426 lines
15 KiB
C
426 lines
15 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
/** \file
|
|
* \ingroup bli
|
|
*
|
|
* Parallel tasks over all elements in a container.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "DNA_listBase.h"
|
|
|
|
#include "BLI_listbase.h"
|
|
#include "BLI_math.h"
|
|
#include "BLI_mempool.h"
|
|
#include "BLI_task.h"
|
|
#include "BLI_threads.h"
|
|
|
|
#include "atomic_ops.h"
|
|
|
|
/* Allows to avoid using malloc for userdata_chunk in tasks, when small enough. */
|
|
#define MALLOCA(_size) ((_size) <= 8192) ? alloca((_size)) : MEM_mallocN((_size), __func__)
|
|
#define MALLOCA_FREE(_mem, _size) \
|
|
if (((_mem) != NULL) && ((_size) > 8192)) { \
|
|
MEM_freeN((_mem)); \
|
|
} \
|
|
((void)0)
|
|
|
|
BLI_INLINE void task_parallel_calc_chunk_size(const TaskParallelSettings *settings,
|
|
const int tot_items,
|
|
int num_tasks,
|
|
int *r_chunk_size)
|
|
{
|
|
int chunk_size = 0;
|
|
|
|
if (!settings->use_threading) {
|
|
/* Some users of this helper will still need a valid chunk size in case processing is not
|
|
* threaded. We can use a bigger one than in default threaded case then. */
|
|
chunk_size = 1024;
|
|
num_tasks = 1;
|
|
}
|
|
else if (settings->min_iter_per_thread > 0) {
|
|
/* Already set by user, no need to do anything here. */
|
|
chunk_size = settings->min_iter_per_thread;
|
|
}
|
|
else {
|
|
/* Multiplier used in heuristics below to define "optimal" chunk size.
|
|
* The idea here is to increase the chunk size to compensate for a rather measurable threading
|
|
* overhead caused by fetching tasks. With too many CPU threads we are starting
|
|
* to spend too much time in those overheads.
|
|
* First values are: 1 if num_tasks < 16;
|
|
* else 2 if num_tasks < 32;
|
|
* else 3 if num_tasks < 48;
|
|
* else 4 if num_tasks < 64;
|
|
* etc.
|
|
* Note: If we wanted to keep the 'power of two' multiplier, we'd need something like:
|
|
* 1 << max_ii(0, (int)(sizeof(int) * 8) - 1 - bitscan_reverse_i(num_tasks) - 3)
|
|
*/
|
|
const int num_tasks_factor = max_ii(1, num_tasks >> 3);
|
|
|
|
/* We could make that 'base' 32 number configurable in TaskParallelSettings too, or maybe just
|
|
* always use that heuristic using TaskParallelSettings.min_iter_per_thread as basis? */
|
|
chunk_size = 32 * num_tasks_factor;
|
|
|
|
/* Basic heuristic to avoid threading on low amount of items.
|
|
* We could make that limit configurable in settings too. */
|
|
if (tot_items > 0 && tot_items < max_ii(256, chunk_size * 2)) {
|
|
chunk_size = tot_items;
|
|
}
|
|
}
|
|
|
|
BLI_assert(chunk_size > 0);
|
|
*r_chunk_size = chunk_size;
|
|
}
|
|
|
|
typedef struct TaskParallelIteratorState {
|
|
void *userdata;
|
|
TaskParallelIteratorIterFunc iter_func;
|
|
TaskParallelIteratorFunc func;
|
|
|
|
/* *** Data used to 'acquire' chunks of items from the iterator. *** */
|
|
/* Common data also passed to the generator callback. */
|
|
TaskParallelIteratorStateShared iter_shared;
|
|
/* Total number of items. If unknown, set it to a negative number. */
|
|
int tot_items;
|
|
} TaskParallelIteratorState;
|
|
|
|
static void parallel_iterator_func_do(TaskParallelIteratorState *__restrict state,
|
|
void *userdata_chunk)
|
|
{
|
|
TaskParallelTLS tls = {
|
|
.userdata_chunk = userdata_chunk,
|
|
};
|
|
|
|
void **current_chunk_items;
|
|
int *current_chunk_indices;
|
|
int current_chunk_size;
|
|
|
|
const size_t items_size = sizeof(*current_chunk_items) * (size_t)state->iter_shared.chunk_size;
|
|
const size_t indices_size = sizeof(*current_chunk_indices) *
|
|
(size_t)state->iter_shared.chunk_size;
|
|
|
|
current_chunk_items = MALLOCA(items_size);
|
|
current_chunk_indices = MALLOCA(indices_size);
|
|
current_chunk_size = 0;
|
|
|
|
for (bool do_abort = false; !do_abort;) {
|
|
if (state->iter_shared.spin_lock != NULL) {
|
|
BLI_spin_lock(state->iter_shared.spin_lock);
|
|
}
|
|
|
|
/* Get current status. */
|
|
int index = state->iter_shared.next_index;
|
|
void *item = state->iter_shared.next_item;
|
|
int i;
|
|
|
|
/* 'Acquire' a chunk of items from the iterator function. */
|
|
for (i = 0; i < state->iter_shared.chunk_size && !state->iter_shared.is_finished; i++) {
|
|
current_chunk_indices[i] = index;
|
|
current_chunk_items[i] = item;
|
|
state->iter_func(state->userdata, &tls, &item, &index, &state->iter_shared.is_finished);
|
|
}
|
|
|
|
/* Update current status. */
|
|
state->iter_shared.next_index = index;
|
|
state->iter_shared.next_item = item;
|
|
current_chunk_size = i;
|
|
|
|
do_abort = state->iter_shared.is_finished;
|
|
|
|
if (state->iter_shared.spin_lock != NULL) {
|
|
BLI_spin_unlock(state->iter_shared.spin_lock);
|
|
}
|
|
|
|
for (i = 0; i < current_chunk_size; ++i) {
|
|
state->func(state->userdata, current_chunk_items[i], current_chunk_indices[i], &tls);
|
|
}
|
|
}
|
|
|
|
MALLOCA_FREE(current_chunk_items, items_size);
|
|
MALLOCA_FREE(current_chunk_indices, indices_size);
|
|
}
|
|
|
|
static void parallel_iterator_func(TaskPool *__restrict pool, void *userdata_chunk)
|
|
{
|
|
TaskParallelIteratorState *__restrict state = BLI_task_pool_user_data(pool);
|
|
|
|
parallel_iterator_func_do(state, userdata_chunk);
|
|
}
|
|
|
|
static void task_parallel_iterator_no_threads(const TaskParallelSettings *settings,
|
|
TaskParallelIteratorState *state)
|
|
{
|
|
/* Prepare user's TLS data. */
|
|
void *userdata_chunk = settings->userdata_chunk;
|
|
const size_t userdata_chunk_size = settings->userdata_chunk_size;
|
|
void *userdata_chunk_local = NULL;
|
|
const bool use_userdata_chunk = (userdata_chunk_size != 0) && (userdata_chunk != NULL);
|
|
if (use_userdata_chunk) {
|
|
userdata_chunk_local = MALLOCA(userdata_chunk_size);
|
|
memcpy(userdata_chunk_local, userdata_chunk, userdata_chunk_size);
|
|
}
|
|
|
|
/* Also marking it as non-threaded for the iterator callback. */
|
|
state->iter_shared.spin_lock = NULL;
|
|
|
|
parallel_iterator_func_do(state, userdata_chunk);
|
|
|
|
if (use_userdata_chunk && settings->func_free != NULL) {
|
|
/* `func_free` should only free data that was created during execution of `func`. */
|
|
settings->func_free(state->userdata, userdata_chunk_local);
|
|
}
|
|
}
|
|
|
|
static void task_parallel_iterator_do(const TaskParallelSettings *settings,
|
|
TaskParallelIteratorState *state)
|
|
{
|
|
const int num_threads = BLI_task_scheduler_num_threads();
|
|
|
|
task_parallel_calc_chunk_size(
|
|
settings, state->tot_items, num_threads, &state->iter_shared.chunk_size);
|
|
|
|
if (!settings->use_threading) {
|
|
task_parallel_iterator_no_threads(settings, state);
|
|
return;
|
|
}
|
|
|
|
const int chunk_size = state->iter_shared.chunk_size;
|
|
const int tot_items = state->tot_items;
|
|
const size_t num_tasks = tot_items >= 0 ?
|
|
(size_t)min_ii(num_threads, state->tot_items / chunk_size) :
|
|
(size_t)num_threads;
|
|
|
|
BLI_assert(num_tasks > 0);
|
|
if (num_tasks == 1) {
|
|
task_parallel_iterator_no_threads(settings, state);
|
|
return;
|
|
}
|
|
|
|
SpinLock spin_lock;
|
|
BLI_spin_init(&spin_lock);
|
|
state->iter_shared.spin_lock = &spin_lock;
|
|
|
|
void *userdata_chunk = settings->userdata_chunk;
|
|
const size_t userdata_chunk_size = settings->userdata_chunk_size;
|
|
void *userdata_chunk_local = NULL;
|
|
void *userdata_chunk_array = NULL;
|
|
const bool use_userdata_chunk = (userdata_chunk_size != 0) && (userdata_chunk != NULL);
|
|
|
|
TaskPool *task_pool = BLI_task_pool_create(state, TASK_PRIORITY_HIGH);
|
|
|
|
if (use_userdata_chunk) {
|
|
userdata_chunk_array = MALLOCA(userdata_chunk_size * num_tasks);
|
|
}
|
|
|
|
for (size_t i = 0; i < num_tasks; i++) {
|
|
if (use_userdata_chunk) {
|
|
userdata_chunk_local = (char *)userdata_chunk_array + (userdata_chunk_size * i);
|
|
memcpy(userdata_chunk_local, userdata_chunk, userdata_chunk_size);
|
|
}
|
|
/* Use this pool's pre-allocated tasks. */
|
|
BLI_task_pool_push(task_pool, parallel_iterator_func, userdata_chunk_local, false, NULL);
|
|
}
|
|
|
|
BLI_task_pool_work_and_wait(task_pool);
|
|
BLI_task_pool_free(task_pool);
|
|
|
|
if (use_userdata_chunk && (settings->func_reduce != NULL || settings->func_free != NULL)) {
|
|
for (size_t i = 0; i < num_tasks; i++) {
|
|
userdata_chunk_local = (char *)userdata_chunk_array + (userdata_chunk_size * i);
|
|
if (settings->func_reduce != NULL) {
|
|
settings->func_reduce(state->userdata, userdata_chunk, userdata_chunk_local);
|
|
}
|
|
if (settings->func_free != NULL) {
|
|
settings->func_free(state->userdata, userdata_chunk_local);
|
|
}
|
|
}
|
|
MALLOCA_FREE(userdata_chunk_array, userdata_chunk_size * num_tasks);
|
|
}
|
|
|
|
BLI_spin_end(&spin_lock);
|
|
state->iter_shared.spin_lock = NULL;
|
|
}
|
|
|
|
/**
|
|
* This function allows to parallelize for loops using a generic iterator.
|
|
*
|
|
* \param userdata: Common userdata passed to all instances of \a func.
|
|
* \param iter_func: Callback function used to generate chunks of items.
|
|
* \param init_item: The initial item, if necessary (may be NULL if unused).
|
|
* \param init_index: The initial index.
|
|
* \param tot_items: The total amount of items to iterate over
|
|
* (if unknown, set it to a negative number).
|
|
* \param func: Callback function.
|
|
* \param settings: See public API doc of TaskParallelSettings for description of all settings.
|
|
*
|
|
* \note Static scheduling is only available when \a tot_items is >= 0.
|
|
*/
|
|
|
|
void BLI_task_parallel_iterator(void *userdata,
|
|
TaskParallelIteratorIterFunc iter_func,
|
|
void *init_item,
|
|
const int init_index,
|
|
const int tot_items,
|
|
TaskParallelIteratorFunc func,
|
|
const TaskParallelSettings *settings)
|
|
{
|
|
TaskParallelIteratorState state = {0};
|
|
|
|
state.tot_items = tot_items;
|
|
state.iter_shared.next_index = init_index;
|
|
state.iter_shared.next_item = init_item;
|
|
state.iter_shared.is_finished = false;
|
|
state.userdata = userdata;
|
|
state.iter_func = iter_func;
|
|
state.func = func;
|
|
|
|
task_parallel_iterator_do(settings, &state);
|
|
}
|
|
|
|
static void task_parallel_listbase_get(void *__restrict UNUSED(userdata),
|
|
const TaskParallelTLS *__restrict UNUSED(tls),
|
|
void **r_next_item,
|
|
int *r_next_index,
|
|
bool *r_do_abort)
|
|
{
|
|
/* Get current status. */
|
|
Link *link = *r_next_item;
|
|
|
|
if (link->next == NULL) {
|
|
*r_do_abort = true;
|
|
}
|
|
*r_next_item = link->next;
|
|
(*r_next_index)++;
|
|
}
|
|
|
|
/**
|
|
* This function allows to parallelize for loops over ListBase items.
|
|
*
|
|
* \param listbase: The double linked list to loop over.
|
|
* \param userdata: Common userdata passed to all instances of \a func.
|
|
* \param func: Callback function.
|
|
* \param settings: See public API doc of ParallelRangeSettings for description of all settings.
|
|
*
|
|
* \note There is no static scheduling here,
|
|
* since it would need another full loop over items to count them.
|
|
*/
|
|
void BLI_task_parallel_listbase(ListBase *listbase,
|
|
void *userdata,
|
|
TaskParallelIteratorFunc func,
|
|
const TaskParallelSettings *settings)
|
|
{
|
|
if (BLI_listbase_is_empty(listbase)) {
|
|
return;
|
|
}
|
|
|
|
TaskParallelIteratorState state = {0};
|
|
|
|
state.tot_items = BLI_listbase_count(listbase);
|
|
state.iter_shared.next_index = 0;
|
|
state.iter_shared.next_item = listbase->first;
|
|
state.iter_shared.is_finished = false;
|
|
state.userdata = userdata;
|
|
state.iter_func = task_parallel_listbase_get;
|
|
state.func = func;
|
|
|
|
task_parallel_iterator_do(settings, &state);
|
|
}
|
|
|
|
#undef MALLOCA
|
|
#undef MALLOCA_FREE
|
|
|
|
typedef struct ParallelMempoolState {
|
|
void *userdata;
|
|
TaskParallelMempoolFunc func;
|
|
} ParallelMempoolState;
|
|
|
|
static void parallel_mempool_func(TaskPool *__restrict pool, void *taskdata)
|
|
{
|
|
ParallelMempoolState *__restrict state = BLI_task_pool_user_data(pool);
|
|
BLI_mempool_iter *iter = taskdata;
|
|
MempoolIterData *item;
|
|
|
|
while ((item = BLI_mempool_iterstep(iter)) != NULL) {
|
|
state->func(state->userdata, item);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This function allows to parallelize for loops over Mempool items.
|
|
*
|
|
* \param mempool: The iterable BLI_mempool to loop over.
|
|
* \param userdata: Common userdata passed to all instances of \a func.
|
|
* \param func: Callback function.
|
|
* \param use_threading: If \a true, actually split-execute loop in threads,
|
|
* else just do a sequential for loop
|
|
* (allows caller to use any kind of test to switch on parallelization or not).
|
|
*
|
|
* \note There is no static scheduling here.
|
|
*/
|
|
void BLI_task_parallel_mempool(BLI_mempool *mempool,
|
|
void *userdata,
|
|
TaskParallelMempoolFunc func,
|
|
const bool use_threading)
|
|
{
|
|
TaskPool *task_pool;
|
|
ParallelMempoolState state;
|
|
int i, num_threads, num_tasks;
|
|
|
|
if (BLI_mempool_len(mempool) == 0) {
|
|
return;
|
|
}
|
|
|
|
if (!use_threading) {
|
|
BLI_mempool_iter iter;
|
|
BLI_mempool_iternew(mempool, &iter);
|
|
|
|
for (void *item = BLI_mempool_iterstep(&iter); item != NULL;
|
|
item = BLI_mempool_iterstep(&iter)) {
|
|
func(userdata, item);
|
|
}
|
|
return;
|
|
}
|
|
|
|
task_pool = BLI_task_pool_create(&state, TASK_PRIORITY_HIGH);
|
|
num_threads = BLI_task_scheduler_num_threads();
|
|
|
|
/* The idea here is to prevent creating task for each of the loop iterations
|
|
* and instead have tasks which are evenly distributed across CPU cores and
|
|
* pull next item to be crunched using the threaded-aware BLI_mempool_iter.
|
|
*/
|
|
num_tasks = num_threads + 2;
|
|
|
|
state.userdata = userdata;
|
|
state.func = func;
|
|
|
|
BLI_mempool_iter *mempool_iterators = BLI_mempool_iter_threadsafe_create(mempool,
|
|
(size_t)num_tasks);
|
|
|
|
for (i = 0; i < num_tasks; i++) {
|
|
/* Use this pool's pre-allocated tasks. */
|
|
BLI_task_pool_push(task_pool, parallel_mempool_func, &mempool_iterators[i], false, NULL);
|
|
}
|
|
|
|
BLI_task_pool_work_and_wait(task_pool);
|
|
BLI_task_pool_free(task_pool);
|
|
|
|
BLI_mempool_iter_threadsafe_free(mempool_iterators);
|
|
}
|