This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/bmesh/intern/bmesh_mesh.c
Campbell Barton 4b56c18290 Fix T84426: Limit dissolve ignores selection with custom normals
Regression in 9969c2dd16.

Add note that custom normal calculation functions write into to tags.
2021-01-06 19:04:53 +11:00

3097 lines
100 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file
* \ingroup bmesh
*
* BM mesh level functions.
*/
#include "MEM_guardedalloc.h"
#include "DNA_listBase.h"
#include "DNA_scene_types.h"
#include "BLI_bitmap.h"
#include "BLI_linklist_stack.h"
#include "BLI_listbase.h"
#include "BLI_math.h"
#include "BLI_stack.h"
#include "BLI_task.h"
#include "BLI_utildefines.h"
#include "BKE_editmesh.h"
#include "BKE_global.h"
#include "BKE_mesh.h"
#include "BKE_multires.h"
#include "atomic_ops.h"
#include "intern/bmesh_private.h"
/* used as an extern, defined in bmesh.h */
const BMAllocTemplate bm_mesh_allocsize_default = {512, 1024, 2048, 512};
const BMAllocTemplate bm_mesh_chunksize_default = {512, 1024, 2048, 512};
static void bm_mempool_init_ex(const BMAllocTemplate *allocsize,
const bool use_toolflags,
BLI_mempool **r_vpool,
BLI_mempool **r_epool,
BLI_mempool **r_lpool,
BLI_mempool **r_fpool)
{
size_t vert_size, edge_size, loop_size, face_size;
if (use_toolflags == true) {
vert_size = sizeof(BMVert_OFlag);
edge_size = sizeof(BMEdge_OFlag);
loop_size = sizeof(BMLoop);
face_size = sizeof(BMFace_OFlag);
}
else {
vert_size = sizeof(BMVert);
edge_size = sizeof(BMEdge);
loop_size = sizeof(BMLoop);
face_size = sizeof(BMFace);
}
if (r_vpool) {
*r_vpool = BLI_mempool_create(
vert_size, allocsize->totvert, bm_mesh_chunksize_default.totvert, BLI_MEMPOOL_ALLOW_ITER);
}
if (r_epool) {
*r_epool = BLI_mempool_create(
edge_size, allocsize->totedge, bm_mesh_chunksize_default.totedge, BLI_MEMPOOL_ALLOW_ITER);
}
if (r_lpool) {
*r_lpool = BLI_mempool_create(
loop_size, allocsize->totloop, bm_mesh_chunksize_default.totloop, BLI_MEMPOOL_NOP);
}
if (r_fpool) {
*r_fpool = BLI_mempool_create(
face_size, allocsize->totface, bm_mesh_chunksize_default.totface, BLI_MEMPOOL_ALLOW_ITER);
}
}
static void bm_mempool_init(BMesh *bm, const BMAllocTemplate *allocsize, const bool use_toolflags)
{
bm_mempool_init_ex(allocsize, use_toolflags, &bm->vpool, &bm->epool, &bm->lpool, &bm->fpool);
#ifdef USE_BMESH_HOLES
bm->looplistpool = BLI_mempool_create(sizeof(BMLoopList), 512, 512, BLI_MEMPOOL_NOP);
#endif
}
void BM_mesh_elem_toolflags_ensure(BMesh *bm)
{
BLI_assert(bm->use_toolflags);
if (bm->vtoolflagpool && bm->etoolflagpool && bm->ftoolflagpool) {
return;
}
bm->vtoolflagpool = BLI_mempool_create(sizeof(BMFlagLayer), bm->totvert, 512, BLI_MEMPOOL_NOP);
bm->etoolflagpool = BLI_mempool_create(sizeof(BMFlagLayer), bm->totedge, 512, BLI_MEMPOOL_NOP);
bm->ftoolflagpool = BLI_mempool_create(sizeof(BMFlagLayer), bm->totface, 512, BLI_MEMPOOL_NOP);
BMIter iter;
BMVert_OFlag *v_olfag;
BLI_mempool *toolflagpool = bm->vtoolflagpool;
BM_ITER_MESH (v_olfag, &iter, bm, BM_VERTS_OF_MESH) {
v_olfag->oflags = BLI_mempool_calloc(toolflagpool);
}
BMEdge_OFlag *e_olfag;
toolflagpool = bm->etoolflagpool;
BM_ITER_MESH (e_olfag, &iter, bm, BM_EDGES_OF_MESH) {
e_olfag->oflags = BLI_mempool_calloc(toolflagpool);
}
BMFace_OFlag *f_olfag;
toolflagpool = bm->ftoolflagpool;
BM_ITER_MESH (f_olfag, &iter, bm, BM_FACES_OF_MESH) {
f_olfag->oflags = BLI_mempool_calloc(toolflagpool);
}
bm->totflags = 1;
}
void BM_mesh_elem_toolflags_clear(BMesh *bm)
{
if (bm->vtoolflagpool) {
BLI_mempool_destroy(bm->vtoolflagpool);
bm->vtoolflagpool = NULL;
}
if (bm->etoolflagpool) {
BLI_mempool_destroy(bm->etoolflagpool);
bm->etoolflagpool = NULL;
}
if (bm->ftoolflagpool) {
BLI_mempool_destroy(bm->ftoolflagpool);
bm->ftoolflagpool = NULL;
}
}
/**
* \brief BMesh Make Mesh
*
* Allocates a new BMesh structure.
*
* \return The New bmesh
*
* \note ob is needed by multires
*/
BMesh *BM_mesh_create(const BMAllocTemplate *allocsize, const struct BMeshCreateParams *params)
{
/* allocate the structure */
BMesh *bm = MEM_callocN(sizeof(BMesh), __func__);
/* allocate the memory pools for the mesh elements */
bm_mempool_init(bm, allocsize, params->use_toolflags);
/* allocate one flag pool that we don't get rid of. */
bm->use_toolflags = params->use_toolflags;
bm->toolflag_index = 0;
bm->totflags = 0;
CustomData_reset(&bm->vdata);
CustomData_reset(&bm->edata);
CustomData_reset(&bm->ldata);
CustomData_reset(&bm->pdata);
return bm;
}
/**
* \brief BMesh Free Mesh Data
*
* Frees a BMesh structure.
*
* \note frees mesh, but not actual BMesh struct
*/
void BM_mesh_data_free(BMesh *bm)
{
BMVert *v;
BMEdge *e;
BMLoop *l;
BMFace *f;
BMIter iter;
BMIter itersub;
const bool is_ldata_free = CustomData_bmesh_has_free(&bm->ldata);
const bool is_pdata_free = CustomData_bmesh_has_free(&bm->pdata);
/* Check if we have to call free, if not we can avoid a lot of looping */
if (CustomData_bmesh_has_free(&(bm->vdata))) {
BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) {
CustomData_bmesh_free_block(&(bm->vdata), &(v->head.data));
}
}
if (CustomData_bmesh_has_free(&(bm->edata))) {
BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) {
CustomData_bmesh_free_block(&(bm->edata), &(e->head.data));
}
}
if (is_ldata_free || is_pdata_free) {
BM_ITER_MESH (f, &iter, bm, BM_FACES_OF_MESH) {
if (is_pdata_free) {
CustomData_bmesh_free_block(&(bm->pdata), &(f->head.data));
}
if (is_ldata_free) {
BM_ITER_ELEM (l, &itersub, f, BM_LOOPS_OF_FACE) {
CustomData_bmesh_free_block(&(bm->ldata), &(l->head.data));
}
}
}
}
/* Free custom data pools, This should probably go in CustomData_free? */
if (bm->vdata.totlayer) {
BLI_mempool_destroy(bm->vdata.pool);
}
if (bm->edata.totlayer) {
BLI_mempool_destroy(bm->edata.pool);
}
if (bm->ldata.totlayer) {
BLI_mempool_destroy(bm->ldata.pool);
}
if (bm->pdata.totlayer) {
BLI_mempool_destroy(bm->pdata.pool);
}
/* free custom data */
CustomData_free(&bm->vdata, 0);
CustomData_free(&bm->edata, 0);
CustomData_free(&bm->ldata, 0);
CustomData_free(&bm->pdata, 0);
/* destroy element pools */
BLI_mempool_destroy(bm->vpool);
BLI_mempool_destroy(bm->epool);
BLI_mempool_destroy(bm->lpool);
BLI_mempool_destroy(bm->fpool);
if (bm->vtable) {
MEM_freeN(bm->vtable);
}
if (bm->etable) {
MEM_freeN(bm->etable);
}
if (bm->ftable) {
MEM_freeN(bm->ftable);
}
/* destroy flag pool */
BM_mesh_elem_toolflags_clear(bm);
#ifdef USE_BMESH_HOLES
BLI_mempool_destroy(bm->looplistpool);
#endif
BLI_freelistN(&bm->selected);
if (bm->lnor_spacearr) {
BKE_lnor_spacearr_free(bm->lnor_spacearr);
MEM_freeN(bm->lnor_spacearr);
}
BMO_error_clear(bm);
}
/**
* \brief BMesh Clear Mesh
*
* Clear all data in bm
*/
void BM_mesh_clear(BMesh *bm)
{
const bool use_toolflags = bm->use_toolflags;
/* free old mesh */
BM_mesh_data_free(bm);
memset(bm, 0, sizeof(BMesh));
/* allocate the memory pools for the mesh elements */
bm_mempool_init(bm, &bm_mesh_allocsize_default, use_toolflags);
bm->use_toolflags = use_toolflags;
bm->toolflag_index = 0;
bm->totflags = 0;
CustomData_reset(&bm->vdata);
CustomData_reset(&bm->edata);
CustomData_reset(&bm->ldata);
CustomData_reset(&bm->pdata);
}
/**
* \brief BMesh Free Mesh
*
* Frees a BMesh data and its structure.
*/
void BM_mesh_free(BMesh *bm)
{
BM_mesh_data_free(bm);
if (bm->py_handle) {
/* keep this out of 'BM_mesh_data_free' because we want python
* to be able to clear the mesh and maintain access. */
bpy_bm_generic_invalidate(bm->py_handle);
bm->py_handle = NULL;
}
MEM_freeN(bm);
}
/**
* Helpers for #BM_mesh_normals_update and #BM_verts_calc_normal_vcos
*/
/* We use that existing internal API flag,
* assuming no other tool using it would run concurrently to clnors editing. */
#define BM_LNORSPACE_UPDATE _FLAG_MF
typedef struct BMEdgesCalcVectorsData {
/* Read-only data. */
const float (*vcos)[3];
/* Read-write data, but no need to protect it, no concurrency to fear here. */
float (*edgevec)[3];
} BMEdgesCalcVectorsData;
static void mesh_edges_calc_vectors_cb(void *userdata, MempoolIterData *mp_e)
{
BMEdgesCalcVectorsData *data = userdata;
BMEdge *e = (BMEdge *)mp_e;
if (e->l) {
const float *v1_co = data->vcos ? data->vcos[BM_elem_index_get(e->v1)] : e->v1->co;
const float *v2_co = data->vcos ? data->vcos[BM_elem_index_get(e->v2)] : e->v2->co;
sub_v3_v3v3(data->edgevec[BM_elem_index_get(e)], v2_co, v1_co);
normalize_v3(data->edgevec[BM_elem_index_get(e)]);
}
else {
/* the edge vector will not be needed when the edge has no radial */
}
}
static void bm_mesh_edges_calc_vectors(BMesh *bm, float (*edgevec)[3], const float (*vcos)[3])
{
BM_mesh_elem_index_ensure(bm, BM_EDGE | (vcos ? BM_VERT : 0));
BMEdgesCalcVectorsData data = {
.vcos = vcos,
.edgevec = edgevec,
};
BM_iter_parallel(
bm, BM_EDGES_OF_MESH, mesh_edges_calc_vectors_cb, &data, bm->totedge >= BM_OMP_LIMIT);
}
typedef struct BMVertsCalcNormalsData {
/* Read-only data. */
const float (*fnos)[3];
const float (*edgevec)[3];
const float (*vcos)[3];
/* Read-write data, protected by an atomic-based fake spin-lock like system. */
float (*vnos)[3];
} BMVertsCalcNormalsData;
static void mesh_verts_calc_normals_accum_cb(void *userdata, MempoolIterData *mp_f)
{
#define FLT_EQ_NONAN(_fa, _fb) (*((const uint32_t *)&_fa) == *((const uint32_t *)&_fb))
BMVertsCalcNormalsData *data = userdata;
BMFace *f = (BMFace *)mp_f;
const float *f_no = data->fnos ? data->fnos[BM_elem_index_get(f)] : f->no;
BMLoop *l_first, *l_iter;
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
do {
const float *e1diff, *e2diff;
float dotprod;
float fac;
/* calculate the dot product of the two edges that
* meet at the loop's vertex */
e1diff = data->edgevec[BM_elem_index_get(l_iter->prev->e)];
e2diff = data->edgevec[BM_elem_index_get(l_iter->e)];
dotprod = dot_v3v3(e1diff, e2diff);
/* edge vectors are calculated from e->v1 to e->v2, so
* adjust the dot product if one but not both loops
* actually runs from from e->v2 to e->v1 */
if ((l_iter->prev->e->v1 == l_iter->prev->v) ^ (l_iter->e->v1 == l_iter->v)) {
dotprod = -dotprod;
}
fac = saacos(-dotprod);
if (fac != fac) { /* NAN detection. */
/* Degenerated case, nothing to do here, just ignore that vertex. */
continue;
}
/* accumulate weighted face normal into the vertex's normal */
float *v_no = data->vnos ? data->vnos[BM_elem_index_get(l_iter->v)] : l_iter->v->no;
/* This block is a lockless threadsafe madd_v3_v3fl.
* It uses the first float of the vector as a sort of cheap spin-lock,
* assuming FLT_MAX is a safe 'illegal' value that cannot be set here otherwise.
* It also assumes that collisions between threads are highly unlikely,
* else performances would be quite bad here. */
float virtual_lock = v_no[0];
while (true) {
/* This loops until following conditions are met:
* - v_no[0] has same value as virtual_lock (i.e. it did not change since last try).
* - v_no[0] was not FLT_MAX, i.e. it was not locked by another thread.
*/
const float vl = atomic_cas_float(&v_no[0], virtual_lock, FLT_MAX);
if (FLT_EQ_NONAN(vl, virtual_lock) && vl != FLT_MAX) {
break;
}
virtual_lock = vl;
}
BLI_assert(v_no[0] == FLT_MAX);
/* Now we own that normal value, and can change it.
* But first scalar of the vector must not be changed yet, it's our lock! */
virtual_lock += f_no[0] * fac;
v_no[1] += f_no[1] * fac;
v_no[2] += f_no[2] * fac;
/* Second atomic operation to 'release'
* our lock on that vector and set its first scalar value. */
/* Note that we do not need to loop here, since we 'locked' v_no[0],
* nobody should have changed it in the mean time. */
virtual_lock = atomic_cas_float(&v_no[0], FLT_MAX, virtual_lock);
BLI_assert(virtual_lock == FLT_MAX);
} while ((l_iter = l_iter->next) != l_first);
#undef FLT_EQ_NONAN
}
static void mesh_verts_calc_normals_normalize_cb(void *userdata, MempoolIterData *mp_v)
{
BMVertsCalcNormalsData *data = userdata;
BMVert *v = (BMVert *)mp_v;
float *v_no = data->vnos ? data->vnos[BM_elem_index_get(v)] : v->no;
if (UNLIKELY(normalize_v3(v_no) == 0.0f)) {
const float *v_co = data->vcos ? data->vcos[BM_elem_index_get(v)] : v->co;
normalize_v3_v3(v_no, v_co);
}
}
static void bm_mesh_verts_calc_normals(BMesh *bm,
const float (*edgevec)[3],
const float (*fnos)[3],
const float (*vcos)[3],
float (*vnos)[3])
{
BM_mesh_elem_index_ensure(bm, (BM_EDGE | BM_FACE) | ((vnos || vcos) ? BM_VERT : 0));
BMVertsCalcNormalsData data = {
.fnos = fnos,
.edgevec = edgevec,
.vcos = vcos,
.vnos = vnos,
};
BM_iter_parallel(
bm, BM_FACES_OF_MESH, mesh_verts_calc_normals_accum_cb, &data, bm->totface >= BM_OMP_LIMIT);
/* normalize the accumulated vertex normals */
BM_iter_parallel(bm,
BM_VERTS_OF_MESH,
mesh_verts_calc_normals_normalize_cb,
&data,
bm->totvert >= BM_OMP_LIMIT);
}
static void mesh_faces_calc_normals_cb(void *UNUSED(userdata), MempoolIterData *mp_f)
{
BMFace *f = (BMFace *)mp_f;
BM_face_normal_update(f);
}
/**
* \brief BMesh Compute Normals
*
* Updates the normals of a mesh.
*/
void BM_mesh_normals_update(BMesh *bm)
{
float(*edgevec)[3] = MEM_mallocN(sizeof(*edgevec) * bm->totedge, __func__);
/* Parallel mempool iteration does not allow generating indices inline anymore... */
BM_mesh_elem_index_ensure(bm, (BM_EDGE | BM_FACE));
/* calculate all face normals */
BM_iter_parallel(
bm, BM_FACES_OF_MESH, mesh_faces_calc_normals_cb, NULL, bm->totface >= BM_OMP_LIMIT);
/* Zero out vertex normals */
BMIter viter;
BMVert *v;
int i;
BM_ITER_MESH_INDEX (v, &viter, bm, BM_VERTS_OF_MESH, i) {
BM_elem_index_set(v, i); /* set_inline */
zero_v3(v->no);
}
bm->elem_index_dirty &= ~BM_VERT;
/* Compute normalized direction vectors for each edge.
* Directions will be used for calculating the weights of the face normals on the vertex normals.
*/
bm_mesh_edges_calc_vectors(bm, edgevec, NULL);
/* Add weighted face normals to vertices, and normalize vert normals. */
bm_mesh_verts_calc_normals(bm, (const float(*)[3])edgevec, NULL, NULL, NULL);
MEM_freeN(edgevec);
}
/**
* \brief BMesh Compute Normals from/to external data.
*
* Computes the vertex normals of a mesh into vnos,
* using given vertex coordinates (vcos) and polygon normals (fnos).
*/
void BM_verts_calc_normal_vcos(BMesh *bm,
const float (*fnos)[3],
const float (*vcos)[3],
float (*vnos)[3])
{
float(*edgevec)[3] = MEM_mallocN(sizeof(*edgevec) * bm->totedge, __func__);
/* Compute normalized direction vectors for each edge.
* Directions will be used for calculating the weights of the face normals on the vertex normals.
*/
bm_mesh_edges_calc_vectors(bm, edgevec, vcos);
/* Add weighted face normals to vertices, and normalize vert normals. */
bm_mesh_verts_calc_normals(bm, (const float(*)[3])edgevec, fnos, vcos, vnos);
MEM_freeN(edgevec);
}
/**
* Helpers for #BM_mesh_loop_normals_update and #BM_loops_calc_normal_vcos
*/
static void bm_mesh_edges_sharp_tag(BMesh *bm,
const float (*vnos)[3],
const float (*fnos)[3],
float (*r_lnos)[3],
const float split_angle,
const bool do_sharp_edges_tag)
{
BMIter eiter;
BMEdge *e;
int i;
const bool check_angle = (split_angle < (float)M_PI);
const float split_angle_cos = check_angle ? cosf(split_angle) : -1.0f;
{
char htype = BM_VERT | BM_LOOP;
if (fnos) {
htype |= BM_FACE;
}
BM_mesh_elem_index_ensure(bm, htype);
}
/* This first loop checks which edges are actually smooth,
* and pre-populate lnos with vnos (as if they were all smooth). */
BM_ITER_MESH_INDEX (e, &eiter, bm, BM_EDGES_OF_MESH, i) {
BMLoop *l_a, *l_b;
BM_elem_index_set(e, i); /* set_inline */
BM_elem_flag_disable(e, BM_ELEM_TAG); /* Clear tag (means edge is sharp). */
/* An edge with only two loops, might be smooth... */
if (BM_edge_loop_pair(e, &l_a, &l_b)) {
bool is_angle_smooth = true;
if (check_angle) {
const float *no_a = fnos ? fnos[BM_elem_index_get(l_a->f)] : l_a->f->no;
const float *no_b = fnos ? fnos[BM_elem_index_get(l_b->f)] : l_b->f->no;
is_angle_smooth = (dot_v3v3(no_a, no_b) >= split_angle_cos);
}
/* We only tag edges that are *really* smooth:
* If the angle between both its polys' normals is below split_angle value,
* and it is tagged as such,
* and both its faces are smooth,
* and both its faces have compatible (non-flipped) normals,
* i.e. both loops on the same edge do not share the same vertex.
*/
if (BM_elem_flag_test(e, BM_ELEM_SMOOTH) && BM_elem_flag_test(l_a->f, BM_ELEM_SMOOTH) &&
BM_elem_flag_test(l_b->f, BM_ELEM_SMOOTH) && l_a->v != l_b->v) {
if (is_angle_smooth) {
const float *no;
BM_elem_flag_enable(e, BM_ELEM_TAG);
/* linked vertices might be fully smooth, copy their normals to loop ones. */
if (r_lnos) {
no = vnos ? vnos[BM_elem_index_get(l_a->v)] : l_a->v->no;
copy_v3_v3(r_lnos[BM_elem_index_get(l_a)], no);
no = vnos ? vnos[BM_elem_index_get(l_b->v)] : l_b->v->no;
copy_v3_v3(r_lnos[BM_elem_index_get(l_b)], no);
}
}
else if (do_sharp_edges_tag) {
/* Note that we do not care about the other sharp-edge cases
* (sharp poly, non-manifold edge, etc.),
* only tag edge as sharp when it is due to angle threshold. */
BM_elem_flag_disable(e, BM_ELEM_SMOOTH);
}
}
}
}
bm->elem_index_dirty &= ~BM_EDGE;
}
/**
* Check whether given loop is part of an unknown-so-far cyclic smooth fan, or not.
* Needed because cyclic smooth fans have no obvious 'entry point',
* and yet we need to walk them once, and only once.
*/
bool BM_loop_check_cyclic_smooth_fan(BMLoop *l_curr)
{
BMLoop *lfan_pivot_next = l_curr;
BMEdge *e_next = l_curr->e;
BLI_assert(!BM_elem_flag_test(lfan_pivot_next, BM_ELEM_TAG));
BM_elem_flag_enable(lfan_pivot_next, BM_ELEM_TAG);
while (true) {
/* Much simpler than in sibling code with basic Mesh data! */
lfan_pivot_next = BM_vert_step_fan_loop(lfan_pivot_next, &e_next);
if (!lfan_pivot_next || !BM_elem_flag_test(e_next, BM_ELEM_TAG)) {
/* Sharp loop/edge, so not a cyclic smooth fan... */
return false;
}
/* Smooth loop/edge... */
if (BM_elem_flag_test(lfan_pivot_next, BM_ELEM_TAG)) {
if (lfan_pivot_next == l_curr) {
/* We walked around a whole cyclic smooth fan
* without finding any already-processed loop,
* means we can use initial l_curr/l_prev edge as start for this smooth fan. */
return true;
}
/* ... already checked in some previous looping, we can abort. */
return false;
}
/* ... we can skip it in future, and keep checking the smooth fan. */
BM_elem_flag_enable(lfan_pivot_next, BM_ELEM_TAG);
}
}
/**
* BMesh version of BKE_mesh_normals_loop_split() in mesh_evaluate.c
* Will use first clnors_data array, and fallback to cd_loop_clnors_offset
* (use NULL and -1 to not use clnors).
*
* \note This sets #BM_ELEM_TAG which is used in tool code (e.g. T84426).
* we could add a low-level API flag for this, see #BM_ELEM_API_FLAG_ENABLE and friends.
*/
static void bm_mesh_loops_calc_normals(BMesh *bm,
const float (*vcos)[3],
const float (*fnos)[3],
float (*r_lnos)[3],
MLoopNorSpaceArray *r_lnors_spacearr,
const short (*clnors_data)[2],
const int cd_loop_clnors_offset,
const bool do_rebuild)
{
BMIter fiter;
BMFace *f_curr;
const bool has_clnors = clnors_data || (cd_loop_clnors_offset != -1);
MLoopNorSpaceArray _lnors_spacearr = {NULL};
/* Temp normal stack. */
BLI_SMALLSTACK_DECLARE(normal, float *);
/* Temp clnors stack. */
BLI_SMALLSTACK_DECLARE(clnors, short *);
/* Temp edge vectors stack, only used when computing lnor spacearr. */
BLI_Stack *edge_vectors = NULL;
{
char htype = 0;
if (vcos) {
htype |= BM_VERT;
}
/* Face/Loop indices are set inline below. */
BM_mesh_elem_index_ensure(bm, htype);
}
if (!r_lnors_spacearr && has_clnors) {
/* We need to compute lnor spacearr if some custom lnor data are given to us! */
r_lnors_spacearr = &_lnors_spacearr;
}
if (r_lnors_spacearr) {
BKE_lnor_spacearr_init(r_lnors_spacearr, bm->totloop, MLNOR_SPACEARR_BMLOOP_PTR);
edge_vectors = BLI_stack_new(sizeof(float[3]), __func__);
}
/* Clear all loops' tags (means none are to be skipped for now). */
int index_face, index_loop = 0;
BM_ITER_MESH_INDEX (f_curr, &fiter, bm, BM_FACES_OF_MESH, index_face) {
BMLoop *l_curr, *l_first;
BM_elem_index_set(f_curr, index_face); /* set_inline */
l_curr = l_first = BM_FACE_FIRST_LOOP(f_curr);
do {
BM_elem_index_set(l_curr, index_loop++); /* set_inline */
BM_elem_flag_disable(l_curr, BM_ELEM_TAG);
} while ((l_curr = l_curr->next) != l_first);
}
bm->elem_index_dirty &= ~(BM_FACE | BM_LOOP);
/* We now know edges that can be smoothed (they are tagged),
* and edges that will be hard (they aren't).
* Now, time to generate the normals.
*/
BM_ITER_MESH (f_curr, &fiter, bm, BM_FACES_OF_MESH) {
BMLoop *l_curr, *l_first;
l_curr = l_first = BM_FACE_FIRST_LOOP(f_curr);
do {
if (do_rebuild && !BM_ELEM_API_FLAG_TEST(l_curr, BM_LNORSPACE_UPDATE) &&
!(bm->spacearr_dirty & BM_SPACEARR_DIRTY_ALL)) {
continue;
}
/* A smooth edge, we have to check for cyclic smooth fan case.
* If we find a new, never-processed cyclic smooth fan, we can do it now using that loop/edge
* as 'entry point', otherwise we can skip it. */
/* Note: In theory, we could make bm_mesh_loop_check_cyclic_smooth_fan() store
* mlfan_pivot's in a stack, to avoid having to fan again around
* the vert during actual computation of clnor & clnorspace. However, this would complicate
* the code, add more memory usage, and
* BM_vert_step_fan_loop() is quite cheap in term of CPU cycles,
* so really think it's not worth it. */
if (BM_elem_flag_test(l_curr->e, BM_ELEM_TAG) &&
(BM_elem_flag_test(l_curr, BM_ELEM_TAG) || !BM_loop_check_cyclic_smooth_fan(l_curr))) {
}
else if (!BM_elem_flag_test(l_curr->e, BM_ELEM_TAG) &&
!BM_elem_flag_test(l_curr->prev->e, BM_ELEM_TAG)) {
/* Simple case (both edges around that vertex are sharp in related polygon),
* this vertex just takes its poly normal.
*/
const int l_curr_index = BM_elem_index_get(l_curr);
const float *no = fnos ? fnos[BM_elem_index_get(f_curr)] : f_curr->no;
copy_v3_v3(r_lnos[l_curr_index], no);
/* If needed, generate this (simple!) lnor space. */
if (r_lnors_spacearr) {
float vec_curr[3], vec_prev[3];
MLoopNorSpace *lnor_space = BKE_lnor_space_create(r_lnors_spacearr);
{
const BMVert *v_pivot = l_curr->v;
const float *co_pivot = vcos ? vcos[BM_elem_index_get(v_pivot)] : v_pivot->co;
const BMVert *v_1 = BM_edge_other_vert(l_curr->e, v_pivot);
const float *co_1 = vcos ? vcos[BM_elem_index_get(v_1)] : v_1->co;
const BMVert *v_2 = BM_edge_other_vert(l_curr->prev->e, v_pivot);
const float *co_2 = vcos ? vcos[BM_elem_index_get(v_2)] : v_2->co;
sub_v3_v3v3(vec_curr, co_1, co_pivot);
normalize_v3(vec_curr);
sub_v3_v3v3(vec_prev, co_2, co_pivot);
normalize_v3(vec_prev);
}
BKE_lnor_space_define(lnor_space, r_lnos[l_curr_index], vec_curr, vec_prev, NULL);
/* We know there is only one loop in this space,
* no need to create a linklist in this case... */
BKE_lnor_space_add_loop(r_lnors_spacearr, lnor_space, l_curr_index, l_curr, true);
if (has_clnors) {
const short(*clnor)[2] = clnors_data ? &clnors_data[l_curr_index] :
(const void *)BM_ELEM_CD_GET_VOID_P(
l_curr, cd_loop_clnors_offset);
BKE_lnor_space_custom_data_to_normal(lnor_space, *clnor, r_lnos[l_curr_index]);
}
}
}
/* We *do not need* to check/tag loops as already computed!
* Due to the fact a loop only links to one of its two edges,
* a same fan *will never be walked more than once!*
* Since we consider edges having neighbor faces with inverted (flipped) normals as sharp,
* we are sure that no fan will be skipped, even only considering the case
* (sharp curr_edge, smooth prev_edge), and not the alternative
* (smooth curr_edge, sharp prev_edge).
* All this due/thanks to link between normals and loop ordering.
*/
else {
/* We have to fan around current vertex, until we find the other non-smooth edge,
* and accumulate face normals into the vertex!
* Note in case this vertex has only one sharp edge,
* this is a waste because the normal is the same as the vertex normal,
* but I do not see any easy way to detect that (would need to count number of sharp edges
* per vertex, I doubt the additional memory usage would be worth it, especially as it
* should not be a common case in real-life meshes anyway).
*/
BMVert *v_pivot = l_curr->v;
BMEdge *e_next;
const BMEdge *e_org = l_curr->e;
BMLoop *lfan_pivot, *lfan_pivot_next;
int lfan_pivot_index;
float lnor[3] = {0.0f, 0.0f, 0.0f};
float vec_curr[3], vec_next[3], vec_org[3];
/* We validate clnors data on the fly - cheapest way to do! */
int clnors_avg[2] = {0, 0};
const short(*clnor_ref)[2] = NULL;
int clnors_nbr = 0;
bool clnors_invalid = false;
const float *co_pivot = vcos ? vcos[BM_elem_index_get(v_pivot)] : v_pivot->co;
MLoopNorSpace *lnor_space = r_lnors_spacearr ? BKE_lnor_space_create(r_lnors_spacearr) :
NULL;
BLI_assert((edge_vectors == NULL) || BLI_stack_is_empty(edge_vectors));
lfan_pivot = l_curr;
lfan_pivot_index = BM_elem_index_get(lfan_pivot);
e_next = lfan_pivot->e; /* Current edge here, actually! */
/* Only need to compute previous edge's vector once,
* then we can just reuse old current one! */
{
const BMVert *v_2 = BM_edge_other_vert(e_next, v_pivot);
const float *co_2 = vcos ? vcos[BM_elem_index_get(v_2)] : v_2->co;
sub_v3_v3v3(vec_org, co_2, co_pivot);
normalize_v3(vec_org);
copy_v3_v3(vec_curr, vec_org);
if (r_lnors_spacearr) {
BLI_stack_push(edge_vectors, vec_org);
}
}
while (true) {
/* Much simpler than in sibling code with basic Mesh data! */
lfan_pivot_next = BM_vert_step_fan_loop(lfan_pivot, &e_next);
if (lfan_pivot_next) {
BLI_assert(lfan_pivot_next->v == v_pivot);
}
else {
/* next edge is non-manifold, we have to find it ourselves! */
e_next = (lfan_pivot->e == e_next) ? lfan_pivot->prev->e : lfan_pivot->e;
}
/* Compute edge vector.
* NOTE: We could pre-compute those into an array, in the first iteration,
* instead of computing them twice (or more) here.
* However, time gained is not worth memory and time lost,
* given the fact that this code should not be called that much in real-life meshes.
*/
{
const BMVert *v_2 = BM_edge_other_vert(e_next, v_pivot);
const float *co_2 = vcos ? vcos[BM_elem_index_get(v_2)] : v_2->co;
sub_v3_v3v3(vec_next, co_2, co_pivot);
normalize_v3(vec_next);
}
{
/* Code similar to accumulate_vertex_normals_poly_v3. */
/* Calculate angle between the two poly edges incident on this vertex. */
const BMFace *f = lfan_pivot->f;
const float fac = saacos(dot_v3v3(vec_next, vec_curr));
const float *no = fnos ? fnos[BM_elem_index_get(f)] : f->no;
/* Accumulate */
madd_v3_v3fl(lnor, no, fac);
if (has_clnors) {
/* Accumulate all clnors, if they are not all equal we have to fix that! */
const short(*clnor)[2] = clnors_data ? &clnors_data[lfan_pivot_index] :
(const void *)BM_ELEM_CD_GET_VOID_P(
lfan_pivot, cd_loop_clnors_offset);
if (clnors_nbr) {
clnors_invalid |= ((*clnor_ref)[0] != (*clnor)[0] ||
(*clnor_ref)[1] != (*clnor)[1]);
}
else {
clnor_ref = clnor;
}
clnors_avg[0] += (*clnor)[0];
clnors_avg[1] += (*clnor)[1];
clnors_nbr++;
/* We store here a pointer to all custom lnors processed. */
BLI_SMALLSTACK_PUSH(clnors, (short *)*clnor);
}
}
/* We store here a pointer to all loop-normals processed. */
BLI_SMALLSTACK_PUSH(normal, (float *)r_lnos[lfan_pivot_index]);
if (r_lnors_spacearr) {
/* Assign current lnor space to current 'vertex' loop. */
BKE_lnor_space_add_loop(
r_lnors_spacearr, lnor_space, lfan_pivot_index, lfan_pivot, false);
if (e_next != e_org) {
/* We store here all edges-normalized vectors processed. */
BLI_stack_push(edge_vectors, vec_next);
}
}
if (!BM_elem_flag_test(e_next, BM_ELEM_TAG) || (e_next == e_org)) {
/* Next edge is sharp, we have finished with this fan of faces around this vert! */
break;
}
/* Copy next edge vector to current one. */
copy_v3_v3(vec_curr, vec_next);
/* Next pivot loop to current one. */
lfan_pivot = lfan_pivot_next;
lfan_pivot_index = BM_elem_index_get(lfan_pivot);
}
{
float lnor_len = normalize_v3(lnor);
/* If we are generating lnor spacearr, we can now define the one for this fan. */
if (r_lnors_spacearr) {
if (UNLIKELY(lnor_len == 0.0f)) {
/* Use vertex normal as fallback! */
copy_v3_v3(lnor, r_lnos[lfan_pivot_index]);
lnor_len = 1.0f;
}
BKE_lnor_space_define(lnor_space, lnor, vec_org, vec_next, edge_vectors);
if (has_clnors) {
if (clnors_invalid) {
short *clnor;
clnors_avg[0] /= clnors_nbr;
clnors_avg[1] /= clnors_nbr;
/* Fix/update all clnors of this fan with computed average value. */
/* Prints continuously when merge custom normals, so commenting. */
/* printf("Invalid clnors in this fan!\n"); */
while ((clnor = BLI_SMALLSTACK_POP(clnors))) {
// print_v2("org clnor", clnor);
clnor[0] = (short)clnors_avg[0];
clnor[1] = (short)clnors_avg[1];
}
// print_v2("new clnors", clnors_avg);
}
else {
/* We still have to consume the stack! */
while (BLI_SMALLSTACK_POP(clnors)) {
/* pass */
}
}
BKE_lnor_space_custom_data_to_normal(lnor_space, *clnor_ref, lnor);
}
}
/* In case we get a zero normal here, just use vertex normal already set! */
if (LIKELY(lnor_len != 0.0f)) {
/* Copy back the final computed normal into all related loop-normals. */
float *nor;
while ((nor = BLI_SMALLSTACK_POP(normal))) {
copy_v3_v3(nor, lnor);
}
}
else {
/* We still have to consume the stack! */
while (BLI_SMALLSTACK_POP(normal)) {
/* pass */
}
}
}
/* Tag related vertex as sharp, to avoid fanning around it again
* (in case it was a smooth one). */
if (r_lnors_spacearr) {
BM_elem_flag_enable(l_curr->v, BM_ELEM_TAG);
}
}
} while ((l_curr = l_curr->next) != l_first);
}
if (r_lnors_spacearr) {
BLI_stack_free(edge_vectors);
if (r_lnors_spacearr == &_lnors_spacearr) {
BKE_lnor_spacearr_free(r_lnors_spacearr);
}
}
}
/* This threshold is a bit touchy (usual float precision issue), this value seems OK. */
#define LNOR_SPACE_TRIGO_THRESHOLD (1.0f - 1e-4f)
/**
* Check each current smooth fan (one lnor space per smooth fan!), and if all its
* matching custom lnors are not (enough) equal, add sharp edges as needed.
*/
static bool bm_mesh_loops_split_lnor_fans(BMesh *bm,
MLoopNorSpaceArray *lnors_spacearr,
const float (*new_lnors)[3])
{
BLI_bitmap *done_loops = BLI_BITMAP_NEW((size_t)bm->totloop, __func__);
bool changed = false;
BLI_assert(lnors_spacearr->data_type == MLNOR_SPACEARR_BMLOOP_PTR);
for (int i = 0; i < bm->totloop; i++) {
if (!lnors_spacearr->lspacearr[i]) {
/* This should not happen in theory, but in some rare case (probably ugly geometry)
* we can get some NULL loopspacearr at this point. :/
* Maybe we should set those loops' edges as sharp?
*/
BLI_BITMAP_ENABLE(done_loops, i);
if (G.debug & G_DEBUG) {
printf("WARNING! Getting invalid NULL loop space for loop %d!\n", i);
}
continue;
}
if (!BLI_BITMAP_TEST(done_loops, i)) {
/* Notes:
* * In case of mono-loop smooth fan, we have nothing to do.
* * Loops in this linklist are ordered (in reversed order compared to how they were
* discovered by BKE_mesh_normals_loop_split(), but this is not a problem).
* Which means if we find a mismatching clnor,
* we know all remaining loops will have to be in a new, different smooth fan/lnor space.
* * In smooth fan case, we compare each clnor against a ref one,
* to avoid small differences adding up into a real big one in the end!
*/
if (lnors_spacearr->lspacearr[i]->flags & MLNOR_SPACE_IS_SINGLE) {
BLI_BITMAP_ENABLE(done_loops, i);
continue;
}
LinkNode *loops = lnors_spacearr->lspacearr[i]->loops;
BMLoop *prev_ml = NULL;
const float *org_nor = NULL;
while (loops) {
BMLoop *ml = loops->link;
const int lidx = BM_elem_index_get(ml);
const float *nor = new_lnors[lidx];
if (!org_nor) {
org_nor = nor;
}
else if (dot_v3v3(org_nor, nor) < LNOR_SPACE_TRIGO_THRESHOLD) {
/* Current normal differs too much from org one, we have to tag the edge between
* previous loop's face and current's one as sharp.
* We know those two loops do not point to the same edge,
* since we do not allow reversed winding in a same smooth fan.
*/
BMEdge *e = (prev_ml->e == ml->prev->e) ? prev_ml->e : ml->e;
BM_elem_flag_disable(e, BM_ELEM_TAG | BM_ELEM_SMOOTH);
changed = true;
org_nor = nor;
}
prev_ml = ml;
loops = loops->next;
BLI_BITMAP_ENABLE(done_loops, lidx);
}
/* We also have to check between last and first loops,
* otherwise we may miss some sharp edges here!
* This is just a simplified version of above while loop.
* See T45984. */
loops = lnors_spacearr->lspacearr[i]->loops;
if (loops && org_nor) {
BMLoop *ml = loops->link;
const int lidx = BM_elem_index_get(ml);
const float *nor = new_lnors[lidx];
if (dot_v3v3(org_nor, nor) < LNOR_SPACE_TRIGO_THRESHOLD) {
BMEdge *e = (prev_ml->e == ml->prev->e) ? prev_ml->e : ml->e;
BM_elem_flag_disable(e, BM_ELEM_TAG | BM_ELEM_SMOOTH);
changed = true;
}
}
}
}
MEM_freeN(done_loops);
return changed;
}
/**
* Assign custom normal data from given normal vectors, averaging normals
* from one smooth fan as necessary.
*/
static void bm_mesh_loops_assign_normal_data(BMesh *bm,
MLoopNorSpaceArray *lnors_spacearr,
short (*r_clnors_data)[2],
const int cd_loop_clnors_offset,
const float (*new_lnors)[3])
{
BLI_bitmap *done_loops = BLI_BITMAP_NEW((size_t)bm->totloop, __func__);
BLI_SMALLSTACK_DECLARE(clnors_data, short *);
BLI_assert(lnors_spacearr->data_type == MLNOR_SPACEARR_BMLOOP_PTR);
for (int i = 0; i < bm->totloop; i++) {
if (!lnors_spacearr->lspacearr[i]) {
BLI_BITMAP_ENABLE(done_loops, i);
if (G.debug & G_DEBUG) {
printf("WARNING! Still getting invalid NULL loop space in second loop for loop %d!\n", i);
}
continue;
}
if (!BLI_BITMAP_TEST(done_loops, i)) {
/* Note we accumulate and average all custom normals in current smooth fan,
* to avoid getting different clnors data (tiny differences in plain custom normals can
* give rather huge differences in computed 2D factors).
*/
LinkNode *loops = lnors_spacearr->lspacearr[i]->loops;
if (lnors_spacearr->lspacearr[i]->flags & MLNOR_SPACE_IS_SINGLE) {
BMLoop *ml = (BMLoop *)loops;
const int lidx = BM_elem_index_get(ml);
BLI_assert(lidx == i);
const float *nor = new_lnors[lidx];
short *clnor = r_clnors_data ? &r_clnors_data[lidx] :
BM_ELEM_CD_GET_VOID_P(ml, cd_loop_clnors_offset);
BKE_lnor_space_custom_normal_to_data(lnors_spacearr->lspacearr[i], nor, clnor);
BLI_BITMAP_ENABLE(done_loops, i);
}
else {
int nbr_nors = 0;
float avg_nor[3];
short clnor_data_tmp[2], *clnor_data;
zero_v3(avg_nor);
while (loops) {
BMLoop *ml = loops->link;
const int lidx = BM_elem_index_get(ml);
const float *nor = new_lnors[lidx];
short *clnor = r_clnors_data ? &r_clnors_data[lidx] :
BM_ELEM_CD_GET_VOID_P(ml, cd_loop_clnors_offset);
nbr_nors++;
add_v3_v3(avg_nor, nor);
BLI_SMALLSTACK_PUSH(clnors_data, clnor);
loops = loops->next;
BLI_BITMAP_ENABLE(done_loops, lidx);
}
mul_v3_fl(avg_nor, 1.0f / (float)nbr_nors);
BKE_lnor_space_custom_normal_to_data(
lnors_spacearr->lspacearr[i], avg_nor, clnor_data_tmp);
while ((clnor_data = BLI_SMALLSTACK_POP(clnors_data))) {
clnor_data[0] = clnor_data_tmp[0];
clnor_data[1] = clnor_data_tmp[1];
}
}
}
}
MEM_freeN(done_loops);
}
/**
* Compute internal representation of given custom normals (as an array of float[2] or data layer).
*
* It also makes sure the mesh matches those custom normals, by marking new sharp edges to split
* the smooth fans when loop normals for the same vertex are different, or averaging the normals
* instead, depending on the do_split_fans parameter.
*/
static void bm_mesh_loops_custom_normals_set(BMesh *bm,
const float (*vcos)[3],
const float (*vnos)[3],
const float (*fnos)[3],
MLoopNorSpaceArray *r_lnors_spacearr,
short (*r_clnors_data)[2],
const int cd_loop_clnors_offset,
float (*new_lnors)[3],
const int cd_new_lnors_offset,
bool do_split_fans)
{
BMFace *f;
BMLoop *l;
BMIter liter, fiter;
float(*cur_lnors)[3] = MEM_mallocN(sizeof(*cur_lnors) * bm->totloop, __func__);
BKE_lnor_spacearr_clear(r_lnors_spacearr);
/* Tag smooth edges and set lnos from vnos when they might be completely smooth...
* When using custom loop normals, disable the angle feature! */
bm_mesh_edges_sharp_tag(bm, vnos, fnos, cur_lnors, (float)M_PI, false);
/* Finish computing lnos by accumulating face normals
* in each fan of faces defined by sharp edges. */
bm_mesh_loops_calc_normals(
bm, vcos, fnos, cur_lnors, r_lnors_spacearr, r_clnors_data, cd_loop_clnors_offset, false);
/* Extract new normals from the data layer if necessary. */
float(*custom_lnors)[3] = new_lnors;
if (new_lnors == NULL) {
custom_lnors = MEM_mallocN(sizeof(*new_lnors) * bm->totloop, __func__);
BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) {
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
const float *normal = BM_ELEM_CD_GET_VOID_P(l, cd_new_lnors_offset);
copy_v3_v3(custom_lnors[BM_elem_index_get(l)], normal);
}
}
}
/* Validate the new normals. */
for (int i = 0; i < bm->totloop; i++) {
if (is_zero_v3(custom_lnors[i])) {
copy_v3_v3(custom_lnors[i], cur_lnors[i]);
}
else {
normalize_v3(custom_lnors[i]);
}
}
/* Now, check each current smooth fan (one lnor space per smooth fan!),
* and if all its matching custom lnors are not equal, add sharp edges as needed. */
if (do_split_fans && bm_mesh_loops_split_lnor_fans(bm, r_lnors_spacearr, custom_lnors)) {
/* If any sharp edges were added, run bm_mesh_loops_calc_normals() again to get lnor
* spacearr/smooth fans matching the given custom lnors. */
BKE_lnor_spacearr_clear(r_lnors_spacearr);
bm_mesh_loops_calc_normals(
bm, vcos, fnos, cur_lnors, r_lnors_spacearr, r_clnors_data, cd_loop_clnors_offset, false);
}
/* And we just have to convert plain object-space custom normals to our
* lnor space-encoded ones. */
bm_mesh_loops_assign_normal_data(
bm, r_lnors_spacearr, r_clnors_data, cd_loop_clnors_offset, custom_lnors);
MEM_freeN(cur_lnors);
if (custom_lnors != new_lnors) {
MEM_freeN(custom_lnors);
}
}
static void bm_mesh_loops_calc_normals_no_autosmooth(BMesh *bm,
const float (*vnos)[3],
const float (*fnos)[3],
float (*r_lnos)[3])
{
BMIter fiter;
BMFace *f_curr;
{
char htype = BM_LOOP;
if (vnos) {
htype |= BM_VERT;
}
if (fnos) {
htype |= BM_FACE;
}
BM_mesh_elem_index_ensure(bm, htype);
}
BM_ITER_MESH (f_curr, &fiter, bm, BM_FACES_OF_MESH) {
BMLoop *l_curr, *l_first;
const bool is_face_flat = !BM_elem_flag_test(f_curr, BM_ELEM_SMOOTH);
l_curr = l_first = BM_FACE_FIRST_LOOP(f_curr);
do {
const float *no = is_face_flat ? (fnos ? fnos[BM_elem_index_get(f_curr)] : f_curr->no) :
(vnos ? vnos[BM_elem_index_get(l_curr->v)] : l_curr->v->no);
copy_v3_v3(r_lnos[BM_elem_index_get(l_curr)], no);
} while ((l_curr = l_curr->next) != l_first);
}
}
#if 0 /* Unused currently */
/**
* \brief BMesh Compute Loop Normals
*
* Updates the loop normals of a mesh.
* Assumes vertex and face normals are valid (else call BM_mesh_normals_update() first)!
*/
void BM_mesh_loop_normals_update(BMesh *bm,
const bool use_split_normals,
const float split_angle,
float (*r_lnos)[3],
MLoopNorSpaceArray *r_lnors_spacearr,
const short (*clnors_data)[2],
const int cd_loop_clnors_offset)
{
const bool has_clnors = clnors_data || (cd_loop_clnors_offset != -1);
if (use_split_normals) {
/* Tag smooth edges and set lnos from vnos when they might be completely smooth...
* When using custom loop normals, disable the angle feature! */
bm_mesh_edges_sharp_tag(bm, NULL, NULL, has_clnors ? (float)M_PI : split_angle, r_lnos);
/* Finish computing lnos by accumulating face normals
* in each fan of faces defined by sharp edges. */
bm_mesh_loops_calc_normals(
bm, NULL, NULL, r_lnos, r_lnors_spacearr, clnors_data, cd_loop_clnors_offset);
}
else {
BLI_assert(!r_lnors_spacearr);
bm_mesh_loops_calc_normals_no_autosmooth(bm, NULL, NULL, r_lnos);
}
}
#endif
/**
* \brief BMesh Compute Loop Normals from/to external data.
*
* Compute split normals, i.e. vertex normals associated with each poly (hence 'loop normals').
* Useful to materialize sharp edges (or non-smooth faces) without actually modifying the geometry
* (splitting edges).
*/
void BM_loops_calc_normal_vcos(BMesh *bm,
const float (*vcos)[3],
const float (*vnos)[3],
const float (*fnos)[3],
const bool use_split_normals,
const float split_angle,
float (*r_lnos)[3],
MLoopNorSpaceArray *r_lnors_spacearr,
short (*clnors_data)[2],
const int cd_loop_clnors_offset,
const bool do_rebuild)
{
const bool has_clnors = clnors_data || (cd_loop_clnors_offset != -1);
if (use_split_normals) {
/* Tag smooth edges and set lnos from vnos when they might be completely smooth...
* When using custom loop normals, disable the angle feature! */
bm_mesh_edges_sharp_tag(bm, vnos, fnos, r_lnos, has_clnors ? (float)M_PI : split_angle, false);
/* Finish computing lnos by accumulating face normals
* in each fan of faces defined by sharp edges. */
bm_mesh_loops_calc_normals(
bm, vcos, fnos, r_lnos, r_lnors_spacearr, clnors_data, cd_loop_clnors_offset, do_rebuild);
}
else {
BLI_assert(!r_lnors_spacearr);
bm_mesh_loops_calc_normals_no_autosmooth(bm, vnos, fnos, r_lnos);
}
}
/**
* Define sharp edges as needed to mimic 'autosmooth' from angle threshold.
*
* Used when defining an empty custom loop normals data layer,
* to keep same shading as with autosmooth!
*/
void BM_edges_sharp_from_angle_set(BMesh *bm, const float split_angle)
{
if (split_angle >= (float)M_PI) {
/* Nothing to do! */
return;
}
bm_mesh_edges_sharp_tag(bm, NULL, NULL, NULL, split_angle, true);
}
void BM_lnorspacearr_store(BMesh *bm, float (*r_lnors)[3])
{
BLI_assert(bm->lnor_spacearr != NULL);
if (!CustomData_has_layer(&bm->ldata, CD_CUSTOMLOOPNORMAL)) {
BM_data_layer_add(bm, &bm->ldata, CD_CUSTOMLOOPNORMAL);
}
int cd_loop_clnors_offset = CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL);
BM_loops_calc_normal_vcos(bm,
NULL,
NULL,
NULL,
true,
M_PI,
r_lnors,
bm->lnor_spacearr,
NULL,
cd_loop_clnors_offset,
false);
bm->spacearr_dirty &= ~(BM_SPACEARR_DIRTY | BM_SPACEARR_DIRTY_ALL);
}
#define CLEAR_SPACEARRAY_THRESHOLD(x) ((x) / 2)
void BM_lnorspace_invalidate(BMesh *bm, const bool do_invalidate_all)
{
if (bm->spacearr_dirty & BM_SPACEARR_DIRTY_ALL) {
return;
}
if (do_invalidate_all || bm->totvertsel > CLEAR_SPACEARRAY_THRESHOLD(bm->totvert)) {
bm->spacearr_dirty |= BM_SPACEARR_DIRTY_ALL;
return;
}
if (bm->lnor_spacearr == NULL) {
bm->spacearr_dirty |= BM_SPACEARR_DIRTY_ALL;
return;
}
BMVert *v;
BMLoop *l;
BMIter viter, liter;
/* Note: we could use temp tag of BMItem for that,
* but probably better not use it in such a low-level func?
* --mont29 */
BLI_bitmap *done_verts = BLI_BITMAP_NEW(bm->totvert, __func__);
BM_mesh_elem_index_ensure(bm, BM_VERT);
/* When we affect a given vertex, we may affect following smooth fans:
* - all smooth fans of said vertex;
* - all smooth fans of all immediate loop-neighbors vertices;
* This can be simplified as 'all loops of selected vertices and their immediate neighbors'
* need to be tagged for update.
*/
BM_ITER_MESH (v, &viter, bm, BM_VERTS_OF_MESH) {
if (BM_elem_flag_test(v, BM_ELEM_SELECT)) {
BM_ITER_ELEM (l, &liter, v, BM_LOOPS_OF_VERT) {
BM_ELEM_API_FLAG_ENABLE(l, BM_LNORSPACE_UPDATE);
/* Note that we only handle unselected neighbor vertices here, main loop will take care of
* selected ones. */
if ((!BM_elem_flag_test(l->prev->v, BM_ELEM_SELECT)) &&
!BLI_BITMAP_TEST(done_verts, BM_elem_index_get(l->prev->v))) {
BMLoop *l_prev;
BMIter liter_prev;
BM_ITER_ELEM (l_prev, &liter_prev, l->prev->v, BM_LOOPS_OF_VERT) {
BM_ELEM_API_FLAG_ENABLE(l_prev, BM_LNORSPACE_UPDATE);
}
BLI_BITMAP_ENABLE(done_verts, BM_elem_index_get(l_prev->v));
}
if ((!BM_elem_flag_test(l->next->v, BM_ELEM_SELECT)) &&
!BLI_BITMAP_TEST(done_verts, BM_elem_index_get(l->next->v))) {
BMLoop *l_next;
BMIter liter_next;
BM_ITER_ELEM (l_next, &liter_next, l->next->v, BM_LOOPS_OF_VERT) {
BM_ELEM_API_FLAG_ENABLE(l_next, BM_LNORSPACE_UPDATE);
}
BLI_BITMAP_ENABLE(done_verts, BM_elem_index_get(l_next->v));
}
}
BLI_BITMAP_ENABLE(done_verts, BM_elem_index_get(v));
}
}
MEM_freeN(done_verts);
bm->spacearr_dirty |= BM_SPACEARR_DIRTY;
}
void BM_lnorspace_rebuild(BMesh *bm, bool preserve_clnor)
{
BLI_assert(bm->lnor_spacearr != NULL);
if (!(bm->spacearr_dirty & (BM_SPACEARR_DIRTY | BM_SPACEARR_DIRTY_ALL))) {
return;
}
BMFace *f;
BMLoop *l;
BMIter fiter, liter;
float(*r_lnors)[3] = MEM_callocN(sizeof(*r_lnors) * bm->totloop, __func__);
float(*oldnors)[3] = preserve_clnor ? MEM_mallocN(sizeof(*oldnors) * bm->totloop, __func__) :
NULL;
int cd_loop_clnors_offset = CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL);
BM_mesh_elem_index_ensure(bm, BM_LOOP);
if (preserve_clnor) {
BLI_assert(bm->lnor_spacearr->lspacearr != NULL);
BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) {
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
if (BM_ELEM_API_FLAG_TEST(l, BM_LNORSPACE_UPDATE) ||
bm->spacearr_dirty & BM_SPACEARR_DIRTY_ALL) {
short(*clnor)[2] = BM_ELEM_CD_GET_VOID_P(l, cd_loop_clnors_offset);
int l_index = BM_elem_index_get(l);
BKE_lnor_space_custom_data_to_normal(
bm->lnor_spacearr->lspacearr[l_index], *clnor, oldnors[l_index]);
}
}
}
}
if (bm->spacearr_dirty & BM_SPACEARR_DIRTY_ALL) {
BKE_lnor_spacearr_clear(bm->lnor_spacearr);
}
BM_loops_calc_normal_vcos(bm,
NULL,
NULL,
NULL,
true,
M_PI,
r_lnors,
bm->lnor_spacearr,
NULL,
cd_loop_clnors_offset,
true);
MEM_freeN(r_lnors);
BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) {
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
if (BM_ELEM_API_FLAG_TEST(l, BM_LNORSPACE_UPDATE) ||
bm->spacearr_dirty & BM_SPACEARR_DIRTY_ALL) {
if (preserve_clnor) {
short(*clnor)[2] = BM_ELEM_CD_GET_VOID_P(l, cd_loop_clnors_offset);
int l_index = BM_elem_index_get(l);
BKE_lnor_space_custom_normal_to_data(
bm->lnor_spacearr->lspacearr[l_index], oldnors[l_index], *clnor);
}
BM_ELEM_API_FLAG_DISABLE(l, BM_LNORSPACE_UPDATE);
}
}
}
MEM_SAFE_FREE(oldnors);
bm->spacearr_dirty &= ~(BM_SPACEARR_DIRTY | BM_SPACEARR_DIRTY_ALL);
#ifndef NDEBUG
BM_lnorspace_err(bm);
#endif
}
/**
* \warning This function sets #BM_ELEM_TAG on loops & edges via #bm_mesh_loops_calc_normals,
* take care to run this before setting up tags.
*/
void BM_lnorspace_update(BMesh *bm)
{
if (bm->lnor_spacearr == NULL) {
bm->lnor_spacearr = MEM_callocN(sizeof(*bm->lnor_spacearr), __func__);
}
if (bm->lnor_spacearr->lspacearr == NULL) {
float(*lnors)[3] = MEM_callocN(sizeof(*lnors) * bm->totloop, __func__);
BM_lnorspacearr_store(bm, lnors);
MEM_freeN(lnors);
}
else if (bm->spacearr_dirty & (BM_SPACEARR_DIRTY | BM_SPACEARR_DIRTY_ALL)) {
BM_lnorspace_rebuild(bm, false);
}
}
void BM_normals_loops_edges_tag(BMesh *bm, const bool do_edges)
{
BMFace *f;
BMEdge *e;
BMIter fiter, eiter;
BMLoop *l_curr, *l_first;
if (do_edges) {
int index_edge;
BM_ITER_MESH_INDEX (e, &eiter, bm, BM_EDGES_OF_MESH, index_edge) {
BMLoop *l_a, *l_b;
BM_elem_index_set(e, index_edge); /* set_inline */
BM_elem_flag_disable(e, BM_ELEM_TAG);
if (BM_edge_loop_pair(e, &l_a, &l_b)) {
if (BM_elem_flag_test(e, BM_ELEM_SMOOTH) && l_a->v != l_b->v) {
BM_elem_flag_enable(e, BM_ELEM_TAG);
}
}
}
bm->elem_index_dirty &= ~BM_EDGE;
}
int index_face, index_loop = 0;
BM_ITER_MESH_INDEX (f, &fiter, bm, BM_FACES_OF_MESH, index_face) {
BM_elem_index_set(f, index_face); /* set_inline */
l_curr = l_first = BM_FACE_FIRST_LOOP(f);
do {
BM_elem_index_set(l_curr, index_loop++); /* set_inline */
BM_elem_flag_disable(l_curr, BM_ELEM_TAG);
} while ((l_curr = l_curr->next) != l_first);
}
bm->elem_index_dirty &= ~(BM_FACE | BM_LOOP);
}
/**
* Auxiliary function only used by rebuild to detect if any spaces were not marked as invalid.
* Reports error if any of the lnor spaces change after rebuilding, meaning that all the possible
* lnor spaces to be rebuilt were not correctly marked.
*/
#ifndef NDEBUG
void BM_lnorspace_err(BMesh *bm)
{
bm->spacearr_dirty |= BM_SPACEARR_DIRTY_ALL;
bool clear = true;
MLoopNorSpaceArray *temp = MEM_callocN(sizeof(*temp), __func__);
temp->lspacearr = NULL;
BKE_lnor_spacearr_init(temp, bm->totloop, MLNOR_SPACEARR_BMLOOP_PTR);
int cd_loop_clnors_offset = CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL);
float(*lnors)[3] = MEM_callocN(sizeof(*lnors) * bm->totloop, __func__);
BM_loops_calc_normal_vcos(
bm, NULL, NULL, NULL, true, M_PI, lnors, temp, NULL, cd_loop_clnors_offset, true);
for (int i = 0; i < bm->totloop; i++) {
int j = 0;
j += compare_ff(
temp->lspacearr[i]->ref_alpha, bm->lnor_spacearr->lspacearr[i]->ref_alpha, 1e-4f);
j += compare_ff(
temp->lspacearr[i]->ref_beta, bm->lnor_spacearr->lspacearr[i]->ref_beta, 1e-4f);
j += compare_v3v3(
temp->lspacearr[i]->vec_lnor, bm->lnor_spacearr->lspacearr[i]->vec_lnor, 1e-4f);
j += compare_v3v3(
temp->lspacearr[i]->vec_ortho, bm->lnor_spacearr->lspacearr[i]->vec_ortho, 1e-4f);
j += compare_v3v3(
temp->lspacearr[i]->vec_ref, bm->lnor_spacearr->lspacearr[i]->vec_ref, 1e-4f);
if (j != 5) {
clear = false;
break;
}
}
BKE_lnor_spacearr_free(temp);
MEM_freeN(temp);
MEM_freeN(lnors);
BLI_assert(clear);
bm->spacearr_dirty &= ~BM_SPACEARR_DIRTY_ALL;
}
#endif
static void bm_loop_normal_mark_indiv_do_loop(BMLoop *l,
BLI_bitmap *loops,
MLoopNorSpaceArray *lnor_spacearr,
int *totloopsel,
const bool do_all_loops_of_vert)
{
if (l != NULL) {
const int l_idx = BM_elem_index_get(l);
if (!BLI_BITMAP_TEST(loops, l_idx)) {
/* If vert and face selected share a loop, mark it for editing. */
BLI_BITMAP_ENABLE(loops, l_idx);
(*totloopsel)++;
if (do_all_loops_of_vert) {
/* If required, also mark all loops shared by that vertex.
* This is needed when loop spaces may change
* (i.e. when some faces or edges might change of smooth/sharp status). */
BMIter liter;
BMLoop *lfan;
BM_ITER_ELEM (lfan, &liter, l->v, BM_LOOPS_OF_VERT) {
const int lfan_idx = BM_elem_index_get(lfan);
if (!BLI_BITMAP_TEST(loops, lfan_idx)) {
BLI_BITMAP_ENABLE(loops, lfan_idx);
(*totloopsel)++;
}
}
}
else {
/* Mark all loops in same loop normal space (aka smooth fan). */
if ((lnor_spacearr->lspacearr[l_idx]->flags & MLNOR_SPACE_IS_SINGLE) == 0) {
for (LinkNode *node = lnor_spacearr->lspacearr[l_idx]->loops; node; node = node->next) {
const int lfan_idx = BM_elem_index_get((BMLoop *)node->link);
if (!BLI_BITMAP_TEST(loops, lfan_idx)) {
BLI_BITMAP_ENABLE(loops, lfan_idx);
(*totloopsel)++;
}
}
}
}
}
}
}
/* Mark the individual clnors to be edited, if multiple selection methods are used. */
static int bm_loop_normal_mark_indiv(BMesh *bm, BLI_bitmap *loops, const bool do_all_loops_of_vert)
{
BMEditSelection *ese, *ese_prev;
int totloopsel = 0;
const bool sel_verts = (bm->selectmode & SCE_SELECT_VERTEX) != 0;
const bool sel_edges = (bm->selectmode & SCE_SELECT_EDGE) != 0;
const bool sel_faces = (bm->selectmode & SCE_SELECT_FACE) != 0;
const bool use_sel_face_history = sel_faces && (sel_edges || sel_verts);
BM_mesh_elem_index_ensure(bm, BM_LOOP);
BLI_assert(bm->lnor_spacearr != NULL);
BLI_assert(bm->lnor_spacearr->data_type == MLNOR_SPACEARR_BMLOOP_PTR);
if (use_sel_face_history) {
/* Using face history allows to select a single loop from a single face...
* Note that this is On² piece of code,
* but it is not designed to be used with huge selection sets,
* rather with only a few items selected at most.*/
/* Goes from last selected to the first selected element. */
for (ese = bm->selected.last; ese; ese = ese->prev) {
if (ese->htype == BM_FACE) {
/* If current face is selected,
* then any verts to be edited must have been selected before it. */
for (ese_prev = ese->prev; ese_prev; ese_prev = ese_prev->prev) {
if (ese_prev->htype == BM_VERT) {
bm_loop_normal_mark_indiv_do_loop(
BM_face_vert_share_loop((BMFace *)ese->ele, (BMVert *)ese_prev->ele),
loops,
bm->lnor_spacearr,
&totloopsel,
do_all_loops_of_vert);
}
else if (ese_prev->htype == BM_EDGE) {
BMEdge *e = (BMEdge *)ese_prev->ele;
bm_loop_normal_mark_indiv_do_loop(BM_face_vert_share_loop((BMFace *)ese->ele, e->v1),
loops,
bm->lnor_spacearr,
&totloopsel,
do_all_loops_of_vert);
bm_loop_normal_mark_indiv_do_loop(BM_face_vert_share_loop((BMFace *)ese->ele, e->v2),
loops,
bm->lnor_spacearr,
&totloopsel,
do_all_loops_of_vert);
}
}
}
}
}
else {
if (sel_faces) {
/* Only select all loops of selected faces. */
BMLoop *l;
BMFace *f;
BMIter liter, fiter;
BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) {
if (BM_elem_flag_test(f, BM_ELEM_SELECT)) {
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
bm_loop_normal_mark_indiv_do_loop(
l, loops, bm->lnor_spacearr, &totloopsel, do_all_loops_of_vert);
}
}
}
}
if (sel_edges) {
/* Only select all loops of selected edges. */
BMLoop *l;
BMEdge *e;
BMIter liter, eiter;
BM_ITER_MESH (e, &eiter, bm, BM_EDGES_OF_MESH) {
if (BM_elem_flag_test(e, BM_ELEM_SELECT)) {
BM_ITER_ELEM (l, &liter, e, BM_LOOPS_OF_EDGE) {
bm_loop_normal_mark_indiv_do_loop(
l, loops, bm->lnor_spacearr, &totloopsel, do_all_loops_of_vert);
/* Loops actually 'have' two edges, or said otherwise, a selected edge actually selects
* *two* loops in each of its faces. We have to find the other one too. */
if (BM_vert_in_edge(e, l->next->v)) {
bm_loop_normal_mark_indiv_do_loop(
l->next, loops, bm->lnor_spacearr, &totloopsel, do_all_loops_of_vert);
}
else {
BLI_assert(BM_vert_in_edge(e, l->prev->v));
bm_loop_normal_mark_indiv_do_loop(
l->prev, loops, bm->lnor_spacearr, &totloopsel, do_all_loops_of_vert);
}
}
}
}
}
if (sel_verts) {
/* Select all loops of selected verts. */
BMLoop *l;
BMVert *v;
BMIter liter, viter;
BM_ITER_MESH (v, &viter, bm, BM_VERTS_OF_MESH) {
if (BM_elem_flag_test(v, BM_ELEM_SELECT)) {
BM_ITER_ELEM (l, &liter, v, BM_LOOPS_OF_VERT) {
bm_loop_normal_mark_indiv_do_loop(
l, loops, bm->lnor_spacearr, &totloopsel, do_all_loops_of_vert);
}
}
}
}
}
return totloopsel;
}
static void loop_normal_editdata_init(
BMesh *bm, BMLoopNorEditData *lnor_ed, BMVert *v, BMLoop *l, const int offset)
{
BLI_assert(bm->lnor_spacearr != NULL);
BLI_assert(bm->lnor_spacearr->lspacearr != NULL);
const int l_index = BM_elem_index_get(l);
short *clnors_data = BM_ELEM_CD_GET_VOID_P(l, offset);
lnor_ed->loop_index = l_index;
lnor_ed->loop = l;
float custom_normal[3];
BKE_lnor_space_custom_data_to_normal(
bm->lnor_spacearr->lspacearr[l_index], clnors_data, custom_normal);
lnor_ed->clnors_data = clnors_data;
copy_v3_v3(lnor_ed->nloc, custom_normal);
copy_v3_v3(lnor_ed->niloc, custom_normal);
lnor_ed->loc = v->co;
}
BMLoopNorEditDataArray *BM_loop_normal_editdata_array_init(BMesh *bm,
const bool do_all_loops_of_vert)
{
BMLoop *l;
BMVert *v;
BMIter liter, viter;
int totloopsel = 0;
BLI_assert(bm->spacearr_dirty == 0);
BMLoopNorEditDataArray *lnors_ed_arr = MEM_callocN(sizeof(*lnors_ed_arr), __func__);
lnors_ed_arr->lidx_to_lnor_editdata = MEM_callocN(
sizeof(*lnors_ed_arr->lidx_to_lnor_editdata) * bm->totloop, __func__);
if (!CustomData_has_layer(&bm->ldata, CD_CUSTOMLOOPNORMAL)) {
BM_data_layer_add(bm, &bm->ldata, CD_CUSTOMLOOPNORMAL);
}
const int cd_custom_normal_offset = CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL);
BM_mesh_elem_index_ensure(bm, BM_LOOP);
BLI_bitmap *loops = BLI_BITMAP_NEW(bm->totloop, __func__);
/* This function define loop normals to edit, based on selection modes and history. */
totloopsel = bm_loop_normal_mark_indiv(bm, loops, do_all_loops_of_vert);
if (totloopsel) {
BMLoopNorEditData *lnor_ed = lnors_ed_arr->lnor_editdata = MEM_mallocN(
sizeof(*lnor_ed) * totloopsel, __func__);
BM_ITER_MESH (v, &viter, bm, BM_VERTS_OF_MESH) {
BM_ITER_ELEM (l, &liter, v, BM_LOOPS_OF_VERT) {
if (BLI_BITMAP_TEST(loops, BM_elem_index_get(l))) {
loop_normal_editdata_init(bm, lnor_ed, v, l, cd_custom_normal_offset);
lnors_ed_arr->lidx_to_lnor_editdata[BM_elem_index_get(l)] = lnor_ed;
lnor_ed++;
}
}
}
lnors_ed_arr->totloop = totloopsel;
}
MEM_freeN(loops);
lnors_ed_arr->cd_custom_normal_offset = cd_custom_normal_offset;
return lnors_ed_arr;
}
void BM_loop_normal_editdata_array_free(BMLoopNorEditDataArray *lnors_ed_arr)
{
MEM_SAFE_FREE(lnors_ed_arr->lnor_editdata);
MEM_SAFE_FREE(lnors_ed_arr->lidx_to_lnor_editdata);
MEM_freeN(lnors_ed_arr);
}
/**
* \warning This function sets #BM_ELEM_TAG on loops & edges via #bm_mesh_loops_calc_normals,
* take care to run this before setting up tags.
*/
bool BM_custom_loop_normals_to_vector_layer(BMesh *bm)
{
BMFace *f;
BMLoop *l;
BMIter liter, fiter;
if (!CustomData_has_layer(&bm->ldata, CD_CUSTOMLOOPNORMAL)) {
return false;
}
BM_lnorspace_update(bm);
BM_mesh_elem_index_ensure(bm, BM_LOOP);
/* Create a loop normal layer. */
if (!CustomData_has_layer(&bm->ldata, CD_NORMAL)) {
BM_data_layer_add(bm, &bm->ldata, CD_NORMAL);
CustomData_set_layer_flag(&bm->ldata, CD_NORMAL, CD_FLAG_TEMPORARY);
}
const int cd_custom_normal_offset = CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL);
const int cd_normal_offset = CustomData_get_offset(&bm->ldata, CD_NORMAL);
BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) {
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
const int l_index = BM_elem_index_get(l);
const short *clnors_data = BM_ELEM_CD_GET_VOID_P(l, cd_custom_normal_offset);
float *normal = BM_ELEM_CD_GET_VOID_P(l, cd_normal_offset);
BKE_lnor_space_custom_data_to_normal(
bm->lnor_spacearr->lspacearr[l_index], clnors_data, normal);
}
}
return true;
}
void BM_custom_loop_normals_from_vector_layer(BMesh *bm, bool add_sharp_edges)
{
if (!CustomData_has_layer(&bm->ldata, CD_CUSTOMLOOPNORMAL) ||
!CustomData_has_layer(&bm->ldata, CD_NORMAL)) {
return;
}
const int cd_custom_normal_offset = CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL);
const int cd_normal_offset = CustomData_get_offset(&bm->ldata, CD_NORMAL);
if (bm->lnor_spacearr == NULL) {
bm->lnor_spacearr = MEM_callocN(sizeof(*bm->lnor_spacearr), __func__);
}
bm_mesh_loops_custom_normals_set(bm,
NULL,
NULL,
NULL,
bm->lnor_spacearr,
NULL,
cd_custom_normal_offset,
NULL,
cd_normal_offset,
add_sharp_edges);
bm->spacearr_dirty &= ~(BM_SPACEARR_DIRTY | BM_SPACEARR_DIRTY_ALL);
}
/**
* \brief BMesh Begin Edit
*
* Functions for setting up a mesh for editing and cleaning up after
* the editing operations are done. These are called by the tools/operator
* API for each time a tool is executed.
*/
void bmesh_edit_begin(BMesh *UNUSED(bm), BMOpTypeFlag UNUSED(type_flag))
{
/* Most operators seem to be using BMO_OPTYPE_FLAG_UNTAN_MULTIRES to change the MDisps to
* absolute space during mesh edits. With this enabled, changes to the topology
* (loop cuts, edge subdivides, etc) are not reflected in the higher levels of
* the mesh at all, which doesn't seem right. Turning off completely for now,
* until this is shown to be better for certain types of mesh edits. */
#ifdef BMOP_UNTAN_MULTIRES_ENABLED
/* switch multires data out of tangent space */
if ((type_flag & BMO_OPTYPE_FLAG_UNTAN_MULTIRES) &&
CustomData_has_layer(&bm->ldata, CD_MDISPS)) {
bmesh_mdisps_space_set(bm, MULTIRES_SPACE_TANGENT, MULTIRES_SPACE_ABSOLUTE);
/* ensure correct normals, if possible */
bmesh_rationalize_normals(bm, 0);
BM_mesh_normals_update(bm);
}
#endif
}
/**
* \brief BMesh End Edit
*/
void bmesh_edit_end(BMesh *bm, BMOpTypeFlag type_flag)
{
ListBase select_history;
/* BMO_OPTYPE_FLAG_UNTAN_MULTIRES disabled for now, see comment above in bmesh_edit_begin. */
#ifdef BMOP_UNTAN_MULTIRES_ENABLED
/* switch multires data into tangent space */
if ((flag & BMO_OPTYPE_FLAG_UNTAN_MULTIRES) && CustomData_has_layer(&bm->ldata, CD_MDISPS)) {
/* set normals to their previous winding */
bmesh_rationalize_normals(bm, 1);
bmesh_mdisps_space_set(bm, MULTIRES_SPACE_ABSOLUTE, MULTIRES_SPACE_TANGENT);
}
else if (flag & BMO_OP_FLAG_RATIONALIZE_NORMALS) {
bmesh_rationalize_normals(bm, 1);
}
#endif
/* compute normals, clear temp flags and flush selections */
if (type_flag & BMO_OPTYPE_FLAG_NORMALS_CALC) {
bm->spacearr_dirty |= BM_SPACEARR_DIRTY_ALL;
BM_mesh_normals_update(bm);
}
if ((type_flag & BMO_OPTYPE_FLAG_SELECT_VALIDATE) == 0) {
select_history = bm->selected;
BLI_listbase_clear(&bm->selected);
}
if (type_flag & BMO_OPTYPE_FLAG_SELECT_FLUSH) {
BM_mesh_select_mode_flush(bm);
}
if ((type_flag & BMO_OPTYPE_FLAG_SELECT_VALIDATE) == 0) {
bm->selected = select_history;
}
if (type_flag & BMO_OPTYPE_FLAG_INVALIDATE_CLNOR_ALL) {
bm->spacearr_dirty |= BM_SPACEARR_DIRTY_ALL;
}
}
void BM_mesh_elem_index_ensure_ex(BMesh *bm, const char htype, int elem_offset[4])
{
#ifdef DEBUG
BM_ELEM_INDEX_VALIDATE(bm, "Should Never Fail!", __func__);
#endif
if (elem_offset == NULL) {
/* Simple case. */
const char htype_needed = bm->elem_index_dirty & htype;
if (htype_needed == 0) {
goto finally;
}
}
if (htype & BM_VERT) {
if ((bm->elem_index_dirty & BM_VERT) || (elem_offset && elem_offset[0])) {
BMIter iter;
BMElem *ele;
int index = elem_offset ? elem_offset[0] : 0;
BM_ITER_MESH (ele, &iter, bm, BM_VERTS_OF_MESH) {
BM_elem_index_set(ele, index++); /* set_ok */
}
BLI_assert(elem_offset || index == bm->totvert);
}
else {
// printf("%s: skipping vert index calc!\n", __func__);
}
}
if (htype & BM_EDGE) {
if ((bm->elem_index_dirty & BM_EDGE) || (elem_offset && elem_offset[1])) {
BMIter iter;
BMElem *ele;
int index = elem_offset ? elem_offset[1] : 0;
BM_ITER_MESH (ele, &iter, bm, BM_EDGES_OF_MESH) {
BM_elem_index_set(ele, index++); /* set_ok */
}
BLI_assert(elem_offset || index == bm->totedge);
}
else {
// printf("%s: skipping edge index calc!\n", __func__);
}
}
if (htype & (BM_FACE | BM_LOOP)) {
if ((bm->elem_index_dirty & (BM_FACE | BM_LOOP)) ||
(elem_offset && (elem_offset[2] || elem_offset[3]))) {
BMIter iter;
BMElem *ele;
const bool update_face = (htype & BM_FACE) && (bm->elem_index_dirty & BM_FACE);
const bool update_loop = (htype & BM_LOOP) && (bm->elem_index_dirty & BM_LOOP);
int index_loop = elem_offset ? elem_offset[2] : 0;
int index = elem_offset ? elem_offset[3] : 0;
BM_ITER_MESH (ele, &iter, bm, BM_FACES_OF_MESH) {
if (update_face) {
BM_elem_index_set(ele, index++); /* set_ok */
}
if (update_loop) {
BMLoop *l_iter, *l_first;
l_iter = l_first = BM_FACE_FIRST_LOOP((BMFace *)ele);
do {
BM_elem_index_set(l_iter, index_loop++); /* set_ok */
} while ((l_iter = l_iter->next) != l_first);
}
}
BLI_assert(elem_offset || !update_face || index == bm->totface);
if (update_loop) {
BLI_assert(elem_offset || !update_loop || index_loop == bm->totloop);
}
}
else {
// printf("%s: skipping face/loop index calc!\n", __func__);
}
}
finally:
bm->elem_index_dirty &= ~htype;
if (elem_offset) {
if (htype & BM_VERT) {
elem_offset[0] += bm->totvert;
if (elem_offset[0] != bm->totvert) {
bm->elem_index_dirty |= BM_VERT;
}
}
if (htype & BM_EDGE) {
elem_offset[1] += bm->totedge;
if (elem_offset[1] != bm->totedge) {
bm->elem_index_dirty |= BM_EDGE;
}
}
if (htype & BM_LOOP) {
elem_offset[2] += bm->totloop;
if (elem_offset[2] != bm->totloop) {
bm->elem_index_dirty |= BM_LOOP;
}
}
if (htype & BM_FACE) {
elem_offset[3] += bm->totface;
if (elem_offset[3] != bm->totface) {
bm->elem_index_dirty |= BM_FACE;
}
}
}
}
void BM_mesh_elem_index_ensure(BMesh *bm, const char htype)
{
BM_mesh_elem_index_ensure_ex(bm, htype, NULL);
}
/**
* Array checking/setting macros
*
* Currently vert/edge/loop/face index data is being abused, in a few areas of the code.
*
* To avoid correcting them afterwards, set 'bm->elem_index_dirty' however its possible
* this flag is set incorrectly which could crash blender.
*
* Code that calls this functions may depend on dirty indices on being set.
* Keep this function read-only.
*/
void BM_mesh_elem_index_validate(
BMesh *bm, const char *location, const char *func, const char *msg_a, const char *msg_b)
{
const char iter_types[3] = {BM_VERTS_OF_MESH, BM_EDGES_OF_MESH, BM_FACES_OF_MESH};
const char flag_types[3] = {BM_VERT, BM_EDGE, BM_FACE};
const char *type_names[3] = {"vert", "edge", "face"};
BMIter iter;
BMElem *ele;
int i;
bool is_any_error = 0;
for (i = 0; i < 3; i++) {
const bool is_dirty = (flag_types[i] & bm->elem_index_dirty) != 0;
int index = 0;
bool is_error = false;
int err_val = 0;
int err_idx = 0;
BM_ITER_MESH (ele, &iter, bm, iter_types[i]) {
if (!is_dirty) {
if (BM_elem_index_get(ele) != index) {
err_val = BM_elem_index_get(ele);
err_idx = index;
is_error = true;
break;
}
}
index++;
}
if ((is_error == true) && (is_dirty == false)) {
is_any_error = true;
fprintf(stderr,
"Invalid Index: at %s, %s, %s[%d] invalid index %d, '%s', '%s'\n",
location,
func,
type_names[i],
err_idx,
err_val,
msg_a,
msg_b);
}
else if ((is_error == false) && (is_dirty == true)) {
#if 0 /* mostly annoying */
/* dirty may have been incorrectly set */
fprintf(stderr,
"Invalid Dirty: at %s, %s (%s), dirty flag was set but all index values are "
"correct, '%s', '%s'\n",
location,
func,
type_names[i],
msg_a,
msg_b);
#endif
}
}
#if 0 /* mostly annoying, even in debug mode */
# ifdef DEBUG
if (is_any_error == 0) {
fprintf(stderr, "Valid Index Success: at %s, %s, '%s', '%s'\n", location, func, msg_a, msg_b);
}
# endif
#endif
(void)is_any_error; /* shut up the compiler */
}
/* debug check only - no need to optimize */
#ifndef NDEBUG
bool BM_mesh_elem_table_check(BMesh *bm)
{
BMIter iter;
BMElem *ele;
int i;
if (bm->vtable && ((bm->elem_table_dirty & BM_VERT) == 0)) {
BM_ITER_MESH_INDEX (ele, &iter, bm, BM_VERTS_OF_MESH, i) {
if (ele != (BMElem *)bm->vtable[i]) {
return false;
}
}
}
if (bm->etable && ((bm->elem_table_dirty & BM_EDGE) == 0)) {
BM_ITER_MESH_INDEX (ele, &iter, bm, BM_EDGES_OF_MESH, i) {
if (ele != (BMElem *)bm->etable[i]) {
return false;
}
}
}
if (bm->ftable && ((bm->elem_table_dirty & BM_FACE) == 0)) {
BM_ITER_MESH_INDEX (ele, &iter, bm, BM_FACES_OF_MESH, i) {
if (ele != (BMElem *)bm->ftable[i]) {
return false;
}
}
}
return true;
}
#endif
void BM_mesh_elem_table_ensure(BMesh *bm, const char htype)
{
/* assume if the array is non-null then its valid and no need to recalc */
const char htype_needed =
(((bm->vtable && ((bm->elem_table_dirty & BM_VERT) == 0)) ? 0 : BM_VERT) |
((bm->etable && ((bm->elem_table_dirty & BM_EDGE) == 0)) ? 0 : BM_EDGE) |
((bm->ftable && ((bm->elem_table_dirty & BM_FACE) == 0)) ? 0 : BM_FACE)) &
htype;
BLI_assert((htype & ~BM_ALL_NOLOOP) == 0);
/* in debug mode double check we didn't need to recalculate */
BLI_assert(BM_mesh_elem_table_check(bm) == true);
if (htype_needed == 0) {
goto finally;
}
if (htype_needed & BM_VERT) {
if (bm->vtable && bm->totvert <= bm->vtable_tot && bm->totvert * 2 >= bm->vtable_tot) {
/* pass (re-use the array) */
}
else {
if (bm->vtable) {
MEM_freeN(bm->vtable);
}
bm->vtable = MEM_mallocN(sizeof(void **) * bm->totvert, "bm->vtable");
bm->vtable_tot = bm->totvert;
}
}
if (htype_needed & BM_EDGE) {
if (bm->etable && bm->totedge <= bm->etable_tot && bm->totedge * 2 >= bm->etable_tot) {
/* pass (re-use the array) */
}
else {
if (bm->etable) {
MEM_freeN(bm->etable);
}
bm->etable = MEM_mallocN(sizeof(void **) * bm->totedge, "bm->etable");
bm->etable_tot = bm->totedge;
}
}
if (htype_needed & BM_FACE) {
if (bm->ftable && bm->totface <= bm->ftable_tot && bm->totface * 2 >= bm->ftable_tot) {
/* pass (re-use the array) */
}
else {
if (bm->ftable) {
MEM_freeN(bm->ftable);
}
bm->ftable = MEM_mallocN(sizeof(void **) * bm->totface, "bm->ftable");
bm->ftable_tot = bm->totface;
}
}
if (htype_needed & BM_VERT) {
BM_iter_as_array(bm, BM_VERTS_OF_MESH, NULL, (void **)bm->vtable, bm->totvert);
}
if (htype_needed & BM_EDGE) {
BM_iter_as_array(bm, BM_EDGES_OF_MESH, NULL, (void **)bm->etable, bm->totedge);
}
if (htype_needed & BM_FACE) {
BM_iter_as_array(bm, BM_FACES_OF_MESH, NULL, (void **)bm->ftable, bm->totface);
}
finally:
/* Only clear dirty flags when all the pointers and data are actually valid.
* This prevents possible threading issues when dirty flag check failed but
* data wasn't ready still.
*/
bm->elem_table_dirty &= ~htype_needed;
}
/* use BM_mesh_elem_table_ensure where possible to avoid full rebuild */
void BM_mesh_elem_table_init(BMesh *bm, const char htype)
{
BLI_assert((htype & ~BM_ALL_NOLOOP) == 0);
/* force recalc */
BM_mesh_elem_table_free(bm, BM_ALL_NOLOOP);
BM_mesh_elem_table_ensure(bm, htype);
}
void BM_mesh_elem_table_free(BMesh *bm, const char htype)
{
if (htype & BM_VERT) {
MEM_SAFE_FREE(bm->vtable);
}
if (htype & BM_EDGE) {
MEM_SAFE_FREE(bm->etable);
}
if (htype & BM_FACE) {
MEM_SAFE_FREE(bm->ftable);
}
}
BMVert *BM_vert_at_index_find(BMesh *bm, const int index)
{
return BLI_mempool_findelem(bm->vpool, index);
}
BMEdge *BM_edge_at_index_find(BMesh *bm, const int index)
{
return BLI_mempool_findelem(bm->epool, index);
}
BMFace *BM_face_at_index_find(BMesh *bm, const int index)
{
return BLI_mempool_findelem(bm->fpool, index);
}
BMLoop *BM_loop_at_index_find(BMesh *bm, const int index)
{
BMIter iter;
BMFace *f;
int i = index;
BM_ITER_MESH (f, &iter, bm, BM_FACES_OF_MESH) {
if (i < f->len) {
BMLoop *l_first, *l_iter;
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
do {
if (i == 0) {
return l_iter;
}
i -= 1;
} while ((l_iter = l_iter->next) != l_first);
}
i -= f->len;
}
return NULL;
}
/**
* Use lookup table when available, else use slower find functions.
*
* \note Try to use #BM_mesh_elem_table_ensure instead.
*/
BMVert *BM_vert_at_index_find_or_table(BMesh *bm, const int index)
{
if ((bm->elem_table_dirty & BM_VERT) == 0) {
return (index < bm->totvert) ? bm->vtable[index] : NULL;
}
return BM_vert_at_index_find(bm, index);
}
BMEdge *BM_edge_at_index_find_or_table(BMesh *bm, const int index)
{
if ((bm->elem_table_dirty & BM_EDGE) == 0) {
return (index < bm->totedge) ? bm->etable[index] : NULL;
}
return BM_edge_at_index_find(bm, index);
}
BMFace *BM_face_at_index_find_or_table(BMesh *bm, const int index)
{
if ((bm->elem_table_dirty & BM_FACE) == 0) {
return (index < bm->totface) ? bm->ftable[index] : NULL;
}
return BM_face_at_index_find(bm, index);
}
/**
* Return the amount of element of type 'type' in a given bmesh.
*/
int BM_mesh_elem_count(BMesh *bm, const char htype)
{
BLI_assert((htype & ~BM_ALL_NOLOOP) == 0);
switch (htype) {
case BM_VERT:
return bm->totvert;
case BM_EDGE:
return bm->totedge;
case BM_FACE:
return bm->totface;
default: {
BLI_assert(0);
return 0;
}
}
}
/**
* Remaps the vertices, edges and/or faces of the bmesh as indicated by vert/edge/face_idx arrays
* (xxx_idx[org_index] = new_index).
*
* A NULL array means no changes.
*
* \note
* - Does not mess with indices, just sets elem_index_dirty flag.
* - For verts/edges/faces only (as loops must remain "ordered" and "aligned"
* on a per-face basis...).
*
* \warning Be careful if you keep pointers to affected BM elements,
* or arrays, when using this func!
*/
void BM_mesh_remap(BMesh *bm, const uint *vert_idx, const uint *edge_idx, const uint *face_idx)
{
/* Mapping old to new pointers. */
GHash *vptr_map = NULL, *eptr_map = NULL, *fptr_map = NULL;
BMIter iter, iterl;
BMVert *ve;
BMEdge *ed;
BMFace *fa;
BMLoop *lo;
if (!(vert_idx || edge_idx || face_idx)) {
return;
}
BM_mesh_elem_table_ensure(
bm, (vert_idx ? BM_VERT : 0) | (edge_idx ? BM_EDGE : 0) | (face_idx ? BM_FACE : 0));
/* Remap Verts */
if (vert_idx) {
BMVert **verts_pool, *verts_copy, **vep;
int i, totvert = bm->totvert;
const uint *new_idx;
/* Special case: Python uses custom - data layers to hold PyObject references.
* These have to be kept in - place, else the PyObject's we point to, wont point back to us. */
const int cd_vert_pyptr = CustomData_get_offset(&bm->vdata, CD_BM_ELEM_PYPTR);
/* Init the old-to-new vert pointers mapping */
vptr_map = BLI_ghash_ptr_new_ex("BM_mesh_remap vert pointers mapping", bm->totvert);
/* Make a copy of all vertices. */
verts_pool = bm->vtable;
verts_copy = MEM_mallocN(sizeof(BMVert) * totvert, "BM_mesh_remap verts copy");
void **pyptrs = (cd_vert_pyptr != -1) ? MEM_mallocN(sizeof(void *) * totvert, __func__) : NULL;
for (i = totvert, ve = verts_copy + totvert - 1, vep = verts_pool + totvert - 1; i--;
ve--, vep--) {
*ve = **vep;
/* printf("*vep: %p, verts_pool[%d]: %p\n", *vep, i, verts_pool[i]);*/
if (cd_vert_pyptr != -1) {
void **pyptr = BM_ELEM_CD_GET_VOID_P(((BMElem *)ve), cd_vert_pyptr);
pyptrs[i] = *pyptr;
}
}
/* Copy back verts to their new place, and update old2new pointers mapping. */
new_idx = vert_idx + totvert - 1;
ve = verts_copy + totvert - 1;
vep = verts_pool + totvert - 1; /* old, org pointer */
for (i = totvert; i--; new_idx--, ve--, vep--) {
BMVert *new_vep = verts_pool[*new_idx];
*new_vep = *ve;
#if 0
printf(
"mapping vert from %d to %d (%p/%p to %p)\n", i, *new_idx, *vep, verts_pool[i], new_vep);
#endif
BLI_ghash_insert(vptr_map, *vep, new_vep);
if (cd_vert_pyptr != -1) {
void **pyptr = BM_ELEM_CD_GET_VOID_P(((BMElem *)new_vep), cd_vert_pyptr);
*pyptr = pyptrs[*new_idx];
}
}
bm->elem_index_dirty |= BM_VERT;
bm->elem_table_dirty |= BM_VERT;
MEM_freeN(verts_copy);
if (pyptrs) {
MEM_freeN(pyptrs);
}
}
/* Remap Edges */
if (edge_idx) {
BMEdge **edges_pool, *edges_copy, **edp;
int i, totedge = bm->totedge;
const uint *new_idx;
/* Special case: Python uses custom - data layers to hold PyObject references.
* These have to be kept in - place, else the PyObject's we point to, wont point back to us. */
const int cd_edge_pyptr = CustomData_get_offset(&bm->edata, CD_BM_ELEM_PYPTR);
/* Init the old-to-new vert pointers mapping */
eptr_map = BLI_ghash_ptr_new_ex("BM_mesh_remap edge pointers mapping", bm->totedge);
/* Make a copy of all vertices. */
edges_pool = bm->etable;
edges_copy = MEM_mallocN(sizeof(BMEdge) * totedge, "BM_mesh_remap edges copy");
void **pyptrs = (cd_edge_pyptr != -1) ? MEM_mallocN(sizeof(void *) * totedge, __func__) : NULL;
for (i = totedge, ed = edges_copy + totedge - 1, edp = edges_pool + totedge - 1; i--;
ed--, edp--) {
*ed = **edp;
if (cd_edge_pyptr != -1) {
void **pyptr = BM_ELEM_CD_GET_VOID_P(((BMElem *)ed), cd_edge_pyptr);
pyptrs[i] = *pyptr;
}
}
/* Copy back verts to their new place, and update old2new pointers mapping. */
new_idx = edge_idx + totedge - 1;
ed = edges_copy + totedge - 1;
edp = edges_pool + totedge - 1; /* old, org pointer */
for (i = totedge; i--; new_idx--, ed--, edp--) {
BMEdge *new_edp = edges_pool[*new_idx];
*new_edp = *ed;
BLI_ghash_insert(eptr_map, *edp, new_edp);
#if 0
printf(
"mapping edge from %d to %d (%p/%p to %p)\n", i, *new_idx, *edp, edges_pool[i], new_edp);
#endif
if (cd_edge_pyptr != -1) {
void **pyptr = BM_ELEM_CD_GET_VOID_P(((BMElem *)new_edp), cd_edge_pyptr);
*pyptr = pyptrs[*new_idx];
}
}
bm->elem_index_dirty |= BM_EDGE;
bm->elem_table_dirty |= BM_EDGE;
MEM_freeN(edges_copy);
if (pyptrs) {
MEM_freeN(pyptrs);
}
}
/* Remap Faces */
if (face_idx) {
BMFace **faces_pool, *faces_copy, **fap;
int i, totface = bm->totface;
const uint *new_idx;
/* Special case: Python uses custom - data layers to hold PyObject references.
* These have to be kept in - place, else the PyObject's we point to, wont point back to us. */
const int cd_poly_pyptr = CustomData_get_offset(&bm->pdata, CD_BM_ELEM_PYPTR);
/* Init the old-to-new vert pointers mapping */
fptr_map = BLI_ghash_ptr_new_ex("BM_mesh_remap face pointers mapping", bm->totface);
/* Make a copy of all vertices. */
faces_pool = bm->ftable;
faces_copy = MEM_mallocN(sizeof(BMFace) * totface, "BM_mesh_remap faces copy");
void **pyptrs = (cd_poly_pyptr != -1) ? MEM_mallocN(sizeof(void *) * totface, __func__) : NULL;
for (i = totface, fa = faces_copy + totface - 1, fap = faces_pool + totface - 1; i--;
fa--, fap--) {
*fa = **fap;
if (cd_poly_pyptr != -1) {
void **pyptr = BM_ELEM_CD_GET_VOID_P(((BMElem *)fa), cd_poly_pyptr);
pyptrs[i] = *pyptr;
}
}
/* Copy back verts to their new place, and update old2new pointers mapping. */
new_idx = face_idx + totface - 1;
fa = faces_copy + totface - 1;
fap = faces_pool + totface - 1; /* old, org pointer */
for (i = totface; i--; new_idx--, fa--, fap--) {
BMFace *new_fap = faces_pool[*new_idx];
*new_fap = *fa;
BLI_ghash_insert(fptr_map, *fap, new_fap);
if (cd_poly_pyptr != -1) {
void **pyptr = BM_ELEM_CD_GET_VOID_P(((BMElem *)new_fap), cd_poly_pyptr);
*pyptr = pyptrs[*new_idx];
}
}
bm->elem_index_dirty |= BM_FACE | BM_LOOP;
bm->elem_table_dirty |= BM_FACE;
MEM_freeN(faces_copy);
if (pyptrs) {
MEM_freeN(pyptrs);
}
}
/* And now, fix all vertices/edges/faces/loops pointers! */
/* Verts' pointers, only edge pointers... */
if (eptr_map) {
BM_ITER_MESH (ve, &iter, bm, BM_VERTS_OF_MESH) {
/* printf("Vert e: %p -> %p\n", ve->e, BLI_ghash_lookup(eptr_map, ve->e));*/
if (ve->e) {
ve->e = BLI_ghash_lookup(eptr_map, ve->e);
BLI_assert(ve->e);
}
}
}
/* Edges' pointers, only vert pointers (as we don't mess with loops!),
* and - ack! - edge pointers,
* as we have to handle disklinks... */
if (vptr_map || eptr_map) {
BM_ITER_MESH (ed, &iter, bm, BM_EDGES_OF_MESH) {
if (vptr_map) {
/* printf("Edge v1: %p -> %p\n", ed->v1, BLI_ghash_lookup(vptr_map, ed->v1));*/
/* printf("Edge v2: %p -> %p\n", ed->v2, BLI_ghash_lookup(vptr_map, ed->v2));*/
ed->v1 = BLI_ghash_lookup(vptr_map, ed->v1);
ed->v2 = BLI_ghash_lookup(vptr_map, ed->v2);
BLI_assert(ed->v1);
BLI_assert(ed->v2);
}
if (eptr_map) {
/* printf("Edge v1_disk_link prev: %p -> %p\n", ed->v1_disk_link.prev,*/
/* BLI_ghash_lookup(eptr_map, ed->v1_disk_link.prev));*/
/* printf("Edge v1_disk_link next: %p -> %p\n", ed->v1_disk_link.next,*/
/* BLI_ghash_lookup(eptr_map, ed->v1_disk_link.next));*/
/* printf("Edge v2_disk_link prev: %p -> %p\n", ed->v2_disk_link.prev,*/
/* BLI_ghash_lookup(eptr_map, ed->v2_disk_link.prev));*/
/* printf("Edge v2_disk_link next: %p -> %p\n", ed->v2_disk_link.next,*/
/* BLI_ghash_lookup(eptr_map, ed->v2_disk_link.next));*/
ed->v1_disk_link.prev = BLI_ghash_lookup(eptr_map, ed->v1_disk_link.prev);
ed->v1_disk_link.next = BLI_ghash_lookup(eptr_map, ed->v1_disk_link.next);
ed->v2_disk_link.prev = BLI_ghash_lookup(eptr_map, ed->v2_disk_link.prev);
ed->v2_disk_link.next = BLI_ghash_lookup(eptr_map, ed->v2_disk_link.next);
BLI_assert(ed->v1_disk_link.prev);
BLI_assert(ed->v1_disk_link.next);
BLI_assert(ed->v2_disk_link.prev);
BLI_assert(ed->v2_disk_link.next);
}
}
}
/* Faces' pointers (loops, in fact), always needed... */
BM_ITER_MESH (fa, &iter, bm, BM_FACES_OF_MESH) {
BM_ITER_ELEM (lo, &iterl, fa, BM_LOOPS_OF_FACE) {
if (vptr_map) {
/* printf("Loop v: %p -> %p\n", lo->v, BLI_ghash_lookup(vptr_map, lo->v));*/
lo->v = BLI_ghash_lookup(vptr_map, lo->v);
BLI_assert(lo->v);
}
if (eptr_map) {
/* printf("Loop e: %p -> %p\n", lo->e, BLI_ghash_lookup(eptr_map, lo->e));*/
lo->e = BLI_ghash_lookup(eptr_map, lo->e);
BLI_assert(lo->e);
}
if (fptr_map) {
/* printf("Loop f: %p -> %p\n", lo->f, BLI_ghash_lookup(fptr_map, lo->f));*/
lo->f = BLI_ghash_lookup(fptr_map, lo->f);
BLI_assert(lo->f);
}
}
}
/* Selection history */
{
BMEditSelection *ese;
for (ese = bm->selected.first; ese; ese = ese->next) {
switch (ese->htype) {
case BM_VERT:
if (vptr_map) {
ese->ele = BLI_ghash_lookup(vptr_map, ese->ele);
BLI_assert(ese->ele);
}
break;
case BM_EDGE:
if (eptr_map) {
ese->ele = BLI_ghash_lookup(eptr_map, ese->ele);
BLI_assert(ese->ele);
}
break;
case BM_FACE:
if (fptr_map) {
ese->ele = BLI_ghash_lookup(fptr_map, ese->ele);
BLI_assert(ese->ele);
}
break;
}
}
}
if (fptr_map) {
if (bm->act_face) {
bm->act_face = BLI_ghash_lookup(fptr_map, bm->act_face);
BLI_assert(bm->act_face);
}
}
if (vptr_map) {
BLI_ghash_free(vptr_map, NULL, NULL);
}
if (eptr_map) {
BLI_ghash_free(eptr_map, NULL, NULL);
}
if (fptr_map) {
BLI_ghash_free(fptr_map, NULL, NULL);
}
}
/**
* Use new memory pools for this mesh.
*
* \note needed for re-sizing elements (adding/removing tool flags)
* but could also be used for packing fragmented bmeshes.
*/
void BM_mesh_rebuild(BMesh *bm,
const struct BMeshCreateParams *params,
BLI_mempool *vpool_dst,
BLI_mempool *epool_dst,
BLI_mempool *lpool_dst,
BLI_mempool *fpool_dst)
{
const char remap = (vpool_dst ? BM_VERT : 0) | (epool_dst ? BM_EDGE : 0) |
(lpool_dst ? BM_LOOP : 0) | (fpool_dst ? BM_FACE : 0);
BMVert **vtable_dst = (remap & BM_VERT) ? MEM_mallocN(bm->totvert * sizeof(BMVert *), __func__) :
NULL;
BMEdge **etable_dst = (remap & BM_EDGE) ? MEM_mallocN(bm->totedge * sizeof(BMEdge *), __func__) :
NULL;
BMLoop **ltable_dst = (remap & BM_LOOP) ? MEM_mallocN(bm->totloop * sizeof(BMLoop *), __func__) :
NULL;
BMFace **ftable_dst = (remap & BM_FACE) ? MEM_mallocN(bm->totface * sizeof(BMFace *), __func__) :
NULL;
const bool use_toolflags = params->use_toolflags;
if (remap & BM_VERT) {
BMIter iter;
int index;
BMVert *v_src;
BM_ITER_MESH_INDEX (v_src, &iter, bm, BM_VERTS_OF_MESH, index) {
BMVert *v_dst = BLI_mempool_alloc(vpool_dst);
memcpy(v_dst, v_src, sizeof(BMVert));
if (use_toolflags) {
((BMVert_OFlag *)v_dst)->oflags = bm->vtoolflagpool ?
BLI_mempool_calloc(bm->vtoolflagpool) :
NULL;
}
vtable_dst[index] = v_dst;
BM_elem_index_set(v_src, index); /* set_ok */
}
}
if (remap & BM_EDGE) {
BMIter iter;
int index;
BMEdge *e_src;
BM_ITER_MESH_INDEX (e_src, &iter, bm, BM_EDGES_OF_MESH, index) {
BMEdge *e_dst = BLI_mempool_alloc(epool_dst);
memcpy(e_dst, e_src, sizeof(BMEdge));
if (use_toolflags) {
((BMEdge_OFlag *)e_dst)->oflags = bm->etoolflagpool ?
BLI_mempool_calloc(bm->etoolflagpool) :
NULL;
}
etable_dst[index] = e_dst;
BM_elem_index_set(e_src, index); /* set_ok */
}
}
if (remap & (BM_LOOP | BM_FACE)) {
BMIter iter;
int index, index_loop = 0;
BMFace *f_src;
BM_ITER_MESH_INDEX (f_src, &iter, bm, BM_FACES_OF_MESH, index) {
if (remap & BM_FACE) {
BMFace *f_dst = BLI_mempool_alloc(fpool_dst);
memcpy(f_dst, f_src, sizeof(BMFace));
if (use_toolflags) {
((BMFace_OFlag *)f_dst)->oflags = bm->ftoolflagpool ?
BLI_mempool_calloc(bm->ftoolflagpool) :
NULL;
}
ftable_dst[index] = f_dst;
BM_elem_index_set(f_src, index); /* set_ok */
}
/* handle loops */
if (remap & BM_LOOP) {
BMLoop *l_iter_src, *l_first_src;
l_iter_src = l_first_src = BM_FACE_FIRST_LOOP((BMFace *)f_src);
do {
BMLoop *l_dst = BLI_mempool_alloc(lpool_dst);
memcpy(l_dst, l_iter_src, sizeof(BMLoop));
ltable_dst[index_loop] = l_dst;
BM_elem_index_set(l_iter_src, index_loop++); /* set_ok */
} while ((l_iter_src = l_iter_src->next) != l_first_src);
}
}
}
#define MAP_VERT(ele) vtable_dst[BM_elem_index_get(ele)]
#define MAP_EDGE(ele) etable_dst[BM_elem_index_get(ele)]
#define MAP_LOOP(ele) ltable_dst[BM_elem_index_get(ele)]
#define MAP_FACE(ele) ftable_dst[BM_elem_index_get(ele)]
#define REMAP_VERT(ele) \
{ \
if (remap & BM_VERT) { \
ele = MAP_VERT(ele); \
} \
} \
((void)0)
#define REMAP_EDGE(ele) \
{ \
if (remap & BM_EDGE) { \
ele = MAP_EDGE(ele); \
} \
} \
((void)0)
#define REMAP_LOOP(ele) \
{ \
if (remap & BM_LOOP) { \
ele = MAP_LOOP(ele); \
} \
} \
((void)0)
#define REMAP_FACE(ele) \
{ \
if (remap & BM_FACE) { \
ele = MAP_FACE(ele); \
} \
} \
((void)0)
/* verts */
{
for (int i = 0; i < bm->totvert; i++) {
BMVert *v = vtable_dst[i];
if (v->e) {
REMAP_EDGE(v->e);
}
}
}
/* edges */
{
for (int i = 0; i < bm->totedge; i++) {
BMEdge *e = etable_dst[i];
REMAP_VERT(e->v1);
REMAP_VERT(e->v2);
REMAP_EDGE(e->v1_disk_link.next);
REMAP_EDGE(e->v1_disk_link.prev);
REMAP_EDGE(e->v2_disk_link.next);
REMAP_EDGE(e->v2_disk_link.prev);
if (e->l) {
REMAP_LOOP(e->l);
}
}
}
/* faces */
{
for (int i = 0; i < bm->totface; i++) {
BMFace *f = ftable_dst[i];
REMAP_LOOP(f->l_first);
{
BMLoop *l_iter, *l_first;
l_iter = l_first = BM_FACE_FIRST_LOOP((BMFace *)f);
do {
REMAP_VERT(l_iter->v);
REMAP_EDGE(l_iter->e);
REMAP_FACE(l_iter->f);
REMAP_LOOP(l_iter->radial_next);
REMAP_LOOP(l_iter->radial_prev);
REMAP_LOOP(l_iter->next);
REMAP_LOOP(l_iter->prev);
} while ((l_iter = l_iter->next) != l_first);
}
}
}
LISTBASE_FOREACH (BMEditSelection *, ese, &bm->selected) {
switch (ese->htype) {
case BM_VERT:
if (remap & BM_VERT) {
ese->ele = (BMElem *)MAP_VERT(ese->ele);
}
break;
case BM_EDGE:
if (remap & BM_EDGE) {
ese->ele = (BMElem *)MAP_EDGE(ese->ele);
}
break;
case BM_FACE:
if (remap & BM_FACE) {
ese->ele = (BMElem *)MAP_FACE(ese->ele);
}
break;
}
}
if (bm->act_face) {
REMAP_FACE(bm->act_face);
}
#undef MAP_VERT
#undef MAP_EDGE
#undef MAP_LOOP
#undef MAP_EDGE
#undef REMAP_VERT
#undef REMAP_EDGE
#undef REMAP_LOOP
#undef REMAP_EDGE
/* Cleanup, re-use local tables if the current mesh had tables allocated.
* could use irrespective but it may use more memory than the caller wants
* (and not be needed). */
if (remap & BM_VERT) {
if (bm->vtable) {
SWAP(BMVert **, vtable_dst, bm->vtable);
bm->vtable_tot = bm->totvert;
bm->elem_table_dirty &= ~BM_VERT;
}
MEM_freeN(vtable_dst);
BLI_mempool_destroy(bm->vpool);
bm->vpool = vpool_dst;
}
if (remap & BM_EDGE) {
if (bm->etable) {
SWAP(BMEdge **, etable_dst, bm->etable);
bm->etable_tot = bm->totedge;
bm->elem_table_dirty &= ~BM_EDGE;
}
MEM_freeN(etable_dst);
BLI_mempool_destroy(bm->epool);
bm->epool = epool_dst;
}
if (remap & BM_LOOP) {
/* no loop table */
MEM_freeN(ltable_dst);
BLI_mempool_destroy(bm->lpool);
bm->lpool = lpool_dst;
}
if (remap & BM_FACE) {
if (bm->ftable) {
SWAP(BMFace **, ftable_dst, bm->ftable);
bm->ftable_tot = bm->totface;
bm->elem_table_dirty &= ~BM_FACE;
}
MEM_freeN(ftable_dst);
BLI_mempool_destroy(bm->fpool);
bm->fpool = fpool_dst;
}
}
/**
* Re-allocates mesh data with/without toolflags.
*/
void BM_mesh_toolflags_set(BMesh *bm, bool use_toolflags)
{
if (bm->use_toolflags == use_toolflags) {
return;
}
const BMAllocTemplate allocsize = BMALLOC_TEMPLATE_FROM_BM(bm);
BLI_mempool *vpool_dst = NULL;
BLI_mempool *epool_dst = NULL;
BLI_mempool *fpool_dst = NULL;
bm_mempool_init_ex(&allocsize, use_toolflags, &vpool_dst, &epool_dst, NULL, &fpool_dst);
if (use_toolflags == false) {
BLI_mempool_destroy(bm->vtoolflagpool);
BLI_mempool_destroy(bm->etoolflagpool);
BLI_mempool_destroy(bm->ftoolflagpool);
bm->vtoolflagpool = NULL;
bm->etoolflagpool = NULL;
bm->ftoolflagpool = NULL;
}
BM_mesh_rebuild(bm,
&((struct BMeshCreateParams){
.use_toolflags = use_toolflags,
}),
vpool_dst,
epool_dst,
NULL,
fpool_dst);
bm->use_toolflags = use_toolflags;
}
/* -------------------------------------------------------------------- */
/** \name BMesh Coordinate Access
* \{ */
void BM_mesh_vert_coords_get(BMesh *bm, float (*vert_coords)[3])
{
BMIter iter;
BMVert *v;
int i;
BM_ITER_MESH_INDEX (v, &iter, bm, BM_VERTS_OF_MESH, i) {
copy_v3_v3(vert_coords[i], v->co);
}
}
float (*BM_mesh_vert_coords_alloc(BMesh *bm, int *r_vert_len))[3]
{
float(*vert_coords)[3] = MEM_mallocN(bm->totvert * sizeof(*vert_coords), __func__);
BM_mesh_vert_coords_get(bm, vert_coords);
*r_vert_len = bm->totvert;
return vert_coords;
}
void BM_mesh_vert_coords_apply(BMesh *bm, const float (*vert_coords)[3])
{
BMIter iter;
BMVert *v;
int i;
BM_ITER_MESH_INDEX (v, &iter, bm, BM_VERTS_OF_MESH, i) {
copy_v3_v3(v->co, vert_coords[i]);
}
}
void BM_mesh_vert_coords_apply_with_mat4(BMesh *bm,
const float (*vert_coords)[3],
const float mat[4][4])
{
BMIter iter;
BMVert *v;
int i;
BM_ITER_MESH_INDEX (v, &iter, bm, BM_VERTS_OF_MESH, i) {
mul_v3_m4v3(v->co, mat, vert_coords[i]);
}
}
/** \} */