This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/bmesh/tools/bmesh_bisect_plane.c
Sybren A. Stüvel 20869065b8 Cleanup: BMesh, Clang-Tidy else-after-return fixes
This addresses warnings from Clang-Tidy's `readability-else-after-return`
rule in the `source/blender/bmesh` module.

No functional changes.
2020-07-03 14:48:37 +02:00

494 lines
15 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file
* \ingroup bmesh
*
* Cut the geometry in half using a plane.
*
* \par Implementation
* This simply works by splitting tagged edges who's verts span either side of
* the plane, then splitting faces along their dividing verts.
* The only complex case is when a ngon spans the axis multiple times,
* in this case we need to do some extra checks to correctly bisect the ngon.
* see: #bm_face_bisect_verts
*/
#include <limits.h>
#include "MEM_guardedalloc.h"
#include "BLI_alloca.h"
#include "BLI_linklist.h"
#include "BLI_linklist_stack.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "BLI_utildefines_stack.h"
#include "bmesh.h"
#include "bmesh_bisect_plane.h" /* own include */
#include "BLI_strict_flags.h" /* keep last */
/* -------------------------------------------------------------------- */
/* Math utils */
static short plane_point_test_v3(const float plane[4],
const float co[3],
const float eps,
float *r_depth)
{
const float f = plane_point_side_v3(plane, co);
*r_depth = f;
if (f <= -eps) {
return -1;
}
if (f >= eps) {
return 1;
}
return 0;
}
/* -------------------------------------------------------------------- */
/* Wrappers to hide internal data-structure abuse,
* later we may want to move this into some hash lookup
* to a separate struct, but for now we can store in BMesh data */
#define BM_VERT_DIR(v) ((short *)(&(v)->head.index))[0] /* Direction -1/0/1 */
#define BM_VERT_SKIP(v) ((short *)(&(v)->head.index))[1] /* Skip Vert 0/1 */
#define BM_VERT_DIST(v) ((v)->no[0]) /* Distance from the plane. */
#define BM_VERT_SORTVAL(v) ((v)->no[1]) /* Temp value for sorting. */
#define BM_VERT_LOOPINDEX(v) /* The verts index within a face (temp var) */ \
(*((uint *)(&(v)->no[2])))
/**
* Hide flag access
* (for more readable code since same flag is used differently for vert/edgeface)...
*/
/* enable when vertex is in the center and its faces have been added to the stack */
BLI_INLINE void vert_is_center_enable(BMVert *v)
{
BM_elem_flag_enable(v, BM_ELEM_TAG);
}
BLI_INLINE void vert_is_center_disable(BMVert *v)
{
BM_elem_flag_disable(v, BM_ELEM_TAG);
}
BLI_INLINE bool vert_is_center_test(BMVert *v)
{
return (BM_elem_flag_test(v, BM_ELEM_TAG) != 0);
}
/* enable when the edge can be cut */
BLI_INLINE void edge_is_cut_enable(BMEdge *e)
{
BM_elem_flag_enable(e, BM_ELEM_TAG);
}
BLI_INLINE void edge_is_cut_disable(BMEdge *e)
{
BM_elem_flag_disable(e, BM_ELEM_TAG);
}
BLI_INLINE bool edge_is_cut_test(BMEdge *e)
{
return (BM_elem_flag_test(e, BM_ELEM_TAG) != 0);
}
/* enable when the faces are added to the stack */
BLI_INLINE void face_in_stack_enable(BMFace *f)
{
BM_elem_flag_disable(f, BM_ELEM_TAG);
}
BLI_INLINE void face_in_stack_disable(BMFace *f)
{
BM_elem_flag_enable(f, BM_ELEM_TAG);
}
BLI_INLINE bool face_in_stack_test(BMFace *f)
{
return (BM_elem_flag_test(f, BM_ELEM_TAG) == 0);
}
/* -------------------------------------------------------------------- */
/* BMesh utils */
static int bm_vert_sortval_cb(const void *v_a_v, const void *v_b_v)
{
const float val_a = BM_VERT_SORTVAL(*((BMVert **)v_a_v));
const float val_b = BM_VERT_SORTVAL(*((BMVert **)v_b_v));
if (val_a > val_b) {
return 1;
}
if (val_a < val_b) {
return -1;
}
return 0;
}
static void bm_face_bisect_verts(
BMesh *bm, BMFace *f, const float plane[4], const short oflag_center, const short oflag_new)
{
/* unlikely more than 2 verts are needed */
const uint f_len_orig = (uint)f->len;
BMVert **vert_split_arr = BLI_array_alloca(vert_split_arr, f_len_orig);
STACK_DECLARE(vert_split_arr);
BMLoop *l_iter, *l_first;
bool use_dirs[3] = {false, false, false};
bool is_inside = false;
STACK_INIT(vert_split_arr, f_len_orig);
l_first = BM_FACE_FIRST_LOOP(f);
/* add plane-aligned verts to the stack
* and check we have verts from both sides in this face,
* ... that the face doesn't only have boundary verts on the plane for eg. */
l_iter = l_first;
do {
if (vert_is_center_test(l_iter->v)) {
BLI_assert(BM_VERT_DIR(l_iter->v) == 0);
/* if both are -1 or 1, or both are zero:
* don't flip 'inside' var while walking */
BM_VERT_SKIP(l_iter->v) = (((BM_VERT_DIR(l_iter->prev->v) ^ BM_VERT_DIR(l_iter->next->v))) ==
0);
STACK_PUSH(vert_split_arr, l_iter->v);
}
use_dirs[BM_VERT_DIR(l_iter->v) + 1] = true;
} while ((l_iter = l_iter->next) != l_first);
if ((STACK_SIZE(vert_split_arr) > 1) && (use_dirs[0] && use_dirs[2])) {
if (LIKELY(STACK_SIZE(vert_split_arr) == 2)) {
BMLoop *l_new;
BMLoop *l_a, *l_b;
l_a = BM_face_vert_share_loop(f, vert_split_arr[0]);
l_b = BM_face_vert_share_loop(f, vert_split_arr[1]);
/* common case, just cut the face once */
BM_face_split(bm, f, l_a, l_b, &l_new, NULL, true);
if (l_new) {
if (oflag_center | oflag_new) {
BMO_edge_flag_enable(bm, l_new->e, oflag_center | oflag_new);
}
if (oflag_new) {
BMO_face_flag_enable(bm, l_new->f, oflag_new);
}
}
}
else {
/* less common case, _complicated_ we need to calculate how to do multiple cuts */
float(*face_verts_proj_2d)[2] = BLI_array_alloca(face_verts_proj_2d, f_len_orig);
float axis_mat[3][3];
BMFace **face_split_arr = BLI_array_alloca(face_split_arr, STACK_SIZE(vert_split_arr));
STACK_DECLARE(face_split_arr);
float sort_dir[3];
uint i;
/* ---- */
/* Calculate the direction to sort verts in the face intersecting the plane */
/* exact dir isn't so important,
* just need a dir for sorting verts across face,
* 'sort_dir' could be flipped either way, it not important, we only need to order the array
*/
cross_v3_v3v3(sort_dir, f->no, plane);
if (UNLIKELY(normalize_v3(sort_dir) == 0.0f)) {
/* find any 2 verts and get their direction */
for (i = 0; i < STACK_SIZE(vert_split_arr); i++) {
if (!equals_v3v3(vert_split_arr[0]->co, vert_split_arr[i]->co)) {
sub_v3_v3v3(sort_dir, vert_split_arr[0]->co, vert_split_arr[i]->co);
normalize_v3(sort_dir);
}
}
if (UNLIKELY(i == STACK_SIZE(vert_split_arr))) {
/* ok, we can't do anything useful here,
* face has no area or so, bail out, this is highly unlikely but not impossible */
goto finally;
}
}
/* ---- */
/* Calculate 2d coords to use for intersection checks */
/* get the faces 2d coords */
BLI_assert(BM_face_is_normal_valid(f));
axis_dominant_v3_to_m3(axis_mat, f->no);
l_iter = l_first;
i = 0;
do {
BM_VERT_LOOPINDEX(l_iter->v) = i;
mul_v2_m3v3(face_verts_proj_2d[i], axis_mat, l_iter->v->co);
i++;
} while ((l_iter = l_iter->next) != l_first);
/* ---- */
/* Sort the verts across the face from one side to another */
for (i = 0; i < STACK_SIZE(vert_split_arr); i++) {
BMVert *v = vert_split_arr[i];
BM_VERT_SORTVAL(v) = dot_v3v3(sort_dir, v->co);
}
qsort(
vert_split_arr, STACK_SIZE(vert_split_arr), sizeof(*vert_split_arr), bm_vert_sortval_cb);
/* ---- */
/* Split the face across sorted splits */
/* note: we don't know which face gets which splits,
* so at the moment we have to search all faces for the vert pair,
* while not all that nice, typically there are < 5 resulting faces,
* so its not _that_ bad. */
STACK_INIT(face_split_arr, STACK_SIZE(vert_split_arr));
STACK_PUSH(face_split_arr, f);
for (i = 0; i < STACK_SIZE(vert_split_arr) - 1; i++) {
BMVert *v_a = vert_split_arr[i];
BMVert *v_b = vert_split_arr[i + 1];
if (!BM_VERT_SKIP(v_a)) {
is_inside = !is_inside;
}
if (is_inside) {
BMLoop *l_a, *l_b;
bool found = false;
uint j;
for (j = 0; j < STACK_SIZE(face_split_arr); j++) {
/* would be nice to avoid loop lookup here,
* but we need to know which face the verts are in */
if ((l_a = BM_face_vert_share_loop(face_split_arr[j], v_a)) &&
(l_b = BM_face_vert_share_loop(face_split_arr[j], v_b))) {
found = true;
break;
}
}
/* ideally wont happen, but it can for self intersecting faces */
// BLI_assert(found == true);
/* in fact this simple test is good enough,
* test if the loops are adjacent */
if (found && !BM_loop_is_adjacent(l_a, l_b)) {
BMLoop *l_new;
BMFace *f_tmp;
f_tmp = BM_face_split(bm, face_split_arr[j], l_a, l_b, &l_new, NULL, true);
if (l_new) {
if (oflag_center | oflag_new) {
BMO_edge_flag_enable(bm, l_new->e, oflag_center | oflag_new);
}
if (oflag_new) {
BMO_face_flag_enable(bm, l_new->f, oflag_new);
}
}
if (f_tmp) {
if (f_tmp != face_split_arr[j]) {
STACK_PUSH(face_split_arr, f_tmp);
BLI_assert(STACK_SIZE(face_split_arr) <= STACK_SIZE(vert_split_arr));
}
}
}
}
else {
// printf("no intersect\n");
}
}
}
}
finally:
(void)vert_split_arr;
}
/* -------------------------------------------------------------------- */
/* Main logic */
/**
* \param use_snap_center: Snap verts onto the plane.
* \param use_tag: Only bisect tagged edges and faces.
* \param oflag_center: Operator flag, enabled for geometry on the axis (existing and created)
*/
void BM_mesh_bisect_plane(BMesh *bm,
const float plane[4],
const bool use_snap_center,
const bool use_tag,
const short oflag_center,
const short oflag_new,
const float eps)
{
uint einput_len;
uint i;
BMEdge **edges_arr = MEM_mallocN(sizeof(*edges_arr) * (size_t)bm->totedge, __func__);
BLI_LINKSTACK_DECLARE(face_stack, BMFace *);
BMVert *v;
BMFace *f;
BMIter iter;
if (use_tag) {
/* build tagged edge array */
BMEdge *e;
einput_len = 0;
/* flush edge tags to verts */
BM_mesh_elem_hflag_disable_all(bm, BM_VERT, BM_ELEM_TAG, false);
/* keep face tags as is */
BM_ITER_MESH_INDEX (e, &iter, bm, BM_EDGES_OF_MESH, i) {
if (edge_is_cut_test(e)) {
edges_arr[einput_len++] = e;
/* flush edge tags to verts */
BM_elem_flag_enable(e->v1, BM_ELEM_TAG);
BM_elem_flag_enable(e->v2, BM_ELEM_TAG);
}
}
/* face tags are set by caller */
}
else {
BMEdge *e;
einput_len = (uint)bm->totedge;
BM_ITER_MESH_INDEX (e, &iter, bm, BM_EDGES_OF_MESH, i) {
edge_is_cut_enable(e);
edges_arr[i] = e;
}
BM_ITER_MESH (f, &iter, bm, BM_FACES_OF_MESH) {
face_in_stack_disable(f);
}
}
BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) {
if (use_tag && !BM_elem_flag_test(v, BM_ELEM_TAG)) {
vert_is_center_disable(v);
/* these should never be accessed */
BM_VERT_DIR(v) = 0;
BM_VERT_DIST(v) = 0.0f;
continue;
}
vert_is_center_disable(v);
BM_VERT_DIR(v) = plane_point_test_v3(plane, v->co, eps, &(BM_VERT_DIST(v)));
if (BM_VERT_DIR(v) == 0) {
if (oflag_center) {
BMO_vert_flag_enable(bm, v, oflag_center);
}
if (use_snap_center) {
closest_to_plane_v3(v->co, plane, v->co);
}
}
}
/* store a stack of faces to be evaluated for splitting */
BLI_LINKSTACK_INIT(face_stack);
for (i = 0; i < einput_len; i++) {
/* we could check edge_is_cut_test(e) but there is no point */
BMEdge *e = edges_arr[i];
const int side[2] = {BM_VERT_DIR(e->v1), BM_VERT_DIR(e->v2)};
const float dist[2] = {BM_VERT_DIST(e->v1), BM_VERT_DIST(e->v2)};
if (side[0] && side[1] && (side[0] != side[1])) {
const float e_fac = dist[0] / (dist[0] - dist[1]);
BMVert *v_new;
if (e->l) {
BMLoop *l_iter, *l_first;
l_iter = l_first = e->l;
do {
if (!face_in_stack_test(l_iter->f)) {
face_in_stack_enable(l_iter->f);
BLI_LINKSTACK_PUSH(face_stack, l_iter->f);
}
} while ((l_iter = l_iter->radial_next) != l_first);
}
{
BMEdge *e_new;
v_new = BM_edge_split(bm, e, e->v1, &e_new, e_fac);
if (oflag_new) {
BMO_edge_flag_enable(bm, e_new, oflag_new);
}
}
vert_is_center_enable(v_new);
if (oflag_new | oflag_center) {
BMO_vert_flag_enable(bm, v_new, oflag_new | oflag_center);
}
BM_VERT_DIR(v_new) = 0;
BM_VERT_DIST(v_new) = 0.0f;
}
else if (side[0] == 0 || side[1] == 0) {
/* check if either edge verts are aligned,
* if so - tag and push all faces that use it into the stack */
uint j;
BM_ITER_ELEM_INDEX (v, &iter, e, BM_VERTS_OF_EDGE, j) {
if (side[j] == 0) {
if (vert_is_center_test(v) == 0) {
BMIter itersub;
BMLoop *l_iter;
vert_is_center_enable(v);
BM_ITER_ELEM (l_iter, &itersub, v, BM_LOOPS_OF_VERT) {
if (!face_in_stack_test(l_iter->f)) {
face_in_stack_enable(l_iter->f);
BLI_LINKSTACK_PUSH(face_stack, l_iter->f);
}
}
}
}
}
/* if both verts are on the center - tag it */
if (oflag_center) {
if (side[0] == 0 && side[1] == 0) {
BMO_edge_flag_enable(bm, e, oflag_center);
}
}
}
}
MEM_freeN(edges_arr);
while ((f = BLI_LINKSTACK_POP(face_stack))) {
bm_face_bisect_verts(bm, f, plane, oflag_center, oflag_new);
}
/* Caused by access macros: BM_VERT_DIR, BM_VERT_SKIP. */
bm->elem_index_dirty |= BM_VERT;
/* now we have all faces to split in the stack */
BLI_LINKSTACK_FREE(face_stack);
}