This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/editors/object/object_remesh.c
Bastien Montagne 6672cbeb23 Fix T84202: Sculpt lasso mask crash after remesh.
'Caused'/revealed by rBd29a720c45e5: Operators that fully re-create the
mesh would previously rely on `sculpt_update_object` called from update
code to get required sculpt-specific data layers re-added to the new
mesh.

Now instead put all code adding data to orig mesh for sculpt purpose
into a new util function (`BKE_sculpt_ensure_orig_mesh_data`), and call
that function when entering sculpt mode, and from voxel remesher code.

This is contonuing effort to more clearly separate orig data from evaluated
data handling/usage in sculpt code.

TODO: there are likely other code paths that would need to call that
new function?

Reviewers: @sergey, @pablodp606

Subscribers:
2021-01-06 16:25:39 +01:00

1209 lines
34 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2019 by Blender Foundation
* All rights reserved.
*/
/** \file
* \ingroup edobj
*/
#include <ctype.h>
#include <float.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "DNA_userdef_types.h"
#include "BLT_translation.h"
#include "BKE_context.h"
#include "BKE_customdata.h"
#include "BKE_global.h"
#include "BKE_lib_id.h"
#include "BKE_main.h"
#include "BKE_mesh.h"
#include "BKE_mesh_mirror.h"
#include "BKE_mesh_remesh_voxel.h"
#include "BKE_mesh_runtime.h"
#include "BKE_modifier.h"
#include "BKE_object.h"
#include "BKE_paint.h"
#include "BKE_report.h"
#include "BKE_scene.h"
#include "BKE_shrinkwrap.h"
#include "DEG_depsgraph.h"
#include "DEG_depsgraph_build.h"
#include "ED_mesh.h"
#include "ED_object.h"
#include "ED_screen.h"
#include "ED_sculpt.h"
#include "ED_space_api.h"
#include "ED_undo.h"
#include "ED_view3d.h"
#include "RNA_access.h"
#include "RNA_define.h"
#include "RNA_enum_types.h"
#include "GPU_immediate.h"
#include "GPU_immediate_util.h"
#include "GPU_matrix.h"
#include "GPU_state.h"
#include "WM_api.h"
#include "WM_message.h"
#include "WM_toolsystem.h"
#include "WM_types.h"
#include "UI_interface.h"
#include "BLF_api.h"
#include "object_intern.h" /* own include */
/* TODO(sebpa): unstable, can lead to unrecoverable errors. */
// #define USE_MESH_CURVATURE
/* -------------------------------------------------------------------- */
/** \name Voxel Remesh Operator
* \{ */
static bool object_remesh_poll(bContext *C)
{
Object *ob = CTX_data_active_object(C);
if (ob == NULL || ob->data == NULL) {
return false;
}
if (ID_IS_LINKED(ob) || ID_IS_LINKED(ob->data) || ID_IS_OVERRIDE_LIBRARY(ob->data)) {
CTX_wm_operator_poll_msg_set(C, "The remesher cannot worked on linked or override data");
return false;
}
if (BKE_object_is_in_editmode(ob)) {
CTX_wm_operator_poll_msg_set(C, "The remesher cannot run from edit mode");
return false;
}
if (ob->mode == OB_MODE_SCULPT && ob->sculpt->bm) {
CTX_wm_operator_poll_msg_set(C, "The remesher cannot run with dyntopo activated");
return false;
}
if (BKE_modifiers_uses_multires(ob)) {
CTX_wm_operator_poll_msg_set(
C, "The remesher cannot run with a Multires modifier in the modifier stack");
return false;
}
return ED_operator_object_active_editable_mesh(C);
}
static int voxel_remesh_exec(bContext *C, wmOperator *op)
{
Object *ob = CTX_data_active_object(C);
Mesh *mesh = ob->data;
Mesh *new_mesh;
if (mesh->remesh_voxel_size <= 0.0f) {
BKE_report(op->reports, RPT_ERROR, "Voxel remesher cannot run with a voxel size of 0.0");
return OPERATOR_CANCELLED;
}
float isovalue = 0.0f;
if (mesh->flag & ME_REMESH_REPROJECT_VOLUME) {
isovalue = mesh->remesh_voxel_size * 0.3f;
}
new_mesh = BKE_mesh_remesh_voxel_to_mesh_nomain(
mesh, mesh->remesh_voxel_size, mesh->remesh_voxel_adaptivity, isovalue);
if (!new_mesh) {
BKE_report(op->reports, RPT_ERROR, "Voxel remesher failed to create mesh");
return OPERATOR_CANCELLED;
}
if (ob->mode == OB_MODE_SCULPT) {
ED_sculpt_undo_geometry_begin(ob, op->type->name);
}
if (mesh->flag & ME_REMESH_FIX_POLES && mesh->remesh_voxel_adaptivity <= 0.0f) {
new_mesh = BKE_mesh_remesh_voxel_fix_poles(new_mesh);
BKE_mesh_calc_normals(new_mesh);
}
if (mesh->flag & ME_REMESH_REPROJECT_VOLUME || mesh->flag & ME_REMESH_REPROJECT_PAINT_MASK ||
mesh->flag & ME_REMESH_REPROJECT_SCULPT_FACE_SETS) {
BKE_mesh_runtime_clear_geometry(mesh);
}
if (mesh->flag & ME_REMESH_REPROJECT_VOLUME) {
BKE_shrinkwrap_remesh_target_project(new_mesh, mesh, ob);
}
if (mesh->flag & ME_REMESH_REPROJECT_PAINT_MASK) {
BKE_mesh_remesh_reproject_paint_mask(new_mesh, mesh);
}
if (mesh->flag & ME_REMESH_REPROJECT_SCULPT_FACE_SETS) {
BKE_remesh_reproject_sculpt_face_sets(new_mesh, mesh);
}
if (mesh->flag & ME_REMESH_REPROJECT_VERTEX_COLORS) {
BKE_mesh_runtime_clear_geometry(mesh);
BKE_remesh_reproject_vertex_paint(new_mesh, mesh);
}
BKE_mesh_nomain_to_mesh(new_mesh, mesh, ob, &CD_MASK_MESH, true);
if (mesh->flag & ME_REMESH_SMOOTH_NORMALS) {
BKE_mesh_smooth_flag_set(ob->data, true);
}
if (ob->mode == OB_MODE_SCULPT) {
BKE_sculpt_ensure_orig_mesh_data(CTX_data_scene(C), ob);
ED_sculpt_undo_geometry_end(ob);
}
BKE_mesh_batch_cache_dirty_tag(ob->data, BKE_MESH_BATCH_DIRTY_ALL);
DEG_id_tag_update(&ob->id, ID_RECALC_GEOMETRY);
WM_event_add_notifier(C, NC_GEOM | ND_DATA, ob->data);
return OPERATOR_FINISHED;
}
void OBJECT_OT_voxel_remesh(wmOperatorType *ot)
{
/* identifiers */
ot->name = "Voxel Remesh";
ot->description =
"Calculates a new manifold mesh based on the volume of the current mesh. All data layers "
"will be lost";
ot->idname = "OBJECT_OT_voxel_remesh";
/* api callbacks */
ot->poll = object_remesh_poll;
ot->exec = voxel_remesh_exec;
ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Voxel Size Operator
* \{ */
#define VOXEL_SIZE_EDIT_MAX_GRIDS_LINES 500
#define VOXEL_SIZE_EDIT_MAX_STR_LEN 20
typedef struct VoxelSizeEditCustomData {
void *draw_handle;
Object *active_object;
float init_mval[2];
float slow_mval[2];
bool slow_mode;
float init_voxel_size;
float slow_voxel_size;
float voxel_size;
float preview_plane[4][3];
float text_mat[4][4];
} VoxelSizeEditCustomData;
static void voxel_size_parallel_lines_draw(uint pos3d,
const float initial_co[3],
const float end_co[3],
const float length_co[3],
const float spacing)
{
const float total_len = len_v3v3(initial_co, end_co);
const int tot_lines = (int)(total_len / spacing);
const int tot_lines_half = (tot_lines / 2) + 1;
float spacing_dir[3], lines_start[3];
float line_dir[3];
sub_v3_v3v3(spacing_dir, end_co, initial_co);
normalize_v3(spacing_dir);
sub_v3_v3v3(line_dir, length_co, initial_co);
if (tot_lines > VOXEL_SIZE_EDIT_MAX_GRIDS_LINES || tot_lines <= 1) {
return;
}
mid_v3_v3v3(lines_start, initial_co, end_co);
immBegin(GPU_PRIM_LINES, (uint)tot_lines_half * 2);
for (int i = 0; i < tot_lines_half; i++) {
float line_start[3];
float line_end[3];
madd_v3_v3v3fl(line_start, lines_start, spacing_dir, spacing * i);
add_v3_v3v3(line_end, line_start, line_dir);
immVertex3fv(pos3d, line_start);
immVertex3fv(pos3d, line_end);
}
immEnd();
mul_v3_fl(spacing_dir, -1.0f);
immBegin(GPU_PRIM_LINES, (uint)(tot_lines_half - 1) * 2);
for (int i = 1; i < tot_lines_half; i++) {
float line_start[3];
float line_end[3];
madd_v3_v3v3fl(line_start, lines_start, spacing_dir, spacing * i);
add_v3_v3v3(line_end, line_start, line_dir);
immVertex3fv(pos3d, line_start);
immVertex3fv(pos3d, line_end);
}
immEnd();
}
static void voxel_size_edit_draw(const bContext *UNUSED(C), ARegion *UNUSED(ar), void *arg)
{
VoxelSizeEditCustomData *cd = arg;
GPU_blend(GPU_BLEND_ALPHA);
GPU_line_smooth(true);
uint pos3d = GPU_vertformat_attr_add(immVertexFormat(), "pos", GPU_COMP_F32, 3, GPU_FETCH_FLOAT);
immBindBuiltinProgram(GPU_SHADER_3D_UNIFORM_COLOR);
GPU_matrix_push();
GPU_matrix_mul(cd->active_object->obmat);
/* Draw Rect */
immUniformColor4f(0.9f, 0.9f, 0.9f, 0.8f);
GPU_line_width(3.0f);
immBegin(GPU_PRIM_LINES, 8);
immVertex3fv(pos3d, cd->preview_plane[0]);
immVertex3fv(pos3d, cd->preview_plane[1]);
immVertex3fv(pos3d, cd->preview_plane[1]);
immVertex3fv(pos3d, cd->preview_plane[2]);
immVertex3fv(pos3d, cd->preview_plane[2]);
immVertex3fv(pos3d, cd->preview_plane[3]);
immVertex3fv(pos3d, cd->preview_plane[3]);
immVertex3fv(pos3d, cd->preview_plane[0]);
immEnd();
/* Draw Grid */
GPU_line_width(1.0f);
const float total_len = len_v3v3(cd->preview_plane[0], cd->preview_plane[1]);
const int tot_lines = (int)(total_len / cd->voxel_size);
/* Smoothstep to reduce the alpha of the grid as the line number increases. */
const float a = VOXEL_SIZE_EDIT_MAX_GRIDS_LINES * 0.1f;
const float b = VOXEL_SIZE_EDIT_MAX_GRIDS_LINES;
const float x = clamp_f((tot_lines - a) / (b - a), 0.0f, 1.0);
const float alpha_factor = 1.0f - (x * x * (3.0f - 2.0f * x));
immUniformColor4f(0.9f, 0.9f, 0.9f, 0.75f * alpha_factor);
voxel_size_parallel_lines_draw(
pos3d, cd->preview_plane[0], cd->preview_plane[1], cd->preview_plane[3], cd->voxel_size);
voxel_size_parallel_lines_draw(
pos3d, cd->preview_plane[1], cd->preview_plane[2], cd->preview_plane[0], cd->voxel_size);
/* Draw text */
const uiStyle *style = UI_style_get();
const uiFontStyle *fstyle = &style->widget;
const int fontid = fstyle->uifont_id;
float strwidth, strheight;
short fstyle_points = fstyle->points;
char str[VOXEL_SIZE_EDIT_MAX_STR_LEN];
short strdrawlen = 0;
BLI_snprintf(str, VOXEL_SIZE_EDIT_MAX_STR_LEN, "%.4f", cd->voxel_size);
strdrawlen = BLI_strlen_utf8(str);
immUnbindProgram();
GPU_matrix_push();
GPU_matrix_mul(cd->text_mat);
BLF_size(fontid, 10.0f * fstyle_points, U.dpi);
BLF_color3f(fontid, 1.0f, 1.0f, 1.0f);
BLF_width_and_height(fontid, str, strdrawlen, &strwidth, &strheight);
BLF_position(fontid, -0.5f * strwidth, -0.5f * strheight, 0.0f);
BLF_draw(fontid, str, strdrawlen);
GPU_matrix_pop();
GPU_matrix_pop();
GPU_blend(GPU_BLEND_NONE);
GPU_line_smooth(false);
}
static void voxel_size_edit_cancel(bContext *C, wmOperator *op)
{
ARegion *region = CTX_wm_region(C);
VoxelSizeEditCustomData *cd = op->customdata;
ED_region_draw_cb_exit(region->type, cd->draw_handle);
MEM_freeN(op->customdata);
ED_workspace_status_text(C, NULL);
}
static int voxel_size_edit_modal(bContext *C, wmOperator *op, const wmEvent *event)
{
ARegion *region = CTX_wm_region(C);
VoxelSizeEditCustomData *cd = op->customdata;
Object *active_object = cd->active_object;
Mesh *mesh = (Mesh *)active_object->data;
/* Cancel modal operator */
if ((event->type == EVT_ESCKEY && event->val == KM_PRESS) ||
(event->type == RIGHTMOUSE && event->val == KM_PRESS)) {
voxel_size_edit_cancel(C, op);
ED_region_tag_redraw(region);
return OPERATOR_FINISHED;
}
/* Finish modal operator */
if ((event->type == LEFTMOUSE && event->val == KM_RELEASE) ||
(event->type == EVT_RETKEY && event->val == KM_PRESS) ||
(event->type == EVT_PADENTER && event->val == KM_PRESS)) {
ED_region_draw_cb_exit(region->type, cd->draw_handle);
mesh->remesh_voxel_size = cd->voxel_size;
MEM_freeN(op->customdata);
ED_region_tag_redraw(region);
ED_workspace_status_text(C, NULL);
return OPERATOR_FINISHED;
}
const float mval[2] = {event->mval[0], event->mval[1]};
float d = cd->init_mval[0] - mval[0];
if (cd->slow_mode) {
d = cd->slow_mval[0] - mval[0];
}
if (event->ctrl) {
/* Linear mode, enables jumping to any voxel size. */
d = d * 0.0005f;
}
else {
/* Multiply d by the initial voxel size to prevent uncontrollable speeds when using low voxel
* sizes. */
/* When the voxel size is slower, it needs more precision. */
d = d * min_ff(pow2f(cd->init_voxel_size), 0.1f) * 0.05f;
}
if (cd->slow_mode) {
cd->voxel_size = cd->slow_voxel_size + d * 0.05f;
}
else {
cd->voxel_size = cd->init_voxel_size + d;
}
if (event->type == EVT_LEFTSHIFTKEY && event->val == KM_PRESS) {
cd->slow_mode = true;
copy_v2_v2(cd->slow_mval, mval);
cd->slow_voxel_size = cd->voxel_size;
}
if (event->type == EVT_LEFTSHIFTKEY && event->val == KM_RELEASE) {
cd->slow_mode = false;
cd->slow_voxel_size = 0.0f;
}
cd->voxel_size = clamp_f(cd->voxel_size, 0.0001f, 1.0f);
ED_region_tag_redraw(region);
return OPERATOR_RUNNING_MODAL;
}
static int voxel_size_edit_invoke(bContext *C, wmOperator *op, const wmEvent *event)
{
ARegion *region = CTX_wm_region(C);
Object *active_object = CTX_data_active_object(C);
Mesh *mesh = (Mesh *)active_object->data;
VoxelSizeEditCustomData *cd = MEM_callocN(sizeof(VoxelSizeEditCustomData),
"Voxel Size Edit OP Custom Data");
/* Initial operator Custom Data setup. */
cd->draw_handle = ED_region_draw_cb_activate(
region->type, voxel_size_edit_draw, cd, REGION_DRAW_POST_VIEW);
cd->active_object = active_object;
cd->init_mval[0] = event->mval[0];
cd->init_mval[1] = event->mval[1];
cd->init_voxel_size = mesh->remesh_voxel_size;
cd->voxel_size = mesh->remesh_voxel_size;
op->customdata = cd;
/* Select the front facing face of the mesh boundig box. */
BoundBox *bb = BKE_mesh_boundbox_get(cd->active_object);
/* Indices of the Bounding Box faces. */
const int BB_faces[6][4] = {
{3, 0, 4, 7},
{1, 2, 6, 5},
{3, 2, 1, 0},
{4, 5, 6, 7},
{0, 1, 5, 4},
{2, 3, 7, 6},
};
copy_v3_v3(cd->preview_plane[0], bb->vec[BB_faces[0][0]]);
copy_v3_v3(cd->preview_plane[1], bb->vec[BB_faces[0][1]]);
copy_v3_v3(cd->preview_plane[2], bb->vec[BB_faces[0][2]]);
copy_v3_v3(cd->preview_plane[3], bb->vec[BB_faces[0][3]]);
RegionView3D *rv3d = CTX_wm_region_view3d(C);
float mat[3][3];
float current_normal[3];
float view_normal[3] = {0.0f, 0.0f, 1.0f};
/* Calculate the view normal. */
invert_m4_m4(active_object->imat, active_object->obmat);
copy_m3_m4(mat, rv3d->viewinv);
mul_m3_v3(mat, view_normal);
copy_m3_m4(mat, active_object->imat);
mul_m3_v3(mat, view_normal);
normalize_v3(view_normal);
normal_tri_v3(current_normal, cd->preview_plane[0], cd->preview_plane[1], cd->preview_plane[2]);
float min_dot = dot_v3v3(current_normal, view_normal);
float current_dot = 1;
/* Check if there is a face that is more aligned towards the view. */
for (int i = 0; i < 6; i++) {
normal_tri_v3(
current_normal, bb->vec[BB_faces[i][0]], bb->vec[BB_faces[i][1]], bb->vec[BB_faces[i][2]]);
current_dot = dot_v3v3(current_normal, view_normal);
if (current_dot < min_dot) {
min_dot = current_dot;
copy_v3_v3(cd->preview_plane[0], bb->vec[BB_faces[i][0]]);
copy_v3_v3(cd->preview_plane[1], bb->vec[BB_faces[i][1]]);
copy_v3_v3(cd->preview_plane[2], bb->vec[BB_faces[i][2]]);
copy_v3_v3(cd->preview_plane[3], bb->vec[BB_faces[i][3]]);
}
}
/* Matrix calculation to position the text in 3D space. */
float text_pos[3];
float scale_mat[4][4];
float d_a[3], d_b[3];
float d_a_proj[2], d_b_proj[2];
float preview_plane_proj[4][3];
const float y_axis_proj[2] = {0.0f, 1.0f};
mid_v3_v3v3(text_pos, cd->preview_plane[0], cd->preview_plane[2]);
/* Project the selected face in the previous step of the Bounding Box. */
for (int i = 0; i < 4; i++) {
float preview_plane_world_space[3];
mul_v3_m4v3(preview_plane_world_space, active_object->obmat, cd->preview_plane[i]);
ED_view3d_project(region, preview_plane_world_space, preview_plane_proj[i]);
}
/* Get the initial X and Y axis of the basis from the edges of the Bounding Box face. */
sub_v3_v3v3(d_a, cd->preview_plane[1], cd->preview_plane[0]);
sub_v3_v3v3(d_b, cd->preview_plane[3], cd->preview_plane[0]);
normalize_v3(d_a);
normalize_v3(d_b);
/* Project the X and Y axis. */
sub_v2_v2v2(d_a_proj, preview_plane_proj[1], preview_plane_proj[0]);
sub_v2_v2v2(d_b_proj, preview_plane_proj[3], preview_plane_proj[0]);
normalize_v2(d_a_proj);
normalize_v2(d_b_proj);
unit_m4(cd->text_mat);
/* Select the axis that is aligned with the view Y axis to use it as the basis Y. */
if (fabsf(dot_v2v2(d_a_proj, y_axis_proj)) > fabsf(dot_v2v2(d_b_proj, y_axis_proj))) {
copy_v3_v3(cd->text_mat[0], d_b);
copy_v3_v3(cd->text_mat[1], d_a);
/* Flip the X and Y basis vectors to make sure they always point upwards and to the right. */
if (d_b_proj[0] < 0.0f) {
mul_v3_fl(cd->text_mat[0], -1.0f);
}
if (d_a_proj[1] < 0.0f) {
mul_v3_fl(cd->text_mat[1], -1.0f);
}
}
else {
copy_v3_v3(cd->text_mat[0], d_a);
copy_v3_v3(cd->text_mat[1], d_b);
if (d_a_proj[0] < 0.0f) {
mul_v3_fl(cd->text_mat[0], -1.0f);
}
if (d_b_proj[1] < 0.0f) {
mul_v3_fl(cd->text_mat[1], -1.0f);
}
}
/* Use the Bounding Box face normal as the basis Z. */
normal_tri_v3(cd->text_mat[2], cd->preview_plane[0], cd->preview_plane[1], cd->preview_plane[2]);
/* Write the text position into the matrix. */
copy_v3_v3(cd->text_mat[3], text_pos);
/* Scale the text. */
float text_pos_word_space[3];
mul_v3_m4v3(text_pos_word_space, active_object->obmat, text_pos);
const float pixelsize = ED_view3d_pixel_size(rv3d, text_pos_word_space);
scale_m4_fl(scale_mat, pixelsize * 0.5f);
mul_m4_m4_post(cd->text_mat, scale_mat);
WM_event_add_modal_handler(C, op);
ED_region_tag_redraw(region);
const char *status_str = TIP_(
"Move the mouse to change the voxel size. LMB: confirm size, ESC/RMB: cancel");
ED_workspace_status_text(C, status_str);
return OPERATOR_RUNNING_MODAL;
}
static bool voxel_size_edit_poll(bContext *C)
{
return CTX_wm_region_view3d(C) && object_remesh_poll(C);
}
void OBJECT_OT_voxel_size_edit(wmOperatorType *ot)
{
/* identifiers */
ot->name = "Edit Voxel Size";
ot->description = "Modify the mesh voxel size interactively used in the voxel remesher";
ot->idname = "OBJECT_OT_voxel_size_edit";
/* api callbacks */
ot->poll = voxel_size_edit_poll;
ot->invoke = voxel_size_edit_invoke;
ot->modal = voxel_size_edit_modal;
ot->cancel = voxel_size_edit_cancel;
ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Quadriflow Remesh Operator
* \{ */
#define QUADRIFLOW_MIRROR_BISECT_TOLERANCE 0.005f
enum {
QUADRIFLOW_REMESH_RATIO = 1,
QUADRIFLOW_REMESH_EDGE_LENGTH,
QUADRIFLOW_REMESH_FACES,
};
typedef enum eSymmetryAxes {
SYMMETRY_AXES_X = (1 << 0),
SYMMETRY_AXES_Y = (1 << 1),
SYMMETRY_AXES_Z = (1 << 2),
} eSymmetryAxes;
typedef struct QuadriFlowJob {
/* from wmJob */
struct Object *owner;
short *stop, *do_update;
float *progress;
Scene *scene;
int target_faces;
int seed;
bool use_mesh_symmetry;
eSymmetryAxes symmetry_axes;
bool use_preserve_sharp;
bool use_preserve_boundary;
bool use_mesh_curvature;
bool preserve_paint_mask;
bool smooth_normals;
int success;
bool is_nonblocking_job;
} QuadriFlowJob;
static bool mesh_is_manifold_consistent(Mesh *mesh)
{
/* In this check we count boundary edges as manifold. Additionally, we also
* check that the direction of the faces are consistent and doesn't suddenly
* flip
*/
bool is_manifold_consistent = true;
const MLoop *mloop = mesh->mloop;
char *edge_faces = (char *)MEM_callocN(mesh->totedge * sizeof(char), "remesh_manifold_check");
int *edge_vert = (int *)MEM_malloc_arrayN(
mesh->totedge, sizeof(uint), "remesh_consistent_check");
for (uint i = 0; i < mesh->totedge; i++) {
edge_vert[i] = -1;
}
for (uint loop_idx = 0; loop_idx < mesh->totloop; loop_idx++) {
const MLoop *loop = &mloop[loop_idx];
edge_faces[loop->e] += 1;
if (edge_faces[loop->e] > 2) {
is_manifold_consistent = false;
break;
}
if (edge_vert[loop->e] == -1) {
edge_vert[loop->e] = loop->v;
}
else if (edge_vert[loop->e] == loop->v) {
/* Mesh has flips in the surface so it is non consistent */
is_manifold_consistent = false;
break;
}
}
if (is_manifold_consistent) {
/* check for wire edges */
for (uint i = 0; i < mesh->totedge; i++) {
if (edge_faces[i] == 0) {
is_manifold_consistent = false;
break;
}
}
}
MEM_freeN(edge_faces);
MEM_freeN(edge_vert);
return is_manifold_consistent;
}
static void quadriflow_free_job(void *customdata)
{
QuadriFlowJob *qj = customdata;
MEM_freeN(qj);
}
/* called by quadriflowjob, only to check job 'stop' value */
static int quadriflow_break_job(void *customdata)
{
QuadriFlowJob *qj = (QuadriFlowJob *)customdata;
// return *(qj->stop);
/* this is not nice yet, need to make the jobs list template better
* for identifying/acting upon various different jobs */
/* but for now we'll reuse the render break... */
bool should_break = (G.is_break);
if (should_break) {
qj->success = -1;
}
return should_break;
}
/* called by oceanbake, wmJob sends notifier */
static void quadriflow_update_job(void *customdata, float progress, int *cancel)
{
QuadriFlowJob *qj = customdata;
if (quadriflow_break_job(qj)) {
*cancel = 1;
}
else {
*cancel = 0;
}
*(qj->do_update) = true;
*(qj->progress) = progress;
}
static Mesh *remesh_symmetry_bisect(Mesh *mesh, eSymmetryAxes symmetry_axes)
{
MirrorModifierData mmd = {{0}};
mmd.tolerance = QUADRIFLOW_MIRROR_BISECT_TOLERANCE;
Mesh *mesh_bisect, *mesh_bisect_temp;
mesh_bisect = BKE_mesh_copy_for_eval(mesh, false);
int axis;
float plane_co[3], plane_no[3];
zero_v3(plane_co);
for (char i = 0; i < 3; i++) {
eSymmetryAxes symm_it = (eSymmetryAxes)(1 << i);
if (symmetry_axes & symm_it) {
axis = i;
mmd.flag = 0;
mmd.flag &= MOD_MIR_BISECT_AXIS_X << i;
zero_v3(plane_no);
plane_no[axis] = -1.0f;
mesh_bisect_temp = mesh_bisect;
mesh_bisect = BKE_mesh_mirror_bisect_on_mirror_plane_for_modifier(
&mmd, mesh_bisect, axis, plane_co, plane_no);
if (mesh_bisect_temp != mesh_bisect) {
BKE_id_free(NULL, mesh_bisect_temp);
}
}
}
BKE_id_free(NULL, mesh);
return mesh_bisect;
}
static Mesh *remesh_symmetry_mirror(Object *ob, Mesh *mesh, eSymmetryAxes symmetry_axes)
{
MirrorModifierData mmd = {{0}};
mmd.tolerance = QUADRIFLOW_MIRROR_BISECT_TOLERANCE;
Mesh *mesh_mirror, *mesh_mirror_temp;
mesh_mirror = mesh;
int axis;
for (char i = 0; i < 3; i++) {
eSymmetryAxes symm_it = (eSymmetryAxes)(1 << i);
if (symmetry_axes & symm_it) {
axis = i;
mmd.flag = 0;
mmd.flag &= MOD_MIR_AXIS_X << i;
mesh_mirror_temp = mesh_mirror;
mesh_mirror = BKE_mesh_mirror_apply_mirror_on_axis_for_modifier(&mmd, ob, mesh_mirror, axis);
if (mesh_mirror_temp != mesh_mirror) {
BKE_id_free(NULL, mesh_mirror_temp);
}
}
}
return mesh_mirror;
}
static void quadriflow_start_job(void *customdata, short *stop, short *do_update, float *progress)
{
QuadriFlowJob *qj = customdata;
qj->stop = stop;
qj->do_update = do_update;
qj->progress = progress;
qj->success = 1;
if (qj->is_nonblocking_job) {
G.is_break = false; /* XXX shared with render - replace with job 'stop' switch */
}
Object *ob = qj->owner;
Mesh *mesh = ob->data;
Mesh *new_mesh;
Mesh *bisect_mesh;
/* Check if the mesh is manifold. Quadriflow requires manifold meshes */
if (!mesh_is_manifold_consistent(mesh)) {
qj->success = -2;
return;
}
/* Run Quadriflow bisect operations on a copy of the mesh to keep the code readable without
* freeing the original ID */
bisect_mesh = BKE_mesh_copy_for_eval(mesh, false);
/* Bisect the input mesh using the paint symmetry settings */
bisect_mesh = remesh_symmetry_bisect(bisect_mesh, qj->symmetry_axes);
new_mesh = BKE_mesh_remesh_quadriflow_to_mesh_nomain(
bisect_mesh,
qj->target_faces,
qj->seed,
qj->use_preserve_sharp,
(qj->use_preserve_boundary || qj->use_mesh_symmetry),
#ifdef USE_MESH_CURVATURE
qj->use_mesh_curvature,
#else
false,
#endif
quadriflow_update_job,
(void *)qj);
BKE_id_free(NULL, bisect_mesh);
if (new_mesh == NULL) {
*do_update = true;
*stop = 0;
if (qj->success == 1) {
/* This is not a user cancellation event. */
qj->success = 0;
}
return;
}
/* Mirror the Quadriflow result to build the final mesh */
new_mesh = remesh_symmetry_mirror(qj->owner, new_mesh, qj->symmetry_axes);
if (ob->mode == OB_MODE_SCULPT) {
ED_sculpt_undo_geometry_begin(ob, "QuadriFlow Remesh");
}
if (qj->preserve_paint_mask) {
BKE_mesh_runtime_clear_geometry(mesh);
BKE_mesh_remesh_reproject_paint_mask(new_mesh, mesh);
}
BKE_mesh_nomain_to_mesh(new_mesh, mesh, ob, &CD_MASK_MESH, true);
if (qj->smooth_normals) {
if (qj->use_mesh_symmetry) {
BKE_mesh_calc_normals(ob->data);
}
BKE_mesh_smooth_flag_set(ob->data, true);
}
if (ob->mode == OB_MODE_SCULPT) {
BKE_sculpt_ensure_orig_mesh_data(qj->scene, ob);
ED_sculpt_undo_geometry_end(ob);
}
BKE_mesh_batch_cache_dirty_tag(ob->data, BKE_MESH_BATCH_DIRTY_ALL);
*do_update = true;
*stop = 0;
}
static void quadriflow_end_job(void *customdata)
{
QuadriFlowJob *qj = customdata;
Object *ob = qj->owner;
if (qj->is_nonblocking_job) {
WM_set_locked_interface(G_MAIN->wm.first, false);
}
switch (qj->success) {
case 1:
DEG_id_tag_update(&ob->id, ID_RECALC_GEOMETRY);
WM_reportf(RPT_INFO, "QuadriFlow: Remeshing completed");
break;
case 0:
WM_reportf(RPT_ERROR, "QuadriFlow: Remeshing failed");
break;
case -1:
WM_report(RPT_WARNING, "QuadriFlow: Remeshing cancelled");
break;
case -2:
WM_report(RPT_WARNING,
"QuadriFlow: The mesh needs to be manifold and have face normals that point in a "
"consistent direction");
break;
}
}
static int quadriflow_remesh_exec(bContext *C, wmOperator *op)
{
QuadriFlowJob *job = MEM_mallocN(sizeof(QuadriFlowJob), "QuadriFlowJob");
job->owner = CTX_data_active_object(C);
job->scene = CTX_data_scene(C);
job->target_faces = RNA_int_get(op->ptr, "target_faces");
job->seed = RNA_int_get(op->ptr, "seed");
job->use_mesh_symmetry = RNA_boolean_get(op->ptr, "use_mesh_symmetry");
job->use_preserve_sharp = RNA_boolean_get(op->ptr, "use_preserve_sharp");
job->use_preserve_boundary = RNA_boolean_get(op->ptr, "use_preserve_boundary");
#ifdef USE_MESH_CURVATURE
job->use_mesh_curvature = RNA_boolean_get(op->ptr, "use_mesh_curvature");
#endif
job->preserve_paint_mask = RNA_boolean_get(op->ptr, "preserve_paint_mask");
job->smooth_normals = RNA_boolean_get(op->ptr, "smooth_normals");
/* Update the target face count if symmetry is enabled */
Object *ob = CTX_data_active_object(C);
if (ob && job->use_mesh_symmetry) {
Mesh *mesh = BKE_mesh_from_object(ob);
job->symmetry_axes = (eSymmetryAxes)mesh->symmetry;
for (char i = 0; i < 3; i++) {
eSymmetryAxes symm_it = (eSymmetryAxes)(1 << i);
if (job->symmetry_axes & symm_it) {
job->target_faces = job->target_faces / 2;
}
}
}
else {
job->use_mesh_symmetry = false;
job->symmetry_axes = 0;
}
if (op->flag == 0) {
/* This is called directly from the exec operator, this operation is now blocking */
job->is_nonblocking_job = false;
short stop = 0, do_update = true;
float progress;
quadriflow_start_job(job, &stop, &do_update, &progress);
quadriflow_end_job(job);
quadriflow_free_job(job);
}
else {
/* Non blocking call. For when the operator has been called from the gui */
job->is_nonblocking_job = true;
wmJob *wm_job = WM_jobs_get(CTX_wm_manager(C),
CTX_wm_window(C),
CTX_data_scene(C),
"QuadriFlow Remesh",
WM_JOB_PROGRESS,
WM_JOB_TYPE_QUADRIFLOW_REMESH);
WM_jobs_customdata_set(wm_job, job, quadriflow_free_job);
WM_jobs_timer(wm_job, 0.1, NC_GEOM | ND_DATA, NC_GEOM | ND_DATA);
WM_jobs_callbacks(wm_job, quadriflow_start_job, NULL, NULL, quadriflow_end_job);
WM_set_locked_interface(CTX_wm_manager(C), true);
WM_jobs_start(CTX_wm_manager(C), wm_job);
}
return OPERATOR_FINISHED;
}
static bool quadriflow_check(bContext *C, wmOperator *op)
{
int mode = RNA_enum_get(op->ptr, "mode");
if (mode == QUADRIFLOW_REMESH_EDGE_LENGTH) {
float area = RNA_float_get(op->ptr, "mesh_area");
if (area < 0.0f) {
Object *ob = CTX_data_active_object(C);
area = BKE_mesh_calc_area(ob->data);
RNA_float_set(op->ptr, "mesh_area", area);
}
int num_faces;
float edge_len = RNA_float_get(op->ptr, "target_edge_length");
num_faces = area / (edge_len * edge_len);
RNA_int_set(op->ptr, "target_faces", num_faces);
}
else if (mode == QUADRIFLOW_REMESH_RATIO) {
Object *ob = CTX_data_active_object(C);
Mesh *mesh = ob->data;
int num_faces;
float ratio = RNA_float_get(op->ptr, "target_ratio");
num_faces = mesh->totpoly * ratio;
RNA_int_set(op->ptr, "target_faces", num_faces);
}
return true;
}
/* Hide the target variables if they are not active */
static bool quadriflow_poll_property(const bContext *C, wmOperator *op, const PropertyRNA *prop)
{
const char *prop_id = RNA_property_identifier(prop);
if (STRPREFIX(prop_id, "target")) {
int mode = RNA_enum_get(op->ptr, "mode");
if (STREQ(prop_id, "target_edge_length") && mode != QUADRIFLOW_REMESH_EDGE_LENGTH) {
return false;
}
if (STREQ(prop_id, "target_faces")) {
if (mode != QUADRIFLOW_REMESH_FACES) {
/* Make sure we can edit the target_faces value even if it doesn't start as EDITABLE */
float area = RNA_float_get(op->ptr, "mesh_area");
if (area < -0.8f) {
area += 0.2f;
/* Make sure we have up to date values from the start */
RNA_def_property_flag((PropertyRNA *)prop, PROP_EDITABLE);
quadriflow_check((bContext *)C, op);
}
/* Only disable input */
RNA_def_property_clear_flag((PropertyRNA *)prop, PROP_EDITABLE);
}
else {
RNA_def_property_flag((PropertyRNA *)prop, PROP_EDITABLE);
}
}
else if (STREQ(prop_id, "target_ratio") && mode != QUADRIFLOW_REMESH_RATIO) {
return false;
}
}
return true;
}
static const EnumPropertyItem mode_type_items[] = {
{QUADRIFLOW_REMESH_RATIO,
"RATIO",
0,
"Ratio",
"Specify target number of faces relative to the current mesh"},
{QUADRIFLOW_REMESH_EDGE_LENGTH,
"EDGE",
0,
"Edge Length",
"Input target edge length in the new mesh"},
{QUADRIFLOW_REMESH_FACES, "FACES", 0, "Faces", "Input target number of faces in the new mesh"},
{0, NULL, 0, NULL, NULL},
};
void OBJECT_OT_quadriflow_remesh(wmOperatorType *ot)
{
/* identifiers */
ot->name = "QuadriFlow Remesh";
ot->description =
"Create a new quad based mesh using the surface data of the current mesh. All data "
"layers will be lost";
ot->idname = "OBJECT_OT_quadriflow_remesh";
/* api callbacks */
ot->poll = object_remesh_poll;
ot->poll_property = quadriflow_poll_property;
ot->check = quadriflow_check;
ot->invoke = WM_operator_props_popup_confirm;
ot->exec = quadriflow_remesh_exec;
ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO;
PropertyRNA *prop;
/* properties */
RNA_def_boolean(ot->srna,
"use_mesh_symmetry",
true,
"Use Mesh Symmetry",
"Generates a symmetrical mesh using the mesh symmetry configuration");
RNA_def_boolean(ot->srna,
"use_preserve_sharp",
false,
"Preserve Sharp",
"Try to preserve sharp features on the mesh");
RNA_def_boolean(ot->srna,
"use_preserve_boundary",
false,
"Preserve Mesh Boundary",
"Try to preserve mesh boundary on the mesh");
#ifdef USE_MESH_CURVATURE
RNA_def_boolean(ot->srna,
"use_mesh_curvature",
false,
"Use Mesh Curvature",
"Take the mesh curvature into account when remeshing");
#endif
RNA_def_boolean(ot->srna,
"preserve_paint_mask",
false,
"Preserve Paint Mask",
"Reproject the paint mask onto the new mesh");
RNA_def_boolean(ot->srna,
"smooth_normals",
false,
"Smooth Normals",
"Set the output mesh normals to smooth");
RNA_def_enum(ot->srna,
"mode",
mode_type_items,
QUADRIFLOW_REMESH_FACES,
"Mode",
"How to specify the amount of detail for the new mesh");
prop = RNA_def_float(ot->srna,
"target_ratio",
1,
0,
FLT_MAX,
"Ratio",
"Relative number of faces compared to the current mesh",
0.0f,
1.0f);
prop = RNA_def_float(ot->srna,
"target_edge_length",
0.1f,
0.0000001f,
FLT_MAX,
"Edge Length",
"Target edge length in the new mesh",
0.00001f,
1.0f);
prop = RNA_def_int(ot->srna,
"target_faces",
4000,
1,
INT_MAX,
"Number of Faces",
"Approximate number of faces (quads) in the new mesh",
1,
INT_MAX);
prop = RNA_def_float(
ot->srna,
"mesh_area",
-1.0f,
-FLT_MAX,
FLT_MAX,
"Old Object Face Area",
"This property is only used to cache the object area for later calculations",
0.0f,
FLT_MAX);
RNA_def_property_flag(prop, PROP_HIDDEN | PROP_SKIP_SAVE);
RNA_def_int(ot->srna,
"seed",
0,
0,
INT_MAX,
"Seed",
"Random seed to use with the solver. Different seeds will cause the remesher to "
"come up with different quad layouts on the mesh",
0,
255);
}
/** \} */