788 lines
23 KiB
C
788 lines
23 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
/** \file
|
|
* \ingroup bli
|
|
*/
|
|
|
|
#include <math.h> /* for fabsf */
|
|
#include <stdlib.h> /* for qsort */
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "BLI_boxpack_2d.h" /* own include */
|
|
#include "BLI_listbase.h"
|
|
#include "BLI_utildefines.h"
|
|
|
|
#include "BLI_sort.h" /* qsort_r */
|
|
#define qsort_r BLI_qsort_r
|
|
|
|
#include "BLI_strict_flags.h"
|
|
|
|
#ifdef __GNUC__
|
|
# pragma GCC diagnostic error "-Wpadded"
|
|
#endif
|
|
|
|
/* de-duplicate as we pack */
|
|
#define USE_MERGE
|
|
/* use strip-free */
|
|
#define USE_FREE_STRIP
|
|
/* slight bias, needed when packing many boxes the _exact_ same size */
|
|
#define USE_PACK_BIAS
|
|
|
|
/* BoxPacker for backing 2D rectangles into a square
|
|
*
|
|
* The defined Below are for internal use only */
|
|
typedef struct BoxVert {
|
|
float x;
|
|
float y;
|
|
|
|
int free : 8; /* vert status */
|
|
uint used : 1;
|
|
uint _pad : 23;
|
|
uint index;
|
|
|
|
struct BoxPack *trb; /* top right box */
|
|
struct BoxPack *blb; /* bottom left box */
|
|
struct BoxPack *brb; /* bottom right box */
|
|
struct BoxPack *tlb; /* top left box */
|
|
|
|
/* Store last intersecting boxes here
|
|
* speedup intersection testing */
|
|
struct BoxPack *isect_cache[4];
|
|
|
|
#ifdef USE_PACK_BIAS
|
|
float bias;
|
|
int _pad2;
|
|
#endif
|
|
} BoxVert;
|
|
|
|
#ifdef __GNUC__
|
|
# pragma GCC diagnostic ignored "-Wpadded"
|
|
#endif
|
|
|
|
/* free vert flags */
|
|
#define EPSILON 0.0000001f
|
|
#define EPSILON_MERGE 0.00001f
|
|
#ifdef USE_PACK_BIAS
|
|
# define EPSILON_BIAS 0.000001f
|
|
#endif
|
|
#define BLF 1
|
|
#define TRF 2
|
|
#define TLF 4
|
|
#define BRF 8
|
|
#define CORNERFLAGS (BLF | TRF | TLF | BRF)
|
|
|
|
BLI_INLINE int quad_flag(uint q)
|
|
{
|
|
BLI_assert(q < 4);
|
|
return (1 << q);
|
|
}
|
|
|
|
#define BL 0
|
|
#define TR 1
|
|
#define TL 2
|
|
#define BR 3
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Box Accessor Functions
|
|
* \{ */
|
|
|
|
static float box_xmin_get(const BoxPack *box)
|
|
{
|
|
return box->v[BL]->x;
|
|
}
|
|
|
|
static float box_xmax_get(const BoxPack *box)
|
|
{
|
|
return box->v[TR]->x;
|
|
}
|
|
|
|
static float box_ymin_get(const BoxPack *box)
|
|
{
|
|
return box->v[BL]->y;
|
|
}
|
|
|
|
static float box_ymax_get(const BoxPack *box)
|
|
{
|
|
return box->v[TR]->y;
|
|
}
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Box Placement
|
|
* \{ */
|
|
|
|
BLI_INLINE void box_v34x_update(BoxPack *box)
|
|
{
|
|
box->v[TL]->x = box->v[BL]->x;
|
|
box->v[BR]->x = box->v[TR]->x;
|
|
}
|
|
|
|
BLI_INLINE void box_v34y_update(BoxPack *box)
|
|
{
|
|
box->v[TL]->y = box->v[TR]->y;
|
|
box->v[BR]->y = box->v[BL]->y;
|
|
}
|
|
|
|
static void box_xmin_set(BoxPack *box, const float f)
|
|
{
|
|
box->v[TR]->x = f + box->w;
|
|
box->v[BL]->x = f;
|
|
box_v34x_update(box);
|
|
}
|
|
|
|
static void box_xmax_set(BoxPack *box, const float f)
|
|
{
|
|
box->v[BL]->x = f - box->w;
|
|
box->v[TR]->x = f;
|
|
box_v34x_update(box);
|
|
}
|
|
|
|
static void box_ymin_set(BoxPack *box, const float f)
|
|
{
|
|
box->v[TR]->y = f + box->h;
|
|
box->v[BL]->y = f;
|
|
box_v34y_update(box);
|
|
}
|
|
|
|
static void box_ymax_set(BoxPack *box, const float f)
|
|
{
|
|
box->v[BL]->y = f - box->h;
|
|
box->v[TR]->y = f;
|
|
box_v34y_update(box);
|
|
}
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Box Utils
|
|
* \{ */
|
|
|
|
static float box_area(const BoxPack *box)
|
|
{
|
|
return box->w * box->h;
|
|
}
|
|
|
|
static bool box_isect(const BoxPack *box_a, const BoxPack *box_b)
|
|
{
|
|
return !(box_xmin_get(box_a) + EPSILON >= box_xmax_get(box_b) ||
|
|
box_ymin_get(box_a) + EPSILON >= box_ymax_get(box_b) ||
|
|
box_xmax_get(box_a) - EPSILON <= box_xmin_get(box_b) ||
|
|
box_ymax_get(box_a) - EPSILON <= box_ymin_get(box_b));
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* compiler should inline */
|
|
static float max_ff(const float a, const float b)
|
|
{
|
|
return b > a ? b : a;
|
|
}
|
|
|
|
#ifdef USE_PACK_BIAS
|
|
/* set when used is enabled */
|
|
static void vert_bias_update(BoxVert *v)
|
|
{
|
|
BLI_assert(v->used);
|
|
v->bias = (v->x * v->y) * EPSILON_BIAS;
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
# define BOXDEBUG(b) \
|
|
printf("\tBox Debug i %i, w:%.3f h:%.3f x:%.3f y:%.3f\n", b->index, b->w, b->h, b->x, b->y)
|
|
#endif
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Box/Vert Sorting
|
|
* \{ */
|
|
|
|
/* qsort function - sort largest to smallest */
|
|
static int box_areasort(const void *p1, const void *p2)
|
|
{
|
|
const BoxPack *b1 = p1, *b2 = p2;
|
|
const float a1 = box_area(b1);
|
|
const float a2 = box_area(b2);
|
|
|
|
if (a1 < a2) {
|
|
return 1;
|
|
}
|
|
if (a1 > a2) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* qsort vertex sorting function
|
|
* sorts from lower left to top right It uses the current box's width and height
|
|
* as offsets when sorting, this has the result of not placing boxes outside
|
|
* the bounds of the existing backed area where possible
|
|
*/
|
|
struct VertSortContext {
|
|
BoxVert *vertarray;
|
|
float box_width, box_height;
|
|
};
|
|
|
|
static int vertex_sort(const void *p1, const void *p2, void *vs_ctx_p)
|
|
{
|
|
const struct VertSortContext *vs_ctx = vs_ctx_p;
|
|
const BoxVert *v1, *v2;
|
|
float a1, a2;
|
|
|
|
v1 = &vs_ctx->vertarray[*((const uint *)p1)];
|
|
v2 = &vs_ctx->vertarray[*((const uint *)p2)];
|
|
|
|
#ifdef USE_FREE_STRIP
|
|
/* push free verts to the end so we can strip */
|
|
if (UNLIKELY(v1->free == 0 && v2->free == 0)) {
|
|
return 0;
|
|
}
|
|
if (UNLIKELY(v1->free == 0)) {
|
|
return 1;
|
|
}
|
|
if (UNLIKELY(v2->free == 0)) {
|
|
return -1;
|
|
}
|
|
#endif
|
|
|
|
a1 = max_ff(v1->x + vs_ctx->box_width, v1->y + vs_ctx->box_height);
|
|
a2 = max_ff(v2->x + vs_ctx->box_width, v2->y + vs_ctx->box_height);
|
|
|
|
#ifdef USE_PACK_BIAS
|
|
a1 += v1->bias;
|
|
a2 += v2->bias;
|
|
#endif
|
|
|
|
/* sort largest to smallest */
|
|
if (a1 > a2) {
|
|
return 1;
|
|
}
|
|
if (a1 < a2) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
/** \} */
|
|
|
|
/**
|
|
* Main box-packing function accessed from other functions
|
|
* This sets boxes x,y to positive values, sorting from 0,0 outwards.
|
|
* There is no limit to the space boxes may take, only that they will be packed
|
|
* tightly into the lower left hand corner (0,0)
|
|
*
|
|
* \param boxarray: a pre-allocated array of boxes.
|
|
* only the 'box->x' and 'box->y' are set, 'box->w' and 'box->h' are used,
|
|
* 'box->index' is not used at all, the only reason its there
|
|
* is that the box array is sorted by area and programs need to be able
|
|
* to have some way of writing the boxes back to the original data.
|
|
* \param len: the number of boxes in the array.
|
|
* \param r_tot_x, r_tot_y: set so you can normalize the data.
|
|
* */
|
|
void BLI_box_pack_2d(BoxPack *boxarray, const uint len, float *r_tot_x, float *r_tot_y)
|
|
{
|
|
uint box_index, verts_pack_len, i, j, k;
|
|
uint *vertex_pack_indices; /* an array of indices used for sorting verts */
|
|
bool isect;
|
|
float tot_x = 0.0f, tot_y = 0.0f;
|
|
|
|
BoxPack *box, *box_test; /*current box and another for intersection tests*/
|
|
BoxVert *vert; /* the current vert */
|
|
|
|
struct VertSortContext vs_ctx;
|
|
|
|
if (!len) {
|
|
*r_tot_x = tot_x;
|
|
*r_tot_y = tot_y;
|
|
return;
|
|
}
|
|
|
|
/* Sort boxes, biggest first */
|
|
qsort(boxarray, (size_t)len, sizeof(BoxPack), box_areasort);
|
|
|
|
/* add verts to the boxes, these are only used internally */
|
|
vert = MEM_mallocN(sizeof(BoxVert[4]) * (size_t)len, "BoxPack Verts");
|
|
vertex_pack_indices = MEM_mallocN(sizeof(int[3]) * (size_t)len, "BoxPack Indices");
|
|
|
|
vs_ctx.vertarray = vert;
|
|
|
|
for (box = boxarray, box_index = 0, i = 0; box_index < len; box_index++, box++) {
|
|
|
|
vert->blb = vert->brb = vert->tlb = vert->isect_cache[0] = vert->isect_cache[1] =
|
|
vert->isect_cache[2] = vert->isect_cache[3] = NULL;
|
|
vert->free = CORNERFLAGS & ~TRF;
|
|
vert->trb = box;
|
|
vert->used = false;
|
|
vert->index = i++;
|
|
box->v[BL] = vert++;
|
|
|
|
vert->trb = vert->brb = vert->tlb = vert->isect_cache[0] = vert->isect_cache[1] =
|
|
vert->isect_cache[2] = vert->isect_cache[3] = NULL;
|
|
vert->free = CORNERFLAGS & ~BLF;
|
|
vert->blb = box;
|
|
vert->used = false;
|
|
vert->index = i++;
|
|
box->v[TR] = vert++;
|
|
|
|
vert->trb = vert->blb = vert->tlb = vert->isect_cache[0] = vert->isect_cache[1] =
|
|
vert->isect_cache[2] = vert->isect_cache[3] = NULL;
|
|
vert->free = CORNERFLAGS & ~BRF;
|
|
vert->brb = box;
|
|
vert->used = false;
|
|
vert->index = i++;
|
|
box->v[TL] = vert++;
|
|
|
|
vert->trb = vert->blb = vert->brb = vert->isect_cache[0] = vert->isect_cache[1] =
|
|
vert->isect_cache[2] = vert->isect_cache[3] = NULL;
|
|
vert->free = CORNERFLAGS & ~TLF;
|
|
vert->tlb = box;
|
|
vert->used = false;
|
|
vert->index = i++;
|
|
box->v[BR] = vert++;
|
|
}
|
|
vert = NULL;
|
|
|
|
/* Pack the First box!
|
|
* then enter the main box-packing loop */
|
|
|
|
box = boxarray; /* get the first box */
|
|
/* First time, no boxes packed */
|
|
box->v[BL]->free = 0; /* Can't use any if these */
|
|
box->v[BR]->free &= ~(BLF | BRF);
|
|
box->v[TL]->free &= ~(BLF | TLF);
|
|
|
|
tot_x = box->w;
|
|
tot_y = box->h;
|
|
|
|
/* This sets all the vertex locations */
|
|
box_xmin_set(box, 0.0f);
|
|
box_ymin_set(box, 0.0f);
|
|
box->x = box->y = 0.0f;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
box->v[i]->used = true;
|
|
#ifdef USE_PACK_BIAS
|
|
vert_bias_update(box->v[i]);
|
|
#endif
|
|
}
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
vertex_pack_indices[i] = box->v[i + 1]->index;
|
|
}
|
|
verts_pack_len = 3;
|
|
box++; /* next box, needed for the loop below */
|
|
/* ...done packing the first box */
|
|
|
|
/* Main boxpacking loop */
|
|
for (box_index = 1; box_index < len; box_index++, box++) {
|
|
|
|
/* These floats are used for sorting re-sorting */
|
|
vs_ctx.box_width = box->w;
|
|
vs_ctx.box_height = box->h;
|
|
|
|
qsort_r(vertex_pack_indices, (size_t)verts_pack_len, sizeof(int), vertex_sort, &vs_ctx);
|
|
|
|
#ifdef USE_FREE_STRIP
|
|
/* strip free vertices */
|
|
i = verts_pack_len - 1;
|
|
while ((i != 0) && vs_ctx.vertarray[vertex_pack_indices[i]].free == 0) {
|
|
i--;
|
|
}
|
|
verts_pack_len = i + 1;
|
|
#endif
|
|
|
|
/* Pack the box in with the others */
|
|
/* sort the verts */
|
|
isect = true;
|
|
|
|
for (i = 0; i < verts_pack_len && isect; i++) {
|
|
vert = &vs_ctx.vertarray[vertex_pack_indices[i]];
|
|
/* printf("\ttesting vert %i %i %i %f %f\n", i,
|
|
* vert->free, verts_pack_len, vert->x, vert->y); */
|
|
|
|
/* This vert has a free quadrant
|
|
* Test if we can place the box here
|
|
* vert->free & quad_flags[j] - Checks
|
|
* */
|
|
|
|
for (j = 0; (j < 4) && isect; j++) {
|
|
if (vert->free & quad_flag(j)) {
|
|
switch (j) {
|
|
case BL:
|
|
box_xmax_set(box, vert->x);
|
|
box_ymax_set(box, vert->y);
|
|
break;
|
|
case TR:
|
|
box_xmin_set(box, vert->x);
|
|
box_ymin_set(box, vert->y);
|
|
break;
|
|
case TL:
|
|
box_xmax_set(box, vert->x);
|
|
box_ymin_set(box, vert->y);
|
|
break;
|
|
case BR:
|
|
box_xmin_set(box, vert->x);
|
|
box_ymax_set(box, vert->y);
|
|
break;
|
|
}
|
|
|
|
/* Now we need to check that the box intersects
|
|
* with any other boxes
|
|
* Assume no intersection... */
|
|
isect = false;
|
|
|
|
if (/* Constrain boxes to positive X/Y values */
|
|
box_xmin_get(box) < 0.0f || box_ymin_get(box) < 0.0f ||
|
|
/* check for last intersected */
|
|
(vert->isect_cache[j] && box_isect(box, vert->isect_cache[j]))) {
|
|
/* Here we check that the last intersected
|
|
* box will intersect with this one using
|
|
* isect_cache that can store a pointer to a
|
|
* box for each quadrant
|
|
* big speedup */
|
|
isect = true;
|
|
}
|
|
else {
|
|
/* do a full search for colliding box
|
|
* this is really slow, some spatially divided
|
|
* data-structure would be better */
|
|
for (box_test = boxarray; box_test != box; box_test++) {
|
|
if (box_isect(box, box_test)) {
|
|
/* Store the last intersecting here as cache
|
|
* for faster checking next time around */
|
|
vert->isect_cache[j] = box_test;
|
|
isect = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!isect) {
|
|
|
|
/* maintain the total width and height */
|
|
tot_x = max_ff(box_xmax_get(box), tot_x);
|
|
tot_y = max_ff(box_ymax_get(box), tot_y);
|
|
|
|
/* Place the box */
|
|
vert->free &= (signed char)(~quad_flag(j));
|
|
|
|
switch (j) {
|
|
case TR:
|
|
box->v[BL] = vert;
|
|
vert->trb = box;
|
|
break;
|
|
case TL:
|
|
box->v[BR] = vert;
|
|
vert->tlb = box;
|
|
break;
|
|
case BR:
|
|
box->v[TL] = vert;
|
|
vert->brb = box;
|
|
break;
|
|
case BL:
|
|
box->v[TR] = vert;
|
|
vert->blb = box;
|
|
break;
|
|
}
|
|
|
|
/* Mask free flags for verts that are
|
|
* on the bottom or side so we don't get
|
|
* boxes outside the given rectangle ares
|
|
*
|
|
* We can do an else/if here because only the first
|
|
* box can be at the very bottom left corner */
|
|
if (box_xmin_get(box) <= 0) {
|
|
box->v[TL]->free &= ~(TLF | BLF);
|
|
box->v[BL]->free &= ~(TLF | BLF);
|
|
}
|
|
else if (box_ymin_get(box) <= 0) {
|
|
box->v[BL]->free &= ~(BRF | BLF);
|
|
box->v[BR]->free &= ~(BRF | BLF);
|
|
}
|
|
|
|
/* The following block of code does a logical
|
|
* check with 2 adjacent boxes, its possible to
|
|
* flag verts on one or both of the boxes
|
|
* as being used by checking the width or
|
|
* height of both boxes */
|
|
if (vert->tlb && vert->trb && (box == vert->tlb || box == vert->trb)) {
|
|
if (UNLIKELY(fabsf(vert->tlb->h - vert->trb->h) < EPSILON_MERGE)) {
|
|
#ifdef USE_MERGE
|
|
# define A (vert->trb->v[TL])
|
|
# define B (vert->tlb->v[TR])
|
|
# define MASK (BLF | BRF)
|
|
BLI_assert(A->used != B->used);
|
|
if (A->used) {
|
|
A->free &= B->free & ~MASK;
|
|
B = A;
|
|
}
|
|
else {
|
|
B->free &= A->free & ~MASK;
|
|
A = B;
|
|
}
|
|
BLI_assert((A->free & MASK) == 0);
|
|
# undef A
|
|
# undef B
|
|
# undef MASK
|
|
#else
|
|
vert->tlb->v[TR]->free &= ~BLF;
|
|
vert->trb->v[TL]->free &= ~BRF;
|
|
#endif
|
|
}
|
|
else if (vert->tlb->h > vert->trb->h) {
|
|
vert->trb->v[TL]->free &= ~(TLF | BLF);
|
|
}
|
|
else /* if (vert->tlb->h < vert->trb->h) */ {
|
|
vert->tlb->v[TR]->free &= ~(TRF | BRF);
|
|
}
|
|
}
|
|
else if (vert->blb && vert->brb && (box == vert->blb || box == vert->brb)) {
|
|
if (UNLIKELY(fabsf(vert->blb->h - vert->brb->h) < EPSILON_MERGE)) {
|
|
#ifdef USE_MERGE
|
|
# define A (vert->blb->v[BR])
|
|
# define B (vert->brb->v[BL])
|
|
# define MASK (TRF | TLF)
|
|
BLI_assert(A->used != B->used);
|
|
if (A->used) {
|
|
A->free &= B->free & ~MASK;
|
|
B = A;
|
|
}
|
|
else {
|
|
B->free &= A->free & ~MASK;
|
|
A = B;
|
|
}
|
|
BLI_assert((A->free & MASK) == 0);
|
|
# undef A
|
|
# undef B
|
|
# undef MASK
|
|
#else
|
|
vert->blb->v[BR]->free &= ~TRF;
|
|
vert->brb->v[BL]->free &= ~TLF;
|
|
#endif
|
|
}
|
|
else if (vert->blb->h > vert->brb->h) {
|
|
vert->brb->v[BL]->free &= ~(TLF | BLF);
|
|
}
|
|
else /* if (vert->blb->h < vert->brb->h) */ {
|
|
vert->blb->v[BR]->free &= ~(TRF | BRF);
|
|
}
|
|
}
|
|
/* Horizontal */
|
|
if (vert->tlb && vert->blb && (box == vert->tlb || box == vert->blb)) {
|
|
if (UNLIKELY(fabsf(vert->tlb->w - vert->blb->w) < EPSILON_MERGE)) {
|
|
#ifdef USE_MERGE
|
|
# define A (vert->blb->v[TL])
|
|
# define B (vert->tlb->v[BL])
|
|
# define MASK (TRF | BRF)
|
|
BLI_assert(A->used != B->used);
|
|
if (A->used) {
|
|
A->free &= B->free & ~MASK;
|
|
B = A;
|
|
}
|
|
else {
|
|
B->free &= A->free & ~MASK;
|
|
A = B;
|
|
}
|
|
BLI_assert((A->free & MASK) == 0);
|
|
# undef A
|
|
# undef B
|
|
# undef MASK
|
|
#else
|
|
vert->blb->v[TL]->free &= ~TRF;
|
|
vert->tlb->v[BL]->free &= ~BRF;
|
|
#endif
|
|
}
|
|
else if (vert->tlb->w > vert->blb->w) {
|
|
vert->blb->v[TL]->free &= ~(TLF | TRF);
|
|
}
|
|
else /* if (vert->tlb->w < vert->blb->w) */ {
|
|
vert->tlb->v[BL]->free &= ~(BLF | BRF);
|
|
}
|
|
}
|
|
else if (vert->trb && vert->brb && (box == vert->trb || box == vert->brb)) {
|
|
if (UNLIKELY(fabsf(vert->trb->w - vert->brb->w) < EPSILON_MERGE)) {
|
|
|
|
#ifdef USE_MERGE
|
|
# define A (vert->brb->v[TR])
|
|
# define B (vert->trb->v[BR])
|
|
# define MASK (TLF | BLF)
|
|
BLI_assert(A->used != B->used);
|
|
if (A->used) {
|
|
A->free &= B->free & ~MASK;
|
|
B = A;
|
|
}
|
|
else {
|
|
B->free &= A->free & ~MASK;
|
|
A = B;
|
|
}
|
|
BLI_assert((A->free & MASK) == 0);
|
|
# undef A
|
|
# undef B
|
|
# undef MASK
|
|
#else
|
|
vert->brb->v[TR]->free &= ~TLF;
|
|
vert->trb->v[BR]->free &= ~BLF;
|
|
#endif
|
|
}
|
|
else if (vert->trb->w > vert->brb->w) {
|
|
vert->brb->v[TR]->free &= ~(TLF | TRF);
|
|
}
|
|
else /* if (vert->trb->w < vert->brb->w) */ {
|
|
vert->trb->v[BR]->free &= ~(BLF | BRF);
|
|
}
|
|
}
|
|
/* End logical check */
|
|
|
|
for (k = 0; k < 4; k++) {
|
|
if (box->v[k]->used == false) {
|
|
box->v[k]->used = true;
|
|
#ifdef USE_PACK_BIAS
|
|
vert_bias_update(box->v[k]);
|
|
#endif
|
|
vertex_pack_indices[verts_pack_len] = box->v[k]->index;
|
|
verts_pack_len++;
|
|
}
|
|
}
|
|
/* The Box verts are only used internally
|
|
* Update the box x and y since that's what external
|
|
* functions will see */
|
|
box->x = box_xmin_get(box);
|
|
box->y = box_ymin_get(box);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
*r_tot_x = tot_x;
|
|
*r_tot_y = tot_y;
|
|
|
|
/* free all the verts, not really needed because they shouldn't be
|
|
* touched anymore but accessing the pointers would crash blender */
|
|
for (box_index = 0; box_index < len; box_index++) {
|
|
box = boxarray + box_index;
|
|
box->v[0] = box->v[1] = box->v[2] = box->v[3] = NULL;
|
|
}
|
|
MEM_freeN(vertex_pack_indices);
|
|
MEM_freeN(vs_ctx.vertarray);
|
|
}
|
|
|
|
/* Packs boxes into a fixed area.
|
|
* boxes and packed are linked lists containing structs that can be cast to
|
|
* FixedSizeBoxPack (i.e. contains a FixedSizeBoxPack as its first element).
|
|
* Boxes that were packed successfully are placed into *packed and removed from *boxes.
|
|
*
|
|
* The algorithm is a simplified version of https://github.com/TeamHypersomnia/rectpack2D.
|
|
* Better ones could be used, but for the current use case (packing Image tiles into GPU
|
|
* textures) this is fine.
|
|
*
|
|
* Note that packing efficiency depends on the order of the input boxes. Generally speaking,
|
|
* larger boxes should come first, though how exactly size is best defined (e.g. area,
|
|
* perimeter) depends on the particular application. */
|
|
void BLI_box_pack_2d_fixedarea(ListBase *boxes, int width, int height, ListBase *packed)
|
|
{
|
|
ListBase spaces = {NULL};
|
|
FixedSizeBoxPack *full_rect = MEM_callocN(sizeof(FixedSizeBoxPack), __func__);
|
|
full_rect->w = width;
|
|
full_rect->h = height;
|
|
|
|
BLI_addhead(&spaces, full_rect);
|
|
|
|
/* The basic idea of the algorithm is to keep a list of free spaces in the packing area.
|
|
* Then, for each box to be packed, we try to find a space that can contain it.
|
|
* The found space is then split into the area that is occupied by the box and the
|
|
* remaining area, which is reinserted into the free space list.
|
|
* By inserting the smaller remaining spaces first, the algorithm tries to use these
|
|
* smaller spaces first instead of "wasting" a large space. */
|
|
LISTBASE_FOREACH_MUTABLE (FixedSizeBoxPack *, box, boxes) {
|
|
LISTBASE_FOREACH (FixedSizeBoxPack *, space, &spaces) {
|
|
/* Skip this space if it's too small. */
|
|
if (box->w > space->w || box->h > space->h) {
|
|
continue;
|
|
}
|
|
|
|
/* Pack this box into this space. */
|
|
box->x = space->x;
|
|
box->y = space->y;
|
|
BLI_remlink(boxes, box);
|
|
BLI_addtail(packed, box);
|
|
|
|
if (box->w == space->w && box->h == space->h) {
|
|
/* Box exactly fills space, so just remove the space. */
|
|
BLI_remlink(&spaces, space);
|
|
MEM_freeN(space);
|
|
}
|
|
else if (box->w == space->w) {
|
|
/* Box fills the entire width, so we can just contract the box
|
|
* to the upper part that remains. */
|
|
space->y += box->h;
|
|
space->h -= box->h;
|
|
}
|
|
else if (box->h == space->h) {
|
|
/* Box fills the entire height, so we can just contract the box
|
|
* to the right part that remains. */
|
|
space->x += box->w;
|
|
space->w -= box->w;
|
|
}
|
|
else {
|
|
/* Split the remaining L-shaped space into two spaces.
|
|
* There are two ways to do so, we pick the one that produces the biggest
|
|
* remaining space:
|
|
*
|
|
* Horizontal Split Vertical Split
|
|
* ################### ###################
|
|
* # # # - #
|
|
* # Large # # Small - #
|
|
* # # # - #
|
|
* #********---------# #******** Large #
|
|
* # Box * Small # # Box * #
|
|
* # * # # * #
|
|
* ################### ###################
|
|
*
|
|
*/
|
|
int area_hsplit_large = space->w * (space->h - box->h);
|
|
int area_vsplit_large = (space->w - box->w) * space->h;
|
|
|
|
/* Perform split. This space becomes the larger space,
|
|
* while the new smaller space is inserted _before_ it. */
|
|
FixedSizeBoxPack *new_space = MEM_callocN(sizeof(FixedSizeBoxPack), __func__);
|
|
if (area_hsplit_large > area_vsplit_large) {
|
|
new_space->x = space->x + box->w;
|
|
new_space->y = space->y;
|
|
new_space->w = space->w - box->w;
|
|
new_space->h = box->h;
|
|
|
|
space->y += box->h;
|
|
space->h -= box->h;
|
|
}
|
|
else {
|
|
new_space->x = space->x;
|
|
new_space->y = space->y + box->h;
|
|
new_space->w = box->w;
|
|
new_space->h = space->h - box->h;
|
|
|
|
space->x += box->w;
|
|
space->w -= box->w;
|
|
}
|
|
BLI_addhead(&spaces, new_space);
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
BLI_freelistN(&spaces);
|
|
}
|