645 lines
16 KiB
C
645 lines
16 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2007 Blender Foundation.
|
|
* All rights reserved.
|
|
*/
|
|
|
|
/** \file
|
|
* \ingroup bmesh
|
|
*
|
|
* Low level routines for manipulating the BM structure.
|
|
*/
|
|
|
|
#include "BLI_utildefines.h"
|
|
|
|
#include "bmesh.h"
|
|
#include "intern/bmesh_private.h"
|
|
|
|
/**
|
|
* MISC utility functions.
|
|
*/
|
|
|
|
void bmesh_disk_vert_swap(BMEdge *e, BMVert *v_dst, BMVert *v_src)
|
|
{
|
|
if (e->v1 == v_src) {
|
|
e->v1 = v_dst;
|
|
e->v1_disk_link.next = e->v1_disk_link.prev = NULL;
|
|
}
|
|
else if (e->v2 == v_src) {
|
|
e->v2 = v_dst;
|
|
e->v2_disk_link.next = e->v2_disk_link.prev = NULL;
|
|
}
|
|
else {
|
|
BLI_assert(0);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Handles all connected data, use with care.
|
|
*
|
|
* Assumes caller has setup correct state before the swap is done.
|
|
*/
|
|
void bmesh_edge_vert_swap(BMEdge *e, BMVert *v_dst, BMVert *v_src)
|
|
{
|
|
/* swap out loops */
|
|
if (e->l) {
|
|
BMLoop *l_iter, *l_first;
|
|
l_iter = l_first = e->l;
|
|
do {
|
|
if (l_iter->v == v_src) {
|
|
l_iter->v = v_dst;
|
|
}
|
|
else if (l_iter->next->v == v_src) {
|
|
l_iter->next->v = v_dst;
|
|
}
|
|
else {
|
|
BLI_assert(l_iter->prev->v != v_src);
|
|
}
|
|
} while ((l_iter = l_iter->radial_next) != l_first);
|
|
}
|
|
|
|
/* swap out edges */
|
|
bmesh_disk_vert_replace(e, v_dst, v_src);
|
|
}
|
|
|
|
void bmesh_disk_vert_replace(BMEdge *e, BMVert *v_dst, BMVert *v_src)
|
|
{
|
|
BLI_assert(e->v1 == v_src || e->v2 == v_src);
|
|
bmesh_disk_edge_remove(e, v_src); /* remove e from tv's disk cycle */
|
|
bmesh_disk_vert_swap(e, v_dst, v_src); /* swap out tv for v_new in e */
|
|
bmesh_disk_edge_append(e, v_dst); /* add e to v_dst's disk cycle */
|
|
BLI_assert(e->v1 != e->v2);
|
|
}
|
|
|
|
/**
|
|
* \section bm_cycles BMesh Cycles
|
|
* (this is somewhat outdate, though bits of its API are still used) - joeedh
|
|
*
|
|
* Cycles are circular doubly linked lists that form the basis of adjacency
|
|
* information in the BME modeler. Full adjacency relations can be derived
|
|
* from examining these cycles very quickly. Although each cycle is a double
|
|
* circular linked list, each one is considered to have a 'base' or 'head',
|
|
* and care must be taken by Euler code when modifying the contents of a cycle.
|
|
*
|
|
* The contents of this file are split into two parts. First there are the
|
|
* bmesh_cycle family of functions which are generic circular double linked list
|
|
* procedures. The second part contains higher level procedures for supporting
|
|
* modification of specific cycle types.
|
|
*
|
|
* The three cycles explicitly stored in the BM data structure are as follows:
|
|
* 1: The Disk Cycle - A circle of edges around a vertex
|
|
* Base: vertex->edge pointer.
|
|
*
|
|
* This cycle is the most complicated in terms of its structure. Each bmesh_Edge contains
|
|
* two bmesh_CycleNode structures to keep track of that edges membership in the disk cycle
|
|
* of each of its vertices. However for any given vertex it may be the first in some edges
|
|
* in its disk cycle and the second for others. The bmesh_disk_XXX family of functions contain
|
|
* some nice utilities for navigating disk cycles in a way that hides this detail from the
|
|
* tool writer.
|
|
*
|
|
* Note that the disk cycle is completely independent from face data. One advantage of this
|
|
* is that wire edges are fully integrated into the topology database. Another is that the
|
|
* the disk cycle has no problems dealing with non-manifold conditions involving faces.
|
|
*
|
|
* Functions relating to this cycle:
|
|
* - #bmesh_disk_vert_replace
|
|
* - #bmesh_disk_edge_append
|
|
* - #bmesh_disk_edge_remove
|
|
* - #bmesh_disk_edge_next
|
|
* - #bmesh_disk_edge_prev
|
|
* - #bmesh_disk_facevert_count
|
|
* - #bmesh_disk_faceedge_find_first
|
|
* - #bmesh_disk_faceedge_find_next
|
|
* 2: The Radial Cycle - A circle of face edges (bmesh_Loop) around an edge
|
|
* Base: edge->l->radial structure.
|
|
*
|
|
* The radial cycle is similar to the radial cycle in the radial edge data structure.*
|
|
* Unlike the radial edge however, the radial cycle does not require a large amount of memory
|
|
* to store non-manifold conditions since BM does not keep track of region/shell information.
|
|
*
|
|
* Functions relating to this cycle:
|
|
* - #bmesh_radial_loop_append
|
|
* - #bmesh_radial_loop_remove
|
|
* - #bmesh_radial_facevert_count
|
|
* - #bmesh_radial_facevert_check
|
|
* - #bmesh_radial_faceloop_find_first
|
|
* - #bmesh_radial_faceloop_find_next
|
|
* - #bmesh_radial_validate
|
|
* 3: The Loop Cycle - A circle of face edges around a polygon.
|
|
* Base: polygon->lbase.
|
|
*
|
|
* The loop cycle keeps track of a faces vertices and edges. It should be noted that the
|
|
* direction of a loop cycle is either CW or CCW depending on the face normal, and is
|
|
* not oriented to the faces editedges.
|
|
*
|
|
* Functions relating to this cycle:
|
|
* - bmesh_cycle_XXX family of functions.
|
|
* \note the order of elements in all cycles except the loop cycle is undefined. This
|
|
* leads to slightly increased seek time for deriving some adjacency relations, however the
|
|
* advantage is that no intrinsic properties of the data structures are dependent upon the
|
|
* cycle order and all non-manifold conditions are represented trivially.
|
|
*/
|
|
|
|
void bmesh_disk_edge_append(BMEdge *e, BMVert *v)
|
|
{
|
|
if (!v->e) {
|
|
BMDiskLink *dl1 = bmesh_disk_edge_link_from_vert(e, v);
|
|
|
|
v->e = e;
|
|
dl1->next = dl1->prev = e;
|
|
}
|
|
else {
|
|
BMDiskLink *dl1, *dl2, *dl3;
|
|
|
|
dl1 = bmesh_disk_edge_link_from_vert(e, v);
|
|
dl2 = bmesh_disk_edge_link_from_vert(v->e, v);
|
|
dl3 = dl2->prev ? bmesh_disk_edge_link_from_vert(dl2->prev, v) : NULL;
|
|
|
|
dl1->next = v->e;
|
|
dl1->prev = dl2->prev;
|
|
|
|
dl2->prev = e;
|
|
if (dl3) {
|
|
dl3->next = e;
|
|
}
|
|
}
|
|
}
|
|
|
|
void bmesh_disk_edge_remove(BMEdge *e, BMVert *v)
|
|
{
|
|
BMDiskLink *dl1, *dl2;
|
|
|
|
dl1 = bmesh_disk_edge_link_from_vert(e, v);
|
|
if (dl1->prev) {
|
|
dl2 = bmesh_disk_edge_link_from_vert(dl1->prev, v);
|
|
dl2->next = dl1->next;
|
|
}
|
|
|
|
if (dl1->next) {
|
|
dl2 = bmesh_disk_edge_link_from_vert(dl1->next, v);
|
|
dl2->prev = dl1->prev;
|
|
}
|
|
|
|
if (v->e == e) {
|
|
v->e = (e != dl1->next) ? dl1->next : NULL;
|
|
}
|
|
|
|
dl1->next = dl1->prev = NULL;
|
|
}
|
|
|
|
BMEdge *bmesh_disk_edge_exists(const BMVert *v1, const BMVert *v2)
|
|
{
|
|
BMEdge *e_iter, *e_first;
|
|
|
|
if (v1->e) {
|
|
e_first = e_iter = v1->e;
|
|
|
|
do {
|
|
if (BM_verts_in_edge(v1, v2, e_iter)) {
|
|
return e_iter;
|
|
}
|
|
} while ((e_iter = bmesh_disk_edge_next(e_iter, v1)) != e_first);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int bmesh_disk_count(const BMVert *v)
|
|
{
|
|
int count = 0;
|
|
if (v->e) {
|
|
BMEdge *e_first, *e_iter;
|
|
e_iter = e_first = v->e;
|
|
do {
|
|
count++;
|
|
} while ((e_iter = bmesh_disk_edge_next(e_iter, v)) != e_first);
|
|
}
|
|
return count;
|
|
}
|
|
|
|
int bmesh_disk_count_at_most(const BMVert *v, const int count_max)
|
|
{
|
|
int count = 0;
|
|
if (v->e) {
|
|
BMEdge *e_first, *e_iter;
|
|
e_iter = e_first = v->e;
|
|
do {
|
|
count++;
|
|
if (count == count_max) {
|
|
break;
|
|
}
|
|
} while ((e_iter = bmesh_disk_edge_next(e_iter, v)) != e_first);
|
|
}
|
|
return count;
|
|
}
|
|
|
|
bool bmesh_disk_validate(int len, BMEdge *e, BMVert *v)
|
|
{
|
|
BMEdge *e_iter;
|
|
|
|
if (!BM_vert_in_edge(e, v)) {
|
|
return false;
|
|
}
|
|
if (len == 0 || bmesh_disk_count_at_most(v, len + 1) != len) {
|
|
return false;
|
|
}
|
|
|
|
e_iter = e;
|
|
do {
|
|
if (len != 1 && bmesh_disk_edge_prev(e_iter, v) == e_iter) {
|
|
return false;
|
|
}
|
|
} while ((e_iter = bmesh_disk_edge_next(e_iter, v)) != e);
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* \brief DISK COUNT FACE VERT
|
|
*
|
|
* Counts the number of loop users
|
|
* for this vertex. Note that this is
|
|
* equivalent to counting the number of
|
|
* faces incident upon this vertex
|
|
*/
|
|
int bmesh_disk_facevert_count(const BMVert *v)
|
|
{
|
|
/* is there an edge on this vert at all */
|
|
int count = 0;
|
|
if (v->e) {
|
|
BMEdge *e_first, *e_iter;
|
|
|
|
/* first, loop around edge */
|
|
e_first = e_iter = v->e;
|
|
do {
|
|
if (e_iter->l) {
|
|
count += bmesh_radial_facevert_count(e_iter->l, v);
|
|
}
|
|
} while ((e_iter = bmesh_disk_edge_next(e_iter, v)) != e_first);
|
|
}
|
|
return count;
|
|
}
|
|
|
|
int bmesh_disk_facevert_count_at_most(const BMVert *v, const int count_max)
|
|
{
|
|
/* is there an edge on this vert at all */
|
|
int count = 0;
|
|
if (v->e) {
|
|
BMEdge *e_first, *e_iter;
|
|
|
|
/* first, loop around edge */
|
|
e_first = e_iter = v->e;
|
|
do {
|
|
if (e_iter->l) {
|
|
count += bmesh_radial_facevert_count_at_most(e_iter->l, v, count_max - count);
|
|
if (count == count_max) {
|
|
break;
|
|
}
|
|
}
|
|
} while ((e_iter = bmesh_disk_edge_next(e_iter, v)) != e_first);
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* \brief FIND FIRST FACE EDGE
|
|
*
|
|
* Finds the first edge in a vertices
|
|
* Disk cycle that has one of this
|
|
* vert's loops attached
|
|
* to it.
|
|
*/
|
|
BMEdge *bmesh_disk_faceedge_find_first(const BMEdge *e, const BMVert *v)
|
|
{
|
|
const BMEdge *e_iter = e;
|
|
do {
|
|
if (e_iter->l != NULL) {
|
|
return (BMEdge *)((e_iter->l->v == v) ? e_iter : e_iter->l->next->e);
|
|
}
|
|
} while ((e_iter = bmesh_disk_edge_next(e_iter, v)) != e);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* Special case for BM_LOOPS_OF_VERT & BM_FACES_OF_VERT, avoids 2x calls.
|
|
*
|
|
* The returned BMLoop.e matches the result of #bmesh_disk_faceedge_find_first
|
|
*/
|
|
BMLoop *bmesh_disk_faceloop_find_first(const BMEdge *e, const BMVert *v)
|
|
{
|
|
const BMEdge *e_iter = e;
|
|
do {
|
|
if (e_iter->l != NULL) {
|
|
return (e_iter->l->v == v) ? e_iter->l : e_iter->l->next;
|
|
}
|
|
} while ((e_iter = bmesh_disk_edge_next(e_iter, v)) != e);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* A version of #bmesh_disk_faceloop_find_first that ignores hidden faces.
|
|
*/
|
|
BMLoop *bmesh_disk_faceloop_find_first_visible(const BMEdge *e, const BMVert *v)
|
|
{
|
|
const BMEdge *e_iter = e;
|
|
do {
|
|
if (!BM_elem_flag_test(e_iter, BM_ELEM_HIDDEN)) {
|
|
if (e_iter->l != NULL) {
|
|
BMLoop *l_iter, *l_first;
|
|
l_iter = l_first = e_iter->l;
|
|
do {
|
|
if (!BM_elem_flag_test(l_iter->f, BM_ELEM_HIDDEN)) {
|
|
return (l_iter->v == v) ? l_iter : l_iter->next;
|
|
}
|
|
} while ((l_iter = l_iter->radial_next) != l_first);
|
|
}
|
|
}
|
|
} while ((e_iter = bmesh_disk_edge_next(e_iter, v)) != e);
|
|
return NULL;
|
|
}
|
|
|
|
BMEdge *bmesh_disk_faceedge_find_next(const BMEdge *e, const BMVert *v)
|
|
{
|
|
BMEdge *e_find;
|
|
e_find = bmesh_disk_edge_next(e, v);
|
|
do {
|
|
if (e_find->l && bmesh_radial_facevert_check(e_find->l, v)) {
|
|
return e_find;
|
|
}
|
|
} while ((e_find = bmesh_disk_edge_next(e_find, v)) != e);
|
|
return (BMEdge *)e;
|
|
}
|
|
|
|
/*****radial cycle functions, e.g. loops surrounding edges**** */
|
|
bool bmesh_radial_validate(int radlen, BMLoop *l)
|
|
{
|
|
BMLoop *l_iter = l;
|
|
int i = 0;
|
|
|
|
if (bmesh_radial_length(l) != radlen) {
|
|
return false;
|
|
}
|
|
|
|
do {
|
|
if (UNLIKELY(!l_iter)) {
|
|
BMESH_ASSERT(0);
|
|
return false;
|
|
}
|
|
|
|
if (l_iter->e != l->e) {
|
|
return false;
|
|
}
|
|
if (!ELEM(l_iter->v, l->e->v1, l->e->v2)) {
|
|
return false;
|
|
}
|
|
|
|
if (UNLIKELY(i > BM_LOOP_RADIAL_MAX)) {
|
|
BMESH_ASSERT(0);
|
|
return false;
|
|
}
|
|
|
|
i++;
|
|
} while ((l_iter = l_iter->radial_next) != l);
|
|
|
|
return true;
|
|
}
|
|
|
|
void bmesh_radial_loop_append(BMEdge *e, BMLoop *l)
|
|
{
|
|
if (e->l == NULL) {
|
|
e->l = l;
|
|
l->radial_next = l->radial_prev = l;
|
|
}
|
|
else {
|
|
l->radial_prev = e->l;
|
|
l->radial_next = e->l->radial_next;
|
|
|
|
e->l->radial_next->radial_prev = l;
|
|
e->l->radial_next = l;
|
|
|
|
e->l = l;
|
|
}
|
|
|
|
if (UNLIKELY(l->e && l->e != e)) {
|
|
/* l is already in a radial cycle for a different edge */
|
|
BMESH_ASSERT(0);
|
|
}
|
|
|
|
l->e = e;
|
|
}
|
|
|
|
/**
|
|
* \brief BMESH RADIAL REMOVE LOOP
|
|
*
|
|
* Removes a loop from an radial cycle. If edge e is non-NULL
|
|
* it should contain the radial cycle, and it will also get
|
|
* updated (in the case that the edge's link into the radial
|
|
* cycle was the loop which is being removed from the cycle).
|
|
*/
|
|
void bmesh_radial_loop_remove(BMEdge *e, BMLoop *l)
|
|
{
|
|
/* if e is non-NULL, l must be in the radial cycle of e */
|
|
if (UNLIKELY(e != l->e)) {
|
|
BMESH_ASSERT(0);
|
|
}
|
|
|
|
if (l->radial_next != l) {
|
|
if (l == e->l) {
|
|
e->l = l->radial_next;
|
|
}
|
|
|
|
l->radial_next->radial_prev = l->radial_prev;
|
|
l->radial_prev->radial_next = l->radial_next;
|
|
}
|
|
else {
|
|
if (l == e->l) {
|
|
e->l = NULL;
|
|
}
|
|
else {
|
|
BMESH_ASSERT(0);
|
|
}
|
|
}
|
|
|
|
/* l is no longer in a radial cycle; empty the links
|
|
* to the cycle and the link back to an edge */
|
|
l->radial_next = l->radial_prev = NULL;
|
|
l->e = NULL;
|
|
}
|
|
|
|
/**
|
|
* A version of #bmesh_radial_loop_remove which only performs the radial unlink,
|
|
* leaving the edge untouched.
|
|
*/
|
|
void bmesh_radial_loop_unlink(BMLoop *l)
|
|
{
|
|
if (l->radial_next != l) {
|
|
l->radial_next->radial_prev = l->radial_prev;
|
|
l->radial_prev->radial_next = l->radial_next;
|
|
}
|
|
|
|
/* l is no longer in a radial cycle; empty the links
|
|
* to the cycle and the link back to an edge */
|
|
l->radial_next = l->radial_prev = NULL;
|
|
l->e = NULL;
|
|
}
|
|
|
|
/**
|
|
* \brief BME RADIAL FIND FIRST FACE VERT
|
|
*
|
|
* Finds the first loop of v around radial
|
|
* cycle
|
|
*/
|
|
BMLoop *bmesh_radial_faceloop_find_first(const BMLoop *l, const BMVert *v)
|
|
{
|
|
const BMLoop *l_iter;
|
|
l_iter = l;
|
|
do {
|
|
if (l_iter->v == v) {
|
|
return (BMLoop *)l_iter;
|
|
}
|
|
} while ((l_iter = l_iter->radial_next) != l);
|
|
return NULL;
|
|
}
|
|
|
|
BMLoop *bmesh_radial_faceloop_find_next(const BMLoop *l, const BMVert *v)
|
|
{
|
|
BMLoop *l_iter;
|
|
l_iter = l->radial_next;
|
|
do {
|
|
if (l_iter->v == v) {
|
|
return l_iter;
|
|
}
|
|
} while ((l_iter = l_iter->radial_next) != l);
|
|
return (BMLoop *)l;
|
|
}
|
|
|
|
int bmesh_radial_length(const BMLoop *l)
|
|
{
|
|
const BMLoop *l_iter = l;
|
|
int i = 0;
|
|
|
|
if (!l) {
|
|
return 0;
|
|
}
|
|
|
|
do {
|
|
if (UNLIKELY(!l_iter)) {
|
|
/* radial cycle is broken (not a circulat loop) */
|
|
BMESH_ASSERT(0);
|
|
return 0;
|
|
}
|
|
|
|
i++;
|
|
if (UNLIKELY(i >= BM_LOOP_RADIAL_MAX)) {
|
|
BMESH_ASSERT(0);
|
|
return -1;
|
|
}
|
|
} while ((l_iter = l_iter->radial_next) != l);
|
|
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* \brief RADIAL COUNT FACE VERT
|
|
*
|
|
* Returns the number of times a vertex appears
|
|
* in a radial cycle
|
|
*/
|
|
int bmesh_radial_facevert_count(const BMLoop *l, const BMVert *v)
|
|
{
|
|
const BMLoop *l_iter;
|
|
int count = 0;
|
|
l_iter = l;
|
|
do {
|
|
if (l_iter->v == v) {
|
|
count++;
|
|
}
|
|
} while ((l_iter = l_iter->radial_next) != l);
|
|
|
|
return count;
|
|
}
|
|
|
|
int bmesh_radial_facevert_count_at_most(const BMLoop *l, const BMVert *v, const int count_max)
|
|
{
|
|
const BMLoop *l_iter;
|
|
int count = 0;
|
|
l_iter = l;
|
|
do {
|
|
if (l_iter->v == v) {
|
|
count++;
|
|
if (count == count_max) {
|
|
break;
|
|
}
|
|
}
|
|
} while ((l_iter = l_iter->radial_next) != l);
|
|
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* \brief RADIAL CHECK FACE VERT
|
|
*
|
|
* Quicker check for ``bmesh_radial_facevert_count(...) != 0``
|
|
*/
|
|
bool bmesh_radial_facevert_check(const BMLoop *l, const BMVert *v)
|
|
{
|
|
const BMLoop *l_iter;
|
|
l_iter = l;
|
|
do {
|
|
if (l_iter->v == v) {
|
|
return true;
|
|
}
|
|
} while ((l_iter = l_iter->radial_next) != l);
|
|
|
|
return false;
|
|
}
|
|
|
|
/*****loop cycle functions, e.g. loops surrounding a face**** */
|
|
bool bmesh_loop_validate(BMFace *f)
|
|
{
|
|
int i;
|
|
int len = f->len;
|
|
BMLoop *l_iter, *l_first;
|
|
|
|
l_first = BM_FACE_FIRST_LOOP(f);
|
|
|
|
if (l_first == NULL) {
|
|
return false;
|
|
}
|
|
|
|
/* Validate that the face loop cycle is the length specified by f->len */
|
|
for (i = 1, l_iter = l_first->next; i < len; i++, l_iter = l_iter->next) {
|
|
if ((l_iter->f != f) || (l_iter == l_first)) {
|
|
return false;
|
|
}
|
|
}
|
|
if (l_iter != l_first) {
|
|
return false;
|
|
}
|
|
|
|
/* Validate the loop->prev links also form a cycle of length f->len */
|
|
for (i = 1, l_iter = l_first->prev; i < len; i++, l_iter = l_iter->prev) {
|
|
if (l_iter == l_first) {
|
|
return false;
|
|
}
|
|
}
|
|
if (l_iter != l_first) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|