This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/bmesh/intern/bmesh_interp.c
Campbell Barton 4b188bb08c Cleanup: use over-line for doxy comments
Follow our code style for doxygen sections.
2020-10-27 21:45:55 +11:00

1279 lines
36 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2007 Blender Foundation.
* All rights reserved.
*/
/** \file
* \ingroup bmesh
*
* Functions for interpolating data across the surface of a mesh.
*/
#include "MEM_guardedalloc.h"
#include "DNA_meshdata_types.h"
#include "BLI_alloca.h"
#include "BLI_linklist.h"
#include "BLI_math.h"
#include "BLI_memarena.h"
#include "BLI_task.h"
#include "BKE_customdata.h"
#include "BKE_multires.h"
#include "bmesh.h"
#include "intern/bmesh_private.h"
/* edge and vertex share, currently there's no need to have different logic */
static void bm_data_interp_from_elem(CustomData *data_layer,
const BMElem *ele_src_1,
const BMElem *ele_src_2,
BMElem *ele_dst,
const float fac)
{
if (ele_src_1->head.data && ele_src_2->head.data) {
/* first see if we can avoid interpolation */
if (fac <= 0.0f) {
if (ele_src_1 == ele_dst) {
/* do nothing */
}
else {
CustomData_bmesh_free_block_data(data_layer, ele_dst->head.data);
CustomData_bmesh_copy_data(
data_layer, data_layer, ele_src_1->head.data, &ele_dst->head.data);
}
}
else if (fac >= 1.0f) {
if (ele_src_2 == ele_dst) {
/* do nothing */
}
else {
CustomData_bmesh_free_block_data(data_layer, ele_dst->head.data);
CustomData_bmesh_copy_data(
data_layer, data_layer, ele_src_2->head.data, &ele_dst->head.data);
}
}
else {
const void *src[2];
float w[2];
src[0] = ele_src_1->head.data;
src[1] = ele_src_2->head.data;
w[0] = 1.0f - fac;
w[1] = fac;
CustomData_bmesh_interp(data_layer, src, w, NULL, 2, ele_dst->head.data);
}
}
}
/**
* \brief Data, Interp From Verts
*
* Interpolates per-vertex data from two sources to \a v_dst
*
* \note This is an exact match to #BM_data_interp_from_edges
*/
void BM_data_interp_from_verts(
BMesh *bm, const BMVert *v_src_1, const BMVert *v_src_2, BMVert *v_dst, const float fac)
{
bm_data_interp_from_elem(
&bm->vdata, (const BMElem *)v_src_1, (const BMElem *)v_src_2, (BMElem *)v_dst, fac);
}
/**
* \brief Data, Interp From Edges
*
* Interpolates per-edge data from two sources to \a e_dst.
*
* \note This is an exact match to #BM_data_interp_from_verts
*/
void BM_data_interp_from_edges(
BMesh *bm, const BMEdge *e_src_1, const BMEdge *e_src_2, BMEdge *e_dst, const float fac)
{
bm_data_interp_from_elem(
&bm->edata, (const BMElem *)e_src_1, (const BMElem *)e_src_2, (BMElem *)e_dst, fac);
}
/**
* \brief Data Vert Average
*
* Sets all the customdata (e.g. vert, loop) associated with a vert
* to the average of the face regions surrounding it.
*/
static void UNUSED_FUNCTION(BM_Data_Vert_Average)(BMesh *UNUSED(bm), BMFace *UNUSED(f))
{
// BMIter iter;
}
/**
* \brief Data Face-Vert Edge Interp
*
* Walks around the faces of \a e and interpolates
* the loop data between two sources.
*/
void BM_data_interp_face_vert_edge(BMesh *bm,
const BMVert *v_src_1,
const BMVert *UNUSED(v_src_2),
BMVert *v,
BMEdge *e,
const float fac)
{
float w[2];
BMLoop *l_v1 = NULL, *l_v = NULL, *l_v2 = NULL;
BMLoop *l_iter = NULL;
if (!e->l) {
return;
}
w[1] = 1.0f - fac;
w[0] = fac;
l_iter = e->l;
do {
if (l_iter->v == v_src_1) {
l_v1 = l_iter;
l_v = l_v1->next;
l_v2 = l_v->next;
}
else if (l_iter->v == v) {
l_v1 = l_iter->next;
l_v = l_iter;
l_v2 = l_iter->prev;
}
if (!l_v1 || !l_v2) {
return;
}
const void *src[2];
src[0] = l_v1->head.data;
src[1] = l_v2->head.data;
CustomData_bmesh_interp(&bm->ldata, src, w, NULL, 2, l_v->head.data);
} while ((l_iter = l_iter->radial_next) != e->l);
}
/**
* \brief Data Interp From Face
*
* projects target onto source, and pulls interpolated customdata from
* source.
*
* \note Only handles loop customdata. multires is handled.
*/
void BM_face_interp_from_face_ex(BMesh *bm,
BMFace *f_dst,
const BMFace *f_src,
const bool do_vertex,
const void **blocks_l,
const void **blocks_v,
float (*cos_2d)[2],
float axis_mat[3][3])
{
BMLoop *l_iter;
BMLoop *l_first;
float *w = BLI_array_alloca(w, f_src->len);
float co[2];
int i;
if (f_src != f_dst) {
BM_elem_attrs_copy(bm, bm, f_src, f_dst);
}
/* interpolate */
i = 0;
l_iter = l_first = BM_FACE_FIRST_LOOP(f_dst);
do {
mul_v2_m3v3(co, axis_mat, l_iter->v->co);
interp_weights_poly_v2(w, cos_2d, f_src->len, co);
CustomData_bmesh_interp(&bm->ldata, blocks_l, w, NULL, f_src->len, l_iter->head.data);
if (do_vertex) {
CustomData_bmesh_interp(&bm->vdata, blocks_v, w, NULL, f_src->len, l_iter->v->head.data);
}
} while ((void)i++, (l_iter = l_iter->next) != l_first);
}
void BM_face_interp_from_face(BMesh *bm, BMFace *f_dst, const BMFace *f_src, const bool do_vertex)
{
BMLoop *l_iter;
BMLoop *l_first;
const void **blocks_l = BLI_array_alloca(blocks_l, f_src->len);
const void **blocks_v = do_vertex ? BLI_array_alloca(blocks_v, f_src->len) : NULL;
float(*cos_2d)[2] = BLI_array_alloca(cos_2d, f_src->len);
float axis_mat[3][3]; /* use normal to transform into 2d xy coords */
int i;
/* convert the 3d coords into 2d for projection */
BLI_assert(BM_face_is_normal_valid(f_src));
axis_dominant_v3_to_m3(axis_mat, f_src->no);
i = 0;
l_iter = l_first = BM_FACE_FIRST_LOOP(f_src);
do {
mul_v2_m3v3(cos_2d[i], axis_mat, l_iter->v->co);
blocks_l[i] = l_iter->head.data;
if (do_vertex) {
blocks_v[i] = l_iter->v->head.data;
}
} while ((void)i++, (l_iter = l_iter->next) != l_first);
BM_face_interp_from_face_ex(bm, f_dst, f_src, do_vertex, blocks_l, blocks_v, cos_2d, axis_mat);
}
/**
* \brief Multires Interpolation
*
* mdisps is a grid of displacements, ordered thus:
* <pre>
* v1/center----v4/next -> x
* | |
* | |
* v2/prev------v3/cur
* |
* V
* y
* </pre>
*/
static int compute_mdisp_quad(const BMLoop *l,
const float l_f_center[3],
float v1[3],
float v2[3],
float v3[3],
float v4[3],
float e1[3],
float e2[3])
{
float n[3], p[3];
#ifndef NDEBUG
{
float cent[3];
/* computer center */
BM_face_calc_center_median(l->f, cent);
BLI_assert(equals_v3v3(cent, l_f_center));
}
#endif
mid_v3_v3v3(p, l->prev->v->co, l->v->co);
mid_v3_v3v3(n, l->next->v->co, l->v->co);
copy_v3_v3(v1, l_f_center);
copy_v3_v3(v2, p);
copy_v3_v3(v3, l->v->co);
copy_v3_v3(v4, n);
sub_v3_v3v3(e1, v2, v1);
sub_v3_v3v3(e2, v3, v4);
return 1;
}
static bool quad_co(const float v1[3],
const float v2[3],
const float v3[3],
const float v4[3],
const float p[3],
const float n[3],
float r_uv[2])
{
float projverts[5][3], n2[3];
const float origin[2] = {0.0f, 0.0f};
int i;
/* project points into 2d along normal */
copy_v3_v3(projverts[0], v1);
copy_v3_v3(projverts[1], v2);
copy_v3_v3(projverts[2], v3);
copy_v3_v3(projverts[3], v4);
copy_v3_v3(projverts[4], p);
normal_quad_v3(n2, projverts[0], projverts[1], projverts[2], projverts[3]);
if (dot_v3v3(n, n2) < -FLT_EPSILON) {
return false;
}
/* rotate */
poly_rotate_plane(n, projverts, 5);
/* subtract origin */
for (i = 0; i < 4; i++) {
sub_v2_v2(projverts[i], projverts[4]);
}
if (!isect_point_quad_v2(origin, projverts[0], projverts[1], projverts[2], projverts[3])) {
return false;
}
resolve_quad_uv_v2(r_uv, origin, projverts[0], projverts[3], projverts[2], projverts[1]);
return true;
}
static void mdisp_axis_from_quad(const float v1[3],
const float v2[3],
float UNUSED(v3[3]),
const float v4[3],
float r_axis_x[3],
float r_axis_y[3])
{
sub_v3_v3v3(r_axis_x, v4, v1);
sub_v3_v3v3(r_axis_y, v2, v1);
normalize_v3(r_axis_x);
normalize_v3(r_axis_y);
}
/* tl is loop to project onto, l is loop whose internal displacement, co, is being
* projected. x and y are location in loop's mdisps grid of point co. */
static bool mdisp_in_mdispquad(BMLoop *l_src,
BMLoop *l_dst,
const float l_dst_f_center[3],
const float p[3],
int res,
float r_axis_x[3],
float r_axis_y[3],
float r_uv[2])
{
float v1[3], v2[3], c[3], v3[3], v4[3], e1[3], e2[3];
float eps = FLT_EPSILON * 4000;
if (is_zero_v3(l_src->v->no)) {
BM_vert_normal_update_all(l_src->v);
}
if (is_zero_v3(l_dst->v->no)) {
BM_vert_normal_update_all(l_dst->v);
}
compute_mdisp_quad(l_dst, l_dst_f_center, v1, v2, v3, v4, e1, e2);
/* expand quad a bit */
mid_v3_v3v3v3v3(c, v1, v2, v3, v4);
sub_v3_v3(v1, c);
sub_v3_v3(v2, c);
sub_v3_v3(v3, c);
sub_v3_v3(v4, c);
mul_v3_fl(v1, 1.0f + eps);
mul_v3_fl(v2, 1.0f + eps);
mul_v3_fl(v3, 1.0f + eps);
mul_v3_fl(v4, 1.0f + eps);
add_v3_v3(v1, c);
add_v3_v3(v2, c);
add_v3_v3(v3, c);
add_v3_v3(v4, c);
if (!quad_co(v1, v2, v3, v4, p, l_src->v->no, r_uv)) {
return 0;
}
mul_v2_fl(r_uv, (float)(res - 1));
mdisp_axis_from_quad(v1, v2, v3, v4, r_axis_x, r_axis_y);
return 1;
}
static float bm_loop_flip_equotion(float mat[2][2],
float b[2],
const float target_axis_x[3],
const float target_axis_y[3],
const float coord[3],
int i,
int j)
{
mat[0][0] = target_axis_x[i];
mat[0][1] = target_axis_y[i];
mat[1][0] = target_axis_x[j];
mat[1][1] = target_axis_y[j];
b[0] = coord[i];
b[1] = coord[j];
return cross_v2v2(mat[0], mat[1]);
}
static void bm_loop_flip_disp(const float source_axis_x[3],
const float source_axis_y[3],
const float target_axis_x[3],
const float target_axis_y[3],
float disp[3])
{
float vx[3], vy[3], coord[3];
float n[3], vec[3];
float b[2], mat[2][2], d;
mul_v3_v3fl(vx, source_axis_x, disp[0]);
mul_v3_v3fl(vy, source_axis_y, disp[1]);
add_v3_v3v3(coord, vx, vy);
/* project displacement from source grid plane onto target grid plane */
cross_v3_v3v3(n, target_axis_x, target_axis_y);
project_v3_v3v3(vec, coord, n);
sub_v3_v3v3(coord, coord, vec);
d = bm_loop_flip_equotion(mat, b, target_axis_x, target_axis_y, coord, 0, 1);
if (fabsf(d) < 1e-4f) {
d = bm_loop_flip_equotion(mat, b, target_axis_x, target_axis_y, coord, 0, 2);
if (fabsf(d) < 1e-4f) {
d = bm_loop_flip_equotion(mat, b, target_axis_x, target_axis_y, coord, 1, 2);
}
}
disp[0] = (b[0] * mat[1][1] - mat[0][1] * b[1]) / d;
disp[1] = (mat[0][0] * b[1] - b[0] * mat[1][0]) / d;
}
typedef struct BMLoopInterpMultiresData {
BMLoop *l_dst;
BMLoop *l_src_first;
int cd_loop_mdisp_offset;
MDisps *md_dst;
const float *f_src_center;
float *axis_x, *axis_y;
float *v1, *v4;
float *e1, *e2;
int res;
float d;
} BMLoopInterpMultiresData;
static void loop_interp_multires_cb(void *__restrict userdata,
const int ix,
const TaskParallelTLS *__restrict UNUSED(tls))
{
BMLoopInterpMultiresData *data = userdata;
BMLoop *l_first = data->l_src_first;
BMLoop *l_dst = data->l_dst;
const int cd_loop_mdisp_offset = data->cd_loop_mdisp_offset;
MDisps *md_dst = data->md_dst;
const float *f_src_center = data->f_src_center;
float *axis_x = data->axis_x;
float *axis_y = data->axis_y;
float *v1 = data->v1;
float *v4 = data->v4;
float *e1 = data->e1;
float *e2 = data->e2;
const int res = data->res;
const float d = data->d;
float x = d * ix, y;
int iy;
for (y = 0.0f, iy = 0; iy < res; y += d, iy++) {
BMLoop *l_iter = l_first;
float co1[3], co2[3], co[3];
madd_v3_v3v3fl(co1, v1, e1, y);
madd_v3_v3v3fl(co2, v4, e2, y);
interp_v3_v3v3(co, co1, co2, x);
do {
MDisps *md_src;
float src_axis_x[3], src_axis_y[3];
float uv[2];
md_src = BM_ELEM_CD_GET_VOID_P(l_iter, cd_loop_mdisp_offset);
if (mdisp_in_mdispquad(l_dst, l_iter, f_src_center, co, res, src_axis_x, src_axis_y, uv)) {
old_mdisps_bilinear(md_dst->disps[iy * res + ix], md_src->disps, res, uv[0], uv[1]);
bm_loop_flip_disp(src_axis_x, src_axis_y, axis_x, axis_y, md_dst->disps[iy * res + ix]);
break;
}
} while ((l_iter = l_iter->next) != l_first);
}
}
void BM_loop_interp_multires_ex(BMesh *UNUSED(bm),
BMLoop *l_dst,
const BMFace *f_src,
const float f_dst_center[3],
const float f_src_center[3],
const int cd_loop_mdisp_offset)
{
MDisps *md_dst;
float v1[3], v2[3], v3[3], v4[3] = {0.0f, 0.0f, 0.0f}, e1[3], e2[3];
float axis_x[3], axis_y[3];
/* ignore 2-edged faces */
if (UNLIKELY(l_dst->f->len < 3)) {
return;
}
md_dst = BM_ELEM_CD_GET_VOID_P(l_dst, cd_loop_mdisp_offset);
compute_mdisp_quad(l_dst, f_dst_center, v1, v2, v3, v4, e1, e2);
/* if no disps data allocate a new grid, the size of the first grid in f_src. */
if (!md_dst->totdisp) {
const MDisps *md_src = BM_ELEM_CD_GET_VOID_P(BM_FACE_FIRST_LOOP(f_src), cd_loop_mdisp_offset);
md_dst->totdisp = md_src->totdisp;
md_dst->level = md_src->level;
if (md_dst->totdisp) {
md_dst->disps = MEM_callocN(sizeof(float[3]) * md_dst->totdisp, __func__);
}
else {
return;
}
}
mdisp_axis_from_quad(v1, v2, v3, v4, axis_x, axis_y);
const int res = (int)sqrt(md_dst->totdisp);
BMLoopInterpMultiresData data = {
.l_dst = l_dst,
.l_src_first = BM_FACE_FIRST_LOOP(f_src),
.cd_loop_mdisp_offset = cd_loop_mdisp_offset,
.md_dst = md_dst,
.f_src_center = f_src_center,
.axis_x = axis_x,
.axis_y = axis_y,
.v1 = v1,
.v4 = v4,
.e1 = e1,
.e2 = e2,
.res = res,
.d = 1.0f / (float)(res - 1),
};
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
settings.use_threading = (res > 5);
BLI_task_parallel_range(0, res, &data, loop_interp_multires_cb, &settings);
}
/**
* project the multires grid in target onto f_src's set of multires grids
*/
void BM_loop_interp_multires(BMesh *bm, BMLoop *l_dst, const BMFace *f_src)
{
const int cd_loop_mdisp_offset = CustomData_get_offset(&bm->ldata, CD_MDISPS);
if (cd_loop_mdisp_offset != -1) {
float f_dst_center[3];
float f_src_center[3];
BM_face_calc_center_median(l_dst->f, f_dst_center);
BM_face_calc_center_median(f_src, f_src_center);
BM_loop_interp_multires_ex(bm, l_dst, f_src, f_dst_center, f_src_center, cd_loop_mdisp_offset);
}
}
void BM_face_interp_multires_ex(BMesh *bm,
BMFace *f_dst,
const BMFace *f_src,
const float f_dst_center[3],
const float f_src_center[3],
const int cd_loop_mdisp_offset)
{
BMLoop *l_iter, *l_first;
l_iter = l_first = BM_FACE_FIRST_LOOP(f_dst);
do {
BM_loop_interp_multires_ex(
bm, l_iter, f_src, f_dst_center, f_src_center, cd_loop_mdisp_offset);
} while ((l_iter = l_iter->next) != l_first);
}
void BM_face_interp_multires(BMesh *bm, BMFace *f_dst, const BMFace *f_src)
{
const int cd_loop_mdisp_offset = CustomData_get_offset(&bm->ldata, CD_MDISPS);
if (cd_loop_mdisp_offset != -1) {
float f_dst_center[3];
float f_src_center[3];
BM_face_calc_center_median(f_dst, f_dst_center);
BM_face_calc_center_median(f_src, f_src_center);
BM_face_interp_multires_ex(bm, f_dst, f_src, f_dst_center, f_src_center, cd_loop_mdisp_offset);
}
}
/**
* smooths boundaries between multires grids,
* including some borders in adjacent faces
*/
void BM_face_multires_bounds_smooth(BMesh *bm, BMFace *f)
{
const int cd_loop_mdisp_offset = CustomData_get_offset(&bm->ldata, CD_MDISPS);
BMLoop *l;
BMIter liter;
if (cd_loop_mdisp_offset == -1) {
return;
}
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
MDisps *mdp = BM_ELEM_CD_GET_VOID_P(l->prev, cd_loop_mdisp_offset);
MDisps *mdl = BM_ELEM_CD_GET_VOID_P(l, cd_loop_mdisp_offset);
MDisps *mdn = BM_ELEM_CD_GET_VOID_P(l->next, cd_loop_mdisp_offset);
float co1[3];
int sides;
int y;
/**
* mdisps is a grid of displacements, ordered thus:
* <pre>
* v4/next
* |
* | v1/cent-----mid2 ---> x
* | | |
* | | |
* v2/prev---mid1-----v3/cur
* |
* V
* y
* </pre>
*/
sides = (int)sqrt(mdp->totdisp);
for (y = 0; y < sides; y++) {
mid_v3_v3v3(co1, mdn->disps[y * sides], mdl->disps[y]);
copy_v3_v3(mdn->disps[y * sides], co1);
copy_v3_v3(mdl->disps[y], co1);
}
}
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
MDisps *mdl1 = BM_ELEM_CD_GET_VOID_P(l, cd_loop_mdisp_offset);
MDisps *mdl2;
float co1[3], co2[3], co[3];
int sides;
int y;
/**
* mdisps is a grid of displacements, ordered thus:
* <pre>
* v4/next
* |
* | v1/cent-----mid2 ---> x
* | | |
* | | |
* v2/prev---mid1-----v3/cur
* |
* V
* y
* </pre>
*/
if (l->radial_next == l) {
continue;
}
if (l->radial_next->v == l->v) {
mdl2 = BM_ELEM_CD_GET_VOID_P(l->radial_next, cd_loop_mdisp_offset);
}
else {
mdl2 = BM_ELEM_CD_GET_VOID_P(l->radial_next->next, cd_loop_mdisp_offset);
}
sides = (int)sqrt(mdl1->totdisp);
for (y = 0; y < sides; y++) {
int a1, a2, o1, o2;
if (l->v != l->radial_next->v) {
a1 = sides * y + sides - 2;
a2 = (sides - 2) * sides + y;
o1 = sides * y + sides - 1;
o2 = (sides - 1) * sides + y;
}
else {
a1 = sides * y + sides - 2;
a2 = sides * y + sides - 2;
o1 = sides * y + sides - 1;
o2 = sides * y + sides - 1;
}
/* magic blending numbers, hardcoded! */
add_v3_v3v3(co1, mdl1->disps[a1], mdl2->disps[a2]);
mul_v3_fl(co1, 0.18);
add_v3_v3v3(co2, mdl1->disps[o1], mdl2->disps[o2]);
mul_v3_fl(co2, 0.32);
add_v3_v3v3(co, co1, co2);
copy_v3_v3(mdl1->disps[o1], co);
copy_v3_v3(mdl2->disps[o2], co);
}
}
}
/**
* projects a single loop, target, onto f_src for customdata interpolation. multires is handled.
* if do_vertex is true, target's vert data will also get interpolated.
*/
void BM_loop_interp_from_face(
BMesh *bm, BMLoop *l_dst, const BMFace *f_src, const bool do_vertex, const bool do_multires)
{
BMLoop *l_iter;
BMLoop *l_first;
const void **vblocks = do_vertex ? BLI_array_alloca(vblocks, f_src->len) : NULL;
const void **blocks = BLI_array_alloca(blocks, f_src->len);
float(*cos_2d)[2] = BLI_array_alloca(cos_2d, f_src->len);
float *w = BLI_array_alloca(w, f_src->len);
float axis_mat[3][3]; /* use normal to transform into 2d xy coords */
float co[2];
int i;
/* Convert the 3d coords into 2d for projection. */
float axis_dominant[3];
if (!is_zero_v3(f_src->no)) {
BLI_assert(BM_face_is_normal_valid(f_src));
copy_v3_v3(axis_dominant, f_src->no);
}
else {
/* Rare case in which all the vertices of the face are aligned.
* Get a random axis that is orthogonal to the tangent. */
float vec[3];
BM_face_calc_tangent_auto(f_src, vec);
ortho_v3_v3(axis_dominant, vec);
normalize_v3(axis_dominant);
}
axis_dominant_v3_to_m3(axis_mat, axis_dominant);
i = 0;
l_iter = l_first = BM_FACE_FIRST_LOOP(f_src);
do {
mul_v2_m3v3(cos_2d[i], axis_mat, l_iter->v->co);
blocks[i] = l_iter->head.data;
if (do_vertex) {
vblocks[i] = l_iter->v->head.data;
}
} while ((void)i++, (l_iter = l_iter->next) != l_first);
mul_v2_m3v3(co, axis_mat, l_dst->v->co);
/* interpolate */
interp_weights_poly_v2(w, cos_2d, f_src->len, co);
CustomData_bmesh_interp(&bm->ldata, blocks, w, NULL, f_src->len, l_dst->head.data);
if (do_vertex) {
CustomData_bmesh_interp(&bm->vdata, vblocks, w, NULL, f_src->len, l_dst->v->head.data);
}
if (do_multires) {
BM_loop_interp_multires(bm, l_dst, f_src);
}
}
void BM_vert_interp_from_face(BMesh *bm, BMVert *v_dst, const BMFace *f_src)
{
BMLoop *l_iter;
BMLoop *l_first;
const void **blocks = BLI_array_alloca(blocks, f_src->len);
float(*cos_2d)[2] = BLI_array_alloca(cos_2d, f_src->len);
float *w = BLI_array_alloca(w, f_src->len);
float axis_mat[3][3]; /* use normal to transform into 2d xy coords */
float co[2];
int i;
/* convert the 3d coords into 2d for projection */
BLI_assert(BM_face_is_normal_valid(f_src));
axis_dominant_v3_to_m3(axis_mat, f_src->no);
i = 0;
l_iter = l_first = BM_FACE_FIRST_LOOP(f_src);
do {
mul_v2_m3v3(cos_2d[i], axis_mat, l_iter->v->co);
blocks[i] = l_iter->v->head.data;
} while ((void)i++, (l_iter = l_iter->next) != l_first);
mul_v2_m3v3(co, axis_mat, v_dst->co);
/* interpolate */
interp_weights_poly_v2(w, cos_2d, f_src->len, co);
CustomData_bmesh_interp(&bm->vdata, blocks, w, NULL, f_src->len, v_dst->head.data);
}
static void update_data_blocks(BMesh *bm, CustomData *olddata, CustomData *data)
{
BMIter iter;
BLI_mempool *oldpool = olddata->pool;
void *block;
if (data == &bm->vdata) {
BMVert *eve;
CustomData_bmesh_init_pool(data, bm->totvert, BM_VERT);
BM_ITER_MESH (eve, &iter, bm, BM_VERTS_OF_MESH) {
block = NULL;
CustomData_bmesh_set_default(data, &block);
CustomData_bmesh_copy_data(olddata, data, eve->head.data, &block);
CustomData_bmesh_free_block(olddata, &eve->head.data);
eve->head.data = block;
}
}
else if (data == &bm->edata) {
BMEdge *eed;
CustomData_bmesh_init_pool(data, bm->totedge, BM_EDGE);
BM_ITER_MESH (eed, &iter, bm, BM_EDGES_OF_MESH) {
block = NULL;
CustomData_bmesh_set_default(data, &block);
CustomData_bmesh_copy_data(olddata, data, eed->head.data, &block);
CustomData_bmesh_free_block(olddata, &eed->head.data);
eed->head.data = block;
}
}
else if (data == &bm->ldata) {
BMIter liter;
BMFace *efa;
BMLoop *l;
CustomData_bmesh_init_pool(data, bm->totloop, BM_LOOP);
BM_ITER_MESH (efa, &iter, bm, BM_FACES_OF_MESH) {
BM_ITER_ELEM (l, &liter, efa, BM_LOOPS_OF_FACE) {
block = NULL;
CustomData_bmesh_set_default(data, &block);
CustomData_bmesh_copy_data(olddata, data, l->head.data, &block);
CustomData_bmesh_free_block(olddata, &l->head.data);
l->head.data = block;
}
}
}
else if (data == &bm->pdata) {
BMFace *efa;
CustomData_bmesh_init_pool(data, bm->totface, BM_FACE);
BM_ITER_MESH (efa, &iter, bm, BM_FACES_OF_MESH) {
block = NULL;
CustomData_bmesh_set_default(data, &block);
CustomData_bmesh_copy_data(olddata, data, efa->head.data, &block);
CustomData_bmesh_free_block(olddata, &efa->head.data);
efa->head.data = block;
}
}
else {
/* should never reach this! */
BLI_assert(0);
}
if (oldpool) {
/* this should never happen but can when dissolve fails - T28960. */
BLI_assert(data->pool != oldpool);
BLI_mempool_destroy(oldpool);
}
}
void BM_data_layer_add(BMesh *bm, CustomData *data, int type)
{
CustomData olddata;
olddata = *data;
olddata.layers = (olddata.layers) ? MEM_dupallocN(olddata.layers) : NULL;
/* the pool is now owned by olddata and must not be shared */
data->pool = NULL;
CustomData_add_layer(data, type, CD_DEFAULT, NULL, 0);
update_data_blocks(bm, &olddata, data);
if (olddata.layers) {
MEM_freeN(olddata.layers);
}
}
void BM_data_layer_add_named(BMesh *bm, CustomData *data, int type, const char *name)
{
CustomData olddata;
olddata = *data;
olddata.layers = (olddata.layers) ? MEM_dupallocN(olddata.layers) : NULL;
/* the pool is now owned by olddata and must not be shared */
data->pool = NULL;
CustomData_add_layer_named(data, type, CD_DEFAULT, NULL, 0, name);
update_data_blocks(bm, &olddata, data);
if (olddata.layers) {
MEM_freeN(olddata.layers);
}
}
void BM_data_layer_free(BMesh *bm, CustomData *data, int type)
{
CustomData olddata;
bool has_layer;
olddata = *data;
olddata.layers = (olddata.layers) ? MEM_dupallocN(olddata.layers) : NULL;
/* the pool is now owned by olddata and must not be shared */
data->pool = NULL;
has_layer = CustomData_free_layer_active(data, type, 0);
/* assert because its expensive to realloc - better not do if layer isnt present */
BLI_assert(has_layer != false);
UNUSED_VARS_NDEBUG(has_layer);
update_data_blocks(bm, &olddata, data);
if (olddata.layers) {
MEM_freeN(olddata.layers);
}
}
void BM_data_layer_free_n(BMesh *bm, CustomData *data, int type, int n)
{
CustomData olddata;
bool has_layer;
olddata = *data;
olddata.layers = (olddata.layers) ? MEM_dupallocN(olddata.layers) : NULL;
/* the pool is now owned by olddata and must not be shared */
data->pool = NULL;
has_layer = CustomData_free_layer(data, type, 0, CustomData_get_layer_index_n(data, type, n));
/* assert because its expensive to realloc - better not do if layer isnt present */
BLI_assert(has_layer != false);
UNUSED_VARS_NDEBUG(has_layer);
update_data_blocks(bm, &olddata, data);
if (olddata.layers) {
MEM_freeN(olddata.layers);
}
}
void BM_data_layer_copy(BMesh *bm, CustomData *data, int type, int src_n, int dst_n)
{
BMIter iter;
if (&bm->vdata == data) {
BMVert *eve;
BM_ITER_MESH (eve, &iter, bm, BM_VERTS_OF_MESH) {
void *ptr = CustomData_bmesh_get_n(data, eve->head.data, type, src_n);
CustomData_bmesh_set_n(data, eve->head.data, type, dst_n, ptr);
}
}
else if (&bm->edata == data) {
BMEdge *eed;
BM_ITER_MESH (eed, &iter, bm, BM_EDGES_OF_MESH) {
void *ptr = CustomData_bmesh_get_n(data, eed->head.data, type, src_n);
CustomData_bmesh_set_n(data, eed->head.data, type, dst_n, ptr);
}
}
else if (&bm->pdata == data) {
BMFace *efa;
BM_ITER_MESH (efa, &iter, bm, BM_FACES_OF_MESH) {
void *ptr = CustomData_bmesh_get_n(data, efa->head.data, type, src_n);
CustomData_bmesh_set_n(data, efa->head.data, type, dst_n, ptr);
}
}
else if (&bm->ldata == data) {
BMIter liter;
BMFace *efa;
BMLoop *l;
BM_ITER_MESH (efa, &iter, bm, BM_FACES_OF_MESH) {
BM_ITER_ELEM (l, &liter, efa, BM_LOOPS_OF_FACE) {
void *ptr = CustomData_bmesh_get_n(data, l->head.data, type, src_n);
CustomData_bmesh_set_n(data, l->head.data, type, dst_n, ptr);
}
}
}
else {
/* should never reach this! */
BLI_assert(0);
}
}
float BM_elem_float_data_get(CustomData *cd, void *element, int type)
{
const float *f = CustomData_bmesh_get(cd, ((BMHeader *)element)->data, type);
return f ? *f : 0.0f;
}
void BM_elem_float_data_set(CustomData *cd, void *element, int type, const float val)
{
float *f = CustomData_bmesh_get(cd, ((BMHeader *)element)->data, type);
if (f) {
*f = val;
}
}
/* -------------------------------------------------------------------- */
/** \name Loop interpolation functions: BM_vert_loop_groups_data_layer_***
*
* Handling loop custom-data such as UV's, while keeping contiguous fans is rather tedious.
* Especially when a verts loops can have multiple CustomData layers,
* and each layer can have multiple (different) contiguous fans.
* Said differently, a single vertices loops may span multiple UV islands.
*
* These functions snapshot vertices loops, storing each contiguous fan in its own group.
* The caller can manipulate the loops, then re-combine the CustomData values.
*
* While these functions don't explicitly handle multiple layers at once,
* the caller can simply store its own list.
*
* \note Currently they are averaged back together (weighted by loop angle)
* but we could copy add other methods to re-combine CustomData-Loop-Fans.
*
* \{ */
struct LoopWalkCtx {
/* same for all groups */
int type;
int cd_layer_offset;
const float *loop_weights;
MemArena *arena;
/* --- Per loop fan vars --- */
/* reference for this contiguous fan */
const void *data_ref;
int data_len;
/* accumulate 'LoopGroupCD.weight' to make unit length */
float weight_accum;
/* both arrays the size of the 'BM_vert_face_count(v)'
* each contiguous fan gets a slide of these arrays */
void **data_array;
int *data_index_array;
float *weight_array;
};
/* Store vars to pass into 'CustomData_bmesh_interp' */
struct LoopGroupCD {
/* direct customdata pointer array */
void **data;
/* weights (aligned with 'data') */
float *data_weights;
/* index-in-face */
int *data_index;
/* number of loops in the fan */
int data_len;
};
static void bm_loop_walk_add(struct LoopWalkCtx *lwc, BMLoop *l)
{
const int i = BM_elem_index_get(l);
const float w = lwc->loop_weights[i];
BM_elem_flag_disable(l, BM_ELEM_INTERNAL_TAG);
lwc->data_array[lwc->data_len] = BM_ELEM_CD_GET_VOID_P(l, lwc->cd_layer_offset);
lwc->data_index_array[lwc->data_len] = i;
lwc->weight_array[lwc->data_len] = w;
lwc->weight_accum += w;
lwc->data_len += 1;
}
/**
* called recursively, keep stack-usage minimal.
*
* \note called for fan matching so we're pretty much safe not to break the stack
*/
static void bm_loop_walk_data(struct LoopWalkCtx *lwc, BMLoop *l_walk)
{
int i;
BLI_assert(CustomData_data_equals(
lwc->type, lwc->data_ref, BM_ELEM_CD_GET_VOID_P(l_walk, lwc->cd_layer_offset)));
BLI_assert(BM_elem_flag_test(l_walk, BM_ELEM_INTERNAL_TAG));
bm_loop_walk_add(lwc, l_walk);
/* recurse around this loop-fan (in both directions) */
for (i = 0; i < 2; i++) {
BMLoop *l_other = ((i == 0) ? l_walk : l_walk->prev)->radial_next;
if (l_other->radial_next != l_other) {
if (l_other->v != l_walk->v) {
l_other = l_other->next;
}
BLI_assert(l_other->v == l_walk->v);
if (BM_elem_flag_test(l_other, BM_ELEM_INTERNAL_TAG)) {
if (CustomData_data_equals(
lwc->type, lwc->data_ref, BM_ELEM_CD_GET_VOID_P(l_other, lwc->cd_layer_offset))) {
bm_loop_walk_data(lwc, l_other);
}
}
}
}
}
LinkNode *BM_vert_loop_groups_data_layer_create(
BMesh *bm, BMVert *v, const int layer_n, const float *loop_weights, MemArena *arena)
{
struct LoopWalkCtx lwc;
LinkNode *groups = NULL;
BMLoop *l;
BMIter liter;
int loop_num;
lwc.type = bm->ldata.layers[layer_n].type;
lwc.cd_layer_offset = bm->ldata.layers[layer_n].offset;
lwc.loop_weights = loop_weights;
lwc.arena = arena;
/* Enable 'BM_ELEM_INTERNAL_TAG', leaving the flag clean on completion. */
loop_num = 0;
BM_ITER_ELEM (l, &liter, v, BM_LOOPS_OF_VERT) {
BM_elem_flag_enable(l, BM_ELEM_INTERNAL_TAG);
BM_elem_index_set(l, loop_num); /* set_dirty! */
loop_num++;
}
bm->elem_index_dirty |= BM_LOOP;
lwc.data_len = 0;
lwc.data_array = BLI_memarena_alloc(lwc.arena, sizeof(void *) * loop_num);
lwc.data_index_array = BLI_memarena_alloc(lwc.arena, sizeof(int) * loop_num);
lwc.weight_array = BLI_memarena_alloc(lwc.arena, sizeof(float) * loop_num);
BM_ITER_ELEM (l, &liter, v, BM_LOOPS_OF_VERT) {
if (BM_elem_flag_test(l, BM_ELEM_INTERNAL_TAG)) {
struct LoopGroupCD *lf = BLI_memarena_alloc(lwc.arena, sizeof(*lf));
int len_prev = lwc.data_len;
lwc.data_ref = BM_ELEM_CD_GET_VOID_P(l, lwc.cd_layer_offset);
/* assign len-last */
lf->data = &lwc.data_array[lwc.data_len];
lf->data_index = &lwc.data_index_array[lwc.data_len];
lf->data_weights = &lwc.weight_array[lwc.data_len];
lwc.weight_accum = 0.0f;
/* new group */
bm_loop_walk_data(&lwc, l);
lf->data_len = lwc.data_len - len_prev;
if (LIKELY(lwc.weight_accum != 0.0f)) {
mul_vn_fl(lf->data_weights, lf->data_len, 1.0f / lwc.weight_accum);
}
else {
copy_vn_fl(lf->data_weights, lf->data_len, 1.0f / (float)lf->data_len);
}
BLI_linklist_prepend_arena(&groups, lf, lwc.arena);
}
}
BLI_assert(lwc.data_len == loop_num);
return groups;
}
static void bm_vert_loop_groups_data_layer_merge__single(BMesh *bm,
void *lf_p,
int layer_n,
void *data_tmp)
{
struct LoopGroupCD *lf = lf_p;
const int type = bm->ldata.layers[layer_n].type;
int i;
const float *data_weights;
data_weights = lf->data_weights;
CustomData_bmesh_interp_n(
&bm->ldata, (const void **)lf->data, data_weights, NULL, lf->data_len, data_tmp, layer_n);
for (i = 0; i < lf->data_len; i++) {
CustomData_copy_elements(type, data_tmp, lf->data[i], 1);
}
}
static void bm_vert_loop_groups_data_layer_merge_weights__single(
BMesh *bm, void *lf_p, const int layer_n, void *data_tmp, const float *loop_weights)
{
struct LoopGroupCD *lf = lf_p;
const int type = bm->ldata.layers[layer_n].type;
int i;
const float *data_weights;
/* re-weight */
float *temp_weights = BLI_array_alloca(temp_weights, lf->data_len);
float weight_accum = 0.0f;
for (i = 0; i < lf->data_len; i++) {
float w = loop_weights[lf->data_index[i]] * lf->data_weights[i];
temp_weights[i] = w;
weight_accum += w;
}
if (LIKELY(weight_accum != 0.0f)) {
mul_vn_fl(temp_weights, lf->data_len, 1.0f / weight_accum);
data_weights = temp_weights;
}
else {
data_weights = lf->data_weights;
}
CustomData_bmesh_interp_n(
&bm->ldata, (const void **)lf->data, data_weights, NULL, lf->data_len, data_tmp, layer_n);
for (i = 0; i < lf->data_len; i++) {
CustomData_copy_elements(type, data_tmp, lf->data[i], 1);
}
}
/**
* Take existing custom data and merge each fan's data.
*/
void BM_vert_loop_groups_data_layer_merge(BMesh *bm, LinkNode *groups, const int layer_n)
{
const int type = bm->ldata.layers[layer_n].type;
const int size = CustomData_sizeof(type);
void *data_tmp = alloca(size);
do {
bm_vert_loop_groups_data_layer_merge__single(bm, groups->link, layer_n, data_tmp);
} while ((groups = groups->next));
}
/**
* A version of #BM_vert_loop_groups_data_layer_merge
* that takes an array of loop-weights (aligned with #BM_LOOPS_OF_VERT iterator)
*/
void BM_vert_loop_groups_data_layer_merge_weights(BMesh *bm,
LinkNode *groups,
const int layer_n,
const float *loop_weights)
{
const int type = bm->ldata.layers[layer_n].type;
const int size = CustomData_sizeof(type);
void *data_tmp = alloca(size);
do {
bm_vert_loop_groups_data_layer_merge_weights__single(
bm, groups->link, layer_n, data_tmp, loop_weights);
} while ((groups = groups->next));
}
/** \} */