++) {
copy_v3_v3(bp->vec, fp);
bp->tilt = fp[3];
bp->radius = fp[4];
fp += KEYELEM_FLOAT_LEN_BPOINT;
}
}
}
}
/************************* Mesh ************************/
void BKE_keyblock_update_from_mesh(Mesh *me, KeyBlock *kb)
{
MVert *mvert;
float(*fp)[3];
int a, tot;
BLI_assert(me->totvert == kb->totelem);
tot = me->totvert;
if (tot == 0) {
return;
}
mvert = me->mvert;
fp = kb->data;
for (a = 0; a < tot; a++, fp++, mvert++) {
copy_v3_v3(*fp, mvert->co);
}
}
void BKE_keyblock_convert_from_mesh(Mesh *me, Key *key, KeyBlock *kb)
{
const int len = me->totvert;
if (me->totvert == 0) {
return;
}
MEM_SAFE_FREE(kb->data);
kb->data = MEM_malloc_arrayN((size_t)len, (size_t)key->elemsize, __func__);
kb->totelem = len;
BKE_keyblock_update_from_mesh(me, kb);
}
void BKE_keyblock_convert_to_mesh(KeyBlock *kb, Mesh *me)
{
MVert *mvert;
const float(*fp)[3];
int a, tot;
mvert = me->mvert;
fp = kb->data;
tot = min_ii(kb->totelem, me->totvert);
for (a = 0; a < tot; a++, fp++, mvert++) {
copy_v3_v3(mvert->co, *fp);
}
}
/**
* Computes normals (vertices, polygons and/or loops ones) of given mesh for given shape key.
*
* \param kb: the KeyBlock to use to compute normals.
* \param mesh: the Mesh to apply keyblock to.
* \param r_vertnors: if non-NULL, an array of vectors, same length as number of vertices.
* \param r_polynors: if non-NULL, an array of vectors, same length as number of polygons.
* \param r_loopnors: if non-NULL, an array of vectors, same length as number of loops.
*/
void BKE_keyblock_mesh_calc_normals(struct KeyBlock *kb,
struct Mesh *mesh,
float (*r_vertnors)[3],
float (*r_polynors)[3],
float (*r_loopnors)[3])
{
/* We use a temp, shallow copy of mesh to work. */
Mesh me;
bool free_polynors = false;
if (r_vertnors == NULL && r_polynors == NULL && r_loopnors == NULL) {
return;
}
me = *mesh;
me.mvert = MEM_dupallocN(mesh->mvert);
CustomData_reset(&me.vdata);
CustomData_reset(&me.edata);
CustomData_reset(&me.pdata);
CustomData_reset(&me.ldata);
CustomData_reset(&me.fdata);
BKE_keyblock_convert_to_mesh(kb, &me);
if (r_polynors == NULL && r_loopnors != NULL) {
r_polynors = MEM_mallocN(sizeof(float[3]) * me.totpoly, __func__);
free_polynors = true;
}
BKE_mesh_calc_normals_poly(me.mvert,
r_vertnors,
me.totvert,
me.mloop,
me.mpoly,
me.totloop,
me.totpoly,
r_polynors,
false);
if (r_loopnors) {
short(*clnors)[2] = CustomData_get_layer(&mesh->ldata, CD_CUSTOMLOOPNORMAL); /* May be NULL. */
BKE_mesh_normals_loop_split(me.mvert,
me.totvert,
me.medge,
me.totedge,
me.mloop,
r_loopnors,
me.totloop,
me.mpoly,
r_polynors,
me.totpoly,
(me.flag & ME_AUTOSMOOTH) != 0,
me.smoothresh,
NULL,
clnors,
NULL);
}
CustomData_free(&me.vdata, me.totvert);
CustomData_free(&me.edata, me.totedge);
CustomData_free(&me.pdata, me.totpoly);
CustomData_free(&me.ldata, me.totloop);
CustomData_free(&me.fdata, me.totface);
MEM_freeN(me.mvert);
if (free_polynors) {
MEM_freeN(r_polynors);
}
}
/************************* raw coords ************************/
void BKE_keyblock_update_from_vertcos(Object *ob, KeyBlock *kb, const float (*vertCos)[3])
{
const float(*co)[3] = vertCos;
float *fp = kb->data;
int tot, a;
#ifndef NDEBUG
if (ob->type == OB_LATTICE) {
Lattice *lt = ob->data;
BLI_assert((lt->pntsu * lt->pntsv * lt->pntsw) == kb->totelem);
}
else if (ELEM(ob->type, OB_CURVE, OB_SURF)) {
Curve *cu = ob->data;
BLI_assert(BKE_keyblock_curve_element_count(&cu->nurb) == kb->totelem);
}
else if (ob->type == OB_MESH) {
Mesh *me = ob->data;
BLI_assert(me->totvert == kb->totelem);
}
else {
BLI_assert(0 == kb->totelem);
}
#endif
tot = kb->totelem;
if (tot == 0) {
return;
}
/* Copy coords to keyblock */
if (ELEM(ob->type, OB_MESH, OB_LATTICE)) {
for (a = 0; a < tot; a++, fp += 3, co++) {
copy_v3_v3(fp, *co);
}
}
else if (ELEM(ob->type, OB_CURVE, OB_SURF)) {
Curve *cu = (Curve *)ob->data;
Nurb *nu;
BezTriple *bezt;
BPoint *bp;
for (nu = cu->nurb.first; nu; nu = nu->next) {
if (nu->bezt) {
for (a = nu->pntsu, bezt = nu->bezt; a; a--, bezt++) {
for (int i = 0; i < 3; i++, co++) {
copy_v3_v3(&fp[i * 3], *co);
}
fp += KEYELEM_FLOAT_LEN_BEZTRIPLE;
}
}
else {
for (a = nu->pntsu * nu->pntsv, bp = nu->bp; a; a--, bp++, co++) {
copy_v3_v3(fp, *co);
fp += KEYELEM_FLOAT_LEN_BPOINT;
}
}
}
}
}
void BKE_keyblock_convert_from_vertcos(Object *ob, KeyBlock *kb, const float (*vertCos)[3])
{
int tot = 0, elemsize;
MEM_SAFE_FREE(kb->data);
/* Count of vertex coords in array */
if (ob->type == OB_MESH) {
Mesh *me = (Mesh *)ob->data;
tot = me->totvert;
elemsize = me->key->elemsize;
}
else if (ob->type == OB_LATTICE) {
Lattice *lt = (Lattice *)ob->data;
tot = lt->pntsu * lt->pntsv * lt->pntsw;
elemsize = lt->key->elemsize;
}
else if (ELEM(ob->type, OB_CURVE, OB_SURF)) {
Curve *cu = (Curve *)ob->data;
elemsize = cu->key->elemsize;
tot = BKE_keyblock_curve_element_count(&cu->nurb);
}
if (tot == 0) {
return;
}
kb->data = MEM_mallocN(tot * elemsize, __func__);
/* Copy coords to keyblock */
BKE_keyblock_update_from_vertcos(ob, kb, vertCos);
}
float (*BKE_keyblock_convert_to_vertcos(Object *ob, KeyBlock *kb))[3]
{
float(*vertCos)[3], (*co)[3];
const float *fp = kb->data;
int tot = 0, a;
/* Count of vertex coords in array */
if (ob->type == OB_MESH) {
Mesh *me = (Mesh *)ob->data;
tot = me->totvert;
}
else if (ob->type == OB_LATTICE) {
Lattice *lt = (Lattice *)ob->data;
tot = lt->pntsu * lt->pntsv * lt->pntsw;
}
else if (ELEM(ob->type, OB_CURVE, OB_SURF)) {
Curve *cu = (Curve *)ob->data;
tot = BKE_nurbList_verts_count(&cu->nurb);
}
if (tot == 0) {
return NULL;
}
co = vertCos = MEM_mallocN(tot * sizeof(*vertCos), __func__);
/* Copy coords to array */
if (ELEM(ob->type, OB_MESH, OB_LATTICE)) {
for (a = 0; a < tot; a++, fp += 3, co++) {
copy_v3_v3(*co, fp);
}
}
else if (ELEM(ob->type, OB_CURVE, OB_SURF)) {
Curve *cu = (Curve *)ob->data;
Nurb *nu;
BezTriple *bezt;
BPoint *bp;
for (nu = cu->nurb.first; nu; nu = nu->next) {
if (nu->bezt) {
for (a = nu->pntsu, bezt = nu->bezt; a; a--, bezt++) {
for (int i = 0; i < 3; i++, co++) {
copy_v3_v3(*co, &fp[i * 3]);
}
fp += KEYELEM_FLOAT_LEN_BEZTRIPLE;
}
}
else {
for (a = nu->pntsu * nu->pntsv, bp = nu->bp; a; a--, bp++, co++) {
copy_v3_v3(*co, fp);
fp += KEYELEM_FLOAT_LEN_BPOINT;
}
}
}
}
return vertCos;
}
/************************* raw coord offsets ************************/
void BKE_keyblock_update_from_offset(Object *ob, KeyBlock *kb, const float (*ofs)[3])
{
int a;
float *fp = kb->data;
if (ELEM(ob->type, OB_MESH, OB_LATTICE)) {
for (a = 0; a < kb->totelem; a++, fp += 3, ofs++) {
add_v3_v3(fp, *ofs);
}
}
else if (ELEM(ob->type, OB_CURVE, OB_SURF)) {
Curve *cu = (Curve *)ob->data;
Nurb *nu;
BezTriple *bezt;
BPoint *bp;
for (nu = cu->nurb.first; nu; nu = nu->next) {
if (nu->bezt) {
for (a = nu->pntsu, bezt = nu->bezt; a; a--, bezt++) {
for (int i = 0; i < 3; i++, ofs++) {
add_v3_v3(&fp[i * 3], *ofs);
}
fp += KEYELEM_FLOAT_LEN_BEZTRIPLE;
}
}
else {
for (a = nu->pntsu * nu->pntsv, bp = nu->bp; a; a--, bp++, ofs++) {
add_v3_v3(fp, *ofs);
fp += KEYELEM_FLOAT_LEN_BPOINT;
}
}
}
}
}
/* ==========================================================*/
/**
* Move shape key from org_index to new_index. Safe, clamps index to valid range,
* updates reference keys, the object's active shape index,
* the 'frame' value in case of absolute keys, etc.
* Note indices are expected in real values (not 'fake' shapenr +1 ones).
*
* \param org_index: if < 0, current object's active shape will be used as skey to move.
* \return true if something was done, else false.
*/
bool BKE_keyblock_move(Object *ob, int org_index, int new_index)
{
Key *key = BKE_key_from_object(ob);
KeyBlock *kb;
const int act_index = ob->shapenr - 1;
const int totkey = key->totkey;
int i;
bool rev, in_range = false;
if (org_index < 0) {
org_index = act_index;
}
CLAMP(new_index, 0, key->totkey - 1);
CLAMP(org_index, 0, key->totkey - 1);
if (new_index == org_index) {
return false;
}
rev = ((new_index - org_index) < 0) ? true : false;
/* We swap 'org' element with its previous/next neighbor (depending on direction of the move)
* repeatedly, until we reach final position.
* This allows us to only loop on the list once! */
for (kb = (rev ? key->block.last : key->block.first), i = (rev ? totkey - 1 : 0); kb;
kb = (rev ? kb->prev : kb->next), rev ? i-- : i++) {
if (i == org_index) {
in_range = true; /* Start list items swapping... */
}
else if (i == new_index) {
in_range = false; /* End list items swapping. */
}
if (in_range) {
KeyBlock *other_kb = rev ? kb->prev : kb->next;
/* Swap with previous/next list item. */
BLI_listbase_swaplinks(&key->block, kb, other_kb);
/* Swap absolute positions. */
SWAP(float, kb->pos, other_kb->pos);
kb = other_kb;
}
/* Adjust relative indices, this has to be done on the whole list! */
if (kb->relative == org_index) {
kb->relative = new_index;
}
else if (kb->relative < org_index && kb->relative >= new_index) {
/* remove after, insert before this index */
kb->relative++;
}
else if (kb->relative > org_index && kb->relative <= new_index) {
/* remove before, insert after this index */
kb->relative--;
}
}
/* Need to update active shape number if it's affected,
* same principle as for relative indices above. */
if (org_index == act_index) {
ob->shapenr = new_index + 1;
}
else if (act_index < org_index && act_index >= new_index) {
ob->shapenr++;
}
else if (act_index > org_index && act_index <= new_index) {
ob->shapenr--;
}
/* First key is always refkey, matches interface and BKE_key_sort */
key->refkey = key->block.first;
return true;
}
/**
* Check if given keyblock (as index) is used as basis by others in given key.
*/
bool BKE_keyblock_is_basis(Key *key, const int index)
{
KeyBlock *kb;
int i;
if (key->type == KEY_RELATIVE) {
for (i = 0, kb = key->block.first; kb; i++, kb = kb->next) {
if ((i != index) && (kb->relative == index)) {
return true;
}
}
}
return false;
}