321 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			321 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software Foundation,
 | |
|  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | |
|  */
 | |
| 
 | |
| /** \file
 | |
|  * \ingroup bli
 | |
|  * \brief Generic array manipulation API.
 | |
|  *
 | |
|  * \warning Some array operations here are inherently inefficient,
 | |
|  * and only included for the cases where the performance is acceptable.
 | |
|  * Use with care.
 | |
|  */
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #include "MEM_guardedalloc.h"
 | |
| 
 | |
| #include "BLI_array_utils.h"
 | |
| 
 | |
| #include "BLI_alloca.h"
 | |
| #include "BLI_sys_types.h"
 | |
| #include "BLI_utildefines.h"
 | |
| 
 | |
| #include "BLI_strict_flags.h"
 | |
| 
 | |
| /**
 | |
|  *In-place array reverse.
 | |
|  *
 | |
|  * Access via #BLI_array_reverse
 | |
|  */
 | |
| void _bli_array_reverse(void *arr_v, unsigned int arr_len, size_t arr_stride)
 | |
| {
 | |
|   const unsigned int arr_stride_uint = (unsigned int)arr_stride;
 | |
|   const unsigned int arr_half_stride = (arr_len / 2) * arr_stride_uint;
 | |
|   unsigned int i, i_end;
 | |
|   char *arr = arr_v;
 | |
|   char *buf = BLI_array_alloca(buf, arr_stride);
 | |
| 
 | |
|   for (i = 0, i_end = (arr_len - 1) * arr_stride_uint; i < arr_half_stride;
 | |
|        i += arr_stride_uint, i_end -= arr_stride_uint) {
 | |
|     memcpy(buf, &arr[i], arr_stride);
 | |
|     memcpy(&arr[i], &arr[i_end], arr_stride);
 | |
|     memcpy(&arr[i_end], buf, arr_stride);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * In-place array wrap.
 | |
|  * (rotate the array one step forward or backwards).
 | |
|  *
 | |
|  * Access via #BLI_array_wrap
 | |
|  */
 | |
| void _bli_array_wrap(void *arr_v, unsigned int arr_len, size_t arr_stride, int dir)
 | |
| {
 | |
|   char *arr = arr_v;
 | |
|   char *buf = BLI_array_alloca(buf, arr_stride);
 | |
| 
 | |
|   if (dir == -1) {
 | |
|     memcpy(buf, arr, arr_stride);
 | |
|     memmove(arr, arr + arr_stride, arr_stride * (arr_len - 1));
 | |
|     memcpy(arr + (arr_stride * (arr_len - 1)), buf, arr_stride);
 | |
|   }
 | |
|   else if (dir == 1) {
 | |
|     memcpy(buf, arr + (arr_stride * (arr_len - 1)), arr_stride);
 | |
|     memmove(arr + arr_stride, arr, arr_stride * (arr_len - 1));
 | |
|     memcpy(arr, buf, arr_stride);
 | |
|   }
 | |
|   else {
 | |
|     BLI_assert(0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *In-place array permute.
 | |
|  * (re-arrange elements based on an array of indices).
 | |
|  *
 | |
|  * Access via #BLI_array_wrap
 | |
|  */
 | |
| void _bli_array_permute(void *arr,
 | |
|                         const unsigned int arr_len,
 | |
|                         const size_t arr_stride,
 | |
|                         const unsigned int *order,
 | |
|                         void *arr_temp)
 | |
| {
 | |
|   const size_t len = arr_len * arr_stride;
 | |
|   const unsigned int arr_stride_uint = (unsigned int)arr_stride;
 | |
|   void *arr_orig;
 | |
|   unsigned int i;
 | |
| 
 | |
|   if (arr_temp == NULL) {
 | |
|     arr_orig = MEM_mallocN(len, __func__);
 | |
|   }
 | |
|   else {
 | |
|     arr_orig = arr_temp;
 | |
|   }
 | |
| 
 | |
|   memcpy(arr_orig, arr, len);
 | |
| 
 | |
|   for (i = 0; i < arr_len; i++) {
 | |
|     BLI_assert(order[i] < arr_len);
 | |
|     memcpy(POINTER_OFFSET(arr, arr_stride_uint * i),
 | |
|            POINTER_OFFSET(arr_orig, arr_stride_uint * order[i]),
 | |
|            arr_stride);
 | |
|   }
 | |
| 
 | |
|   if (arr_temp == NULL) {
 | |
|     MEM_freeN(arr_orig);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Find the first index of an item in an array.
 | |
|  *
 | |
|  * Access via #BLI_array_findindex
 | |
|  *
 | |
|  * \note Not efficient, use for error checks/asserts.
 | |
|  */
 | |
| int _bli_array_findindex(const void *arr, unsigned int arr_len, size_t arr_stride, const void *p)
 | |
| {
 | |
|   const char *arr_step = (const char *)arr;
 | |
|   for (unsigned int i = 0; i < arr_len; i++, arr_step += arr_stride) {
 | |
|     if (memcmp(arr_step, p, arr_stride) == 0) {
 | |
|       return (int)i;
 | |
|     }
 | |
|   }
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * A version of #BLI_array_findindex that searches from the end of the list.
 | |
|  */
 | |
| int _bli_array_rfindindex(const void *arr, unsigned int arr_len, size_t arr_stride, const void *p)
 | |
| {
 | |
|   const char *arr_step = (const char *)arr + (arr_stride * arr_len);
 | |
|   for (unsigned int i = arr_len; i-- != 0;) {
 | |
|     arr_step -= arr_stride;
 | |
|     if (memcmp(arr_step, p, arr_stride) == 0) {
 | |
|       return (int)i;
 | |
|     }
 | |
|   }
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| void _bli_array_binary_and(
 | |
|     void *arr, const void *arr_a, const void *arr_b, unsigned int arr_len, size_t arr_stride)
 | |
| {
 | |
|   char *dst = arr;
 | |
|   const char *src_a = arr_a;
 | |
|   const char *src_b = arr_b;
 | |
| 
 | |
|   size_t i = arr_stride * arr_len;
 | |
|   while (i--) {
 | |
|     *(dst++) = *(src_a++) & *(src_b++);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void _bli_array_binary_or(
 | |
|     void *arr, const void *arr_a, const void *arr_b, unsigned int arr_len, size_t arr_stride)
 | |
| {
 | |
|   char *dst = arr;
 | |
|   const char *src_a = arr_a;
 | |
|   const char *src_b = arr_b;
 | |
| 
 | |
|   size_t i = arr_stride * arr_len;
 | |
|   while (i--) {
 | |
|     *(dst++) = *(src_a++) | *(src_b++);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Utility function to iterate over contiguous items in an array.
 | |
|  *
 | |
|  * \param use_wrap: Detect contiguous ranges across the first/last points.
 | |
|  * In this case the second index of \a span_step may be lower than the first,
 | |
|  * which indicates the values are wrapped.
 | |
|  * \param use_delimit_bounds: When false,
 | |
|  * ranges that defined by the start/end indices are excluded.
 | |
|  * This option has no effect when \a use_wrap is enabled.
 | |
|  * \param test_fn: Function to test if the item should be included in the range.
 | |
|  * \param user_data: User data for \a test_fn.
 | |
|  * \param span_step: Indices to iterate over,
 | |
|  * initialize both values to the array length to initialize iteration.
 | |
|  * \param r_span_len: The length of the span, useful when \a use_wrap is enabled,
 | |
|  * where calculating the length isnt a simple subtraction.
 | |
|  */
 | |
| bool _bli_array_iter_span(const void *arr,
 | |
|                           unsigned int arr_len,
 | |
|                           size_t arr_stride,
 | |
|                           bool use_wrap,
 | |
|                           bool use_delimit_bounds,
 | |
|                           bool (*test_fn)(const void *arr_item, void *user_data),
 | |
|                           void *user_data,
 | |
|                           unsigned int span_step[2],
 | |
|                           unsigned int *r_span_len)
 | |
| {
 | |
|   if (arr_len == 0) {
 | |
|     return false;
 | |
|   }
 | |
|   if (use_wrap && (span_step[0] != arr_len) && (span_step[0] > span_step[1])) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   const unsigned int arr_stride_uint = (unsigned int)arr_stride;
 | |
|   const void *item_prev;
 | |
|   bool test_prev;
 | |
| 
 | |
|   unsigned int i_curr;
 | |
| 
 | |
|   if ((span_step[0] == arr_len) && (span_step[1] == arr_len)) {
 | |
|     if (use_wrap) {
 | |
|       item_prev = POINTER_OFFSET(arr, (arr_len - 1) * arr_stride_uint);
 | |
|       i_curr = 0;
 | |
|       test_prev = test_fn(item_prev, user_data);
 | |
|     }
 | |
|     else if (use_delimit_bounds == false) {
 | |
|       item_prev = arr;
 | |
|       i_curr = 1;
 | |
|       test_prev = test_fn(item_prev, user_data);
 | |
|     }
 | |
|     else {
 | |
|       item_prev = NULL;
 | |
|       i_curr = 0;
 | |
|       test_prev = false;
 | |
|     }
 | |
|   }
 | |
|   else if ((i_curr = span_step[1] + 2) < arr_len) {
 | |
|     item_prev = POINTER_OFFSET(arr, (span_step[1] + 1) * arr_stride_uint);
 | |
|     test_prev = test_fn(item_prev, user_data);
 | |
|   }
 | |
|   else {
 | |
|     return false;
 | |
|   }
 | |
|   BLI_assert(i_curr < arr_len);
 | |
| 
 | |
|   const void *item_curr = POINTER_OFFSET(arr, i_curr * arr_stride_uint);
 | |
| 
 | |
|   while (i_curr < arr_len) {
 | |
|     bool test_curr = test_fn(item_curr, user_data);
 | |
|     if ((test_prev == false) && (test_curr == true)) {
 | |
|       unsigned int span_len;
 | |
|       unsigned int i_step_prev = i_curr;
 | |
| 
 | |
|       if (use_wrap) {
 | |
|         unsigned int i_step = i_curr + 1;
 | |
|         if (UNLIKELY(i_step == arr_len)) {
 | |
|           i_step = 0;
 | |
|         }
 | |
|         while (test_fn(POINTER_OFFSET(arr, i_step * arr_stride_uint), user_data)) {
 | |
|           i_step_prev = i_step;
 | |
|           i_step++;
 | |
|           if (UNLIKELY(i_step == arr_len)) {
 | |
|             i_step = 0;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (i_step_prev < i_curr) {
 | |
|           span_len = (i_step_prev + (arr_len - i_curr)) + 1;
 | |
|         }
 | |
|         else {
 | |
|           span_len = (i_step_prev - i_curr) + 1;
 | |
|         }
 | |
|       }
 | |
|       else {
 | |
|         unsigned int i_step = i_curr + 1;
 | |
|         while ((i_step != arr_len) &&
 | |
|                test_fn(POINTER_OFFSET(arr, i_step * arr_stride_uint), user_data)) {
 | |
|           i_step_prev = i_step;
 | |
|           i_step++;
 | |
|         }
 | |
| 
 | |
|         span_len = (i_step_prev - i_curr) + 1;
 | |
| 
 | |
|         if ((use_delimit_bounds == false) && (i_step_prev == arr_len - 1)) {
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       span_step[0] = i_curr;
 | |
|       span_step[1] = i_step_prev;
 | |
|       *r_span_len = span_len;
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     test_prev = test_curr;
 | |
| 
 | |
|     item_prev = item_curr;
 | |
|     item_curr = POINTER_OFFSET(item_curr, arr_stride_uint);
 | |
|     i_curr++;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Simple utility to check memory is zeroed.
 | |
|  */
 | |
| bool _bli_array_is_zeroed(const void *arr_v, unsigned int arr_len, size_t arr_stride)
 | |
| {
 | |
|   const char *arr_step = (const char *)arr_v;
 | |
|   size_t i = arr_stride * arr_len;
 | |
|   while (i--) {
 | |
|     if (*(arr_step++)) {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 |