This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/io/alembic/intern/abc_reader_mesh.cc
Sybren A. Stüvel 11c4066159 Cleanup: partial Clang-Tidy modernize-loop-convert
Modernize loops by using the `for(type variable : container)` syntax.

Some loops were trivial to fix, whereas others required more attention
to avoid semantic changes. I couldn't address all old-style loops, so
this commit doesn't enable the `modernize-loop-convert` rule.

Although Clang-Tidy's auto-fixer prefers to use `auto` for the loop
variable declaration, I made as many declarations as possible explicit.
To me this increases local readability, as you don't need to fully
understand the container in order to understand the loop variable type.

No functional changes.
2020-12-07 12:41:17 +01:00

989 lines
31 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file
* \ingroup balembic
*/
#include "abc_reader_mesh.h"
#include "abc_axis_conversion.h"
#include "abc_reader_transform.h"
#include "abc_util.h"
#include <algorithm>
#include "MEM_guardedalloc.h"
#include "DNA_material_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "BLI_compiler_compat.h"
#include "BLI_listbase.h"
#include "BLI_math_geom.h"
#include "BKE_main.h"
#include "BKE_material.h"
#include "BKE_mesh.h"
#include "BKE_modifier.h"
#include "BKE_object.h"
using Alembic::Abc::Int32ArraySamplePtr;
using Alembic::Abc::P3fArraySamplePtr;
using Alembic::Abc::PropertyHeader;
using Alembic::AbcGeom::IC3fGeomParam;
using Alembic::AbcGeom::IC4fGeomParam;
using Alembic::AbcGeom::IFaceSet;
using Alembic::AbcGeom::IFaceSetSchema;
using Alembic::AbcGeom::IN3fGeomParam;
using Alembic::AbcGeom::IObject;
using Alembic::AbcGeom::IPolyMesh;
using Alembic::AbcGeom::IPolyMeshSchema;
using Alembic::AbcGeom::ISampleSelector;
using Alembic::AbcGeom::ISubD;
using Alembic::AbcGeom::ISubDSchema;
using Alembic::AbcGeom::IV2fGeomParam;
using Alembic::AbcGeom::kWrapExisting;
using Alembic::AbcGeom::N3fArraySample;
using Alembic::AbcGeom::N3fArraySamplePtr;
using Alembic::AbcGeom::UInt32ArraySamplePtr;
using Alembic::AbcGeom::V2fArraySamplePtr;
namespace blender::io::alembic {
/* NOTE: Alembic's polygon winding order is clockwise, to match with Renderman. */
/* Some helpers for mesh generation */
namespace utils {
static std::map<std::string, Material *> build_material_map(const Main *bmain)
{
std::map<std::string, Material *> mat_map;
LISTBASE_FOREACH (Material *, material, &bmain->materials) {
mat_map[material->id.name + 2] = material;
}
return mat_map;
}
static void assign_materials(Main *bmain,
Object *ob,
const std::map<std::string, int> &mat_index_map)
{
std::map<std::string, int>::const_iterator it;
for (it = mat_index_map.begin(); it != mat_index_map.end(); ++it) {
if (!BKE_object_material_slot_add(bmain, ob)) {
return;
}
}
std::map<std::string, Material *> matname_to_material = build_material_map(bmain);
std::map<std::string, Material *>::iterator mat_iter;
for (it = mat_index_map.begin(); it != mat_index_map.end(); ++it) {
const std::string mat_name = it->first;
const int mat_index = it->second;
Material *assigned_mat;
mat_iter = matname_to_material.find(mat_name);
if (mat_iter == matname_to_material.end()) {
assigned_mat = BKE_material_add(bmain, mat_name.c_str());
matname_to_material[mat_name] = assigned_mat;
}
else {
assigned_mat = mat_iter->second;
}
BKE_object_material_assign(bmain, ob, assigned_mat, mat_index, BKE_MAT_ASSIGN_OBDATA);
}
}
} /* namespace utils */
struct AbcMeshData {
Int32ArraySamplePtr face_indices;
Int32ArraySamplePtr face_counts;
P3fArraySamplePtr positions;
P3fArraySamplePtr ceil_positions;
V2fArraySamplePtr uvs;
UInt32ArraySamplePtr uvs_indices;
};
static void read_mverts_interp(MVert *mverts,
const P3fArraySamplePtr &positions,
const P3fArraySamplePtr &ceil_positions,
const float weight)
{
float tmp[3];
for (int i = 0; i < positions->size(); i++) {
MVert &mvert = mverts[i];
const Imath::V3f &floor_pos = (*positions)[i];
const Imath::V3f &ceil_pos = (*ceil_positions)[i];
interp_v3_v3v3(tmp, floor_pos.getValue(), ceil_pos.getValue(), weight);
copy_zup_from_yup(mvert.co, tmp);
mvert.bweight = 0;
}
}
static void read_mverts(CDStreamConfig &config, const AbcMeshData &mesh_data)
{
MVert *mverts = config.mvert;
const P3fArraySamplePtr &positions = mesh_data.positions;
if (config.use_vertex_interpolation && config.weight != 0.0f &&
mesh_data.ceil_positions != nullptr &&
mesh_data.ceil_positions->size() == positions->size()) {
read_mverts_interp(mverts, positions, mesh_data.ceil_positions, config.weight);
return;
}
read_mverts(mverts, positions, nullptr);
}
void read_mverts(MVert *mverts, const P3fArraySamplePtr positions, const N3fArraySamplePtr normals)
{
for (int i = 0; i < positions->size(); i++) {
MVert &mvert = mverts[i];
Imath::V3f pos_in = (*positions)[i];
copy_zup_from_yup(mvert.co, pos_in.getValue());
mvert.bweight = 0;
if (normals) {
Imath::V3f nor_in = (*normals)[i];
short no[3];
normal_float_to_short_v3(no, nor_in.getValue());
copy_zup_from_yup(mvert.no, no);
}
}
}
static void read_mpolys(CDStreamConfig &config, const AbcMeshData &mesh_data)
{
MPoly *mpolys = config.mpoly;
MLoop *mloops = config.mloop;
MLoopUV *mloopuvs = config.mloopuv;
const Int32ArraySamplePtr &face_indices = mesh_data.face_indices;
const Int32ArraySamplePtr &face_counts = mesh_data.face_counts;
const V2fArraySamplePtr &uvs = mesh_data.uvs;
const size_t uvs_size = uvs == nullptr ? 0 : uvs->size();
const UInt32ArraySamplePtr &uvs_indices = mesh_data.uvs_indices;
const bool do_uvs = (mloopuvs && uvs && uvs_indices) &&
(uvs_indices->size() == face_indices->size());
unsigned int loop_index = 0;
unsigned int rev_loop_index = 0;
unsigned int uv_index = 0;
bool seen_invalid_geometry = false;
for (int i = 0; i < face_counts->size(); i++) {
const int face_size = (*face_counts)[i];
MPoly &poly = mpolys[i];
poly.loopstart = loop_index;
poly.totloop = face_size;
/* Polygons are always assumed to be smooth-shaded. If the Alembic mesh should be flat-shaded,
* this is encoded in custom loop normals. See T71246. */
poly.flag |= ME_SMOOTH;
/* NOTE: Alembic data is stored in the reverse order. */
rev_loop_index = loop_index + (face_size - 1);
uint last_vertex_index = 0;
for (int f = 0; f < face_size; f++, loop_index++, rev_loop_index--) {
MLoop &loop = mloops[rev_loop_index];
loop.v = (*face_indices)[loop_index];
if (f > 0 && loop.v == last_vertex_index) {
/* This face is invalid, as it has consecutive loops from the same vertex. This is caused
* by invalid geometry in the Alembic file, such as in T76514. */
seen_invalid_geometry = true;
}
last_vertex_index = loop.v;
if (do_uvs) {
MLoopUV &loopuv = mloopuvs[rev_loop_index];
uv_index = (*uvs_indices)[loop_index];
/* Some Alembic files are broken (or at least export UVs in a way we don't expect). */
if (uv_index >= uvs_size) {
continue;
}
loopuv.uv[0] = (*uvs)[uv_index][0];
loopuv.uv[1] = (*uvs)[uv_index][1];
}
}
}
BKE_mesh_calc_edges(config.mesh, false, false);
if (seen_invalid_geometry) {
if (config.modifier_error_message) {
*config.modifier_error_message = "Mesh hash invalid geometry; more details on the console";
}
BKE_mesh_validate(config.mesh, true, true);
}
}
static void process_no_normals(CDStreamConfig &config)
{
/* Absence of normals in the Alembic mesh is interpreted as 'smooth'. */
BKE_mesh_calc_normals(config.mesh);
}
static void process_loop_normals(CDStreamConfig &config, const N3fArraySamplePtr loop_normals_ptr)
{
size_t loop_count = loop_normals_ptr->size();
if (loop_count == 0) {
process_no_normals(config);
return;
}
Mesh *mesh = config.mesh;
if (loop_count != mesh->totloop) {
/* This happens in certain Houdini exports. When a mesh is animated and then replaced by a
* fluid simulation, Houdini will still write the original mesh's loop normals, but the mesh
* verts/loops/polys are from the simulation. In such cases the normals cannot be mapped to the
* mesh, so it's better to ignore them. */
process_no_normals(config);
return;
}
float(*lnors)[3] = static_cast<float(*)[3]>(
MEM_malloc_arrayN(loop_count, sizeof(float[3]), "ABC::FaceNormals"));
MPoly *mpoly = mesh->mpoly;
const N3fArraySample &loop_normals = *loop_normals_ptr;
int abc_index = 0;
for (int i = 0, e = mesh->totpoly; i < e; i++, mpoly++) {
/* As usual, ABC orders the loops in reverse. */
for (int j = mpoly->totloop - 1; j >= 0; j--, abc_index++) {
int blender_index = mpoly->loopstart + j;
copy_zup_from_yup(lnors[blender_index], loop_normals[abc_index].getValue());
}
}
mesh->flag |= ME_AUTOSMOOTH;
BKE_mesh_set_custom_normals(mesh, lnors);
MEM_freeN(lnors);
}
static void process_vertex_normals(CDStreamConfig &config,
const N3fArraySamplePtr vertex_normals_ptr)
{
size_t normals_count = vertex_normals_ptr->size();
if (normals_count == 0) {
process_no_normals(config);
return;
}
float(*vnors)[3] = static_cast<float(*)[3]>(
MEM_malloc_arrayN(normals_count, sizeof(float[3]), "ABC::VertexNormals"));
const N3fArraySample &vertex_normals = *vertex_normals_ptr;
for (int index = 0; index < normals_count; index++) {
copy_zup_from_yup(vnors[index], vertex_normals[index].getValue());
}
config.mesh->flag |= ME_AUTOSMOOTH;
BKE_mesh_set_custom_normals_from_vertices(config.mesh, vnors);
MEM_freeN(vnors);
}
static void process_normals(CDStreamConfig &config,
const IN3fGeomParam &normals,
const ISampleSelector &selector)
{
if (!normals.valid()) {
process_no_normals(config);
return;
}
IN3fGeomParam::Sample normsamp = normals.getExpandedValue(selector);
Alembic::AbcGeom::GeometryScope scope = normals.getScope();
switch (scope) {
case Alembic::AbcGeom::kFacevaryingScope: /* 'Vertex Normals' in Houdini. */
process_loop_normals(config, normsamp.getVals());
break;
case Alembic::AbcGeom::kVertexScope:
case Alembic::AbcGeom::kVaryingScope: /* 'Point Normals' in Houdini. */
process_vertex_normals(config, normsamp.getVals());
break;
case Alembic::AbcGeom::kConstantScope:
case Alembic::AbcGeom::kUniformScope:
case Alembic::AbcGeom::kUnknownScope:
process_no_normals(config);
break;
}
}
BLI_INLINE void read_uvs_params(CDStreamConfig &config,
AbcMeshData &abc_data,
const IV2fGeomParam &uv,
const ISampleSelector &selector)
{
if (!uv.valid()) {
return;
}
IV2fGeomParam::Sample uvsamp;
uv.getIndexed(uvsamp, selector);
abc_data.uvs = uvsamp.getVals();
abc_data.uvs_indices = uvsamp.getIndices();
if (abc_data.uvs_indices->size() == config.totloop) {
std::string name = Alembic::Abc::GetSourceName(uv.getMetaData());
/* According to the convention, primary UVs should have had their name
* set using Alembic::Abc::SetSourceName, but you can't expect everyone
* to follow it! :) */
if (name.empty()) {
name = uv.getName();
}
void *cd_ptr = config.add_customdata_cb(config.mesh, name.c_str(), CD_MLOOPUV);
config.mloopuv = static_cast<MLoopUV *>(cd_ptr);
}
}
static void *add_customdata_cb(Mesh *mesh, const char *name, int data_type)
{
CustomDataType cd_data_type = static_cast<CustomDataType>(data_type);
void *cd_ptr;
CustomData *loopdata;
int numloops;
/* unsupported custom data type -- don't do anything. */
if (!ELEM(cd_data_type, CD_MLOOPUV, CD_MLOOPCOL)) {
return nullptr;
}
loopdata = &mesh->ldata;
cd_ptr = CustomData_get_layer_named(loopdata, cd_data_type, name);
if (cd_ptr != nullptr) {
/* layer already exists, so just return it. */
return cd_ptr;
}
/* Create a new layer. */
numloops = mesh->totloop;
cd_ptr = CustomData_add_layer_named(loopdata, cd_data_type, CD_DEFAULT, nullptr, numloops, name);
return cd_ptr;
}
static void get_weight_and_index(CDStreamConfig &config,
Alembic::AbcCoreAbstract::TimeSamplingPtr time_sampling,
size_t samples_number)
{
Alembic::AbcGeom::index_t i0, i1;
config.weight = get_weight_and_index(config.time, time_sampling, samples_number, i0, i1);
config.index = i0;
config.ceil_index = i1;
}
static void read_mesh_sample(const std::string &iobject_full_name,
ImportSettings *settings,
const IPolyMeshSchema &schema,
const ISampleSelector &selector,
CDStreamConfig &config)
{
const IPolyMeshSchema::Sample sample = schema.getValue(selector);
AbcMeshData abc_mesh_data;
abc_mesh_data.face_counts = sample.getFaceCounts();
abc_mesh_data.face_indices = sample.getFaceIndices();
abc_mesh_data.positions = sample.getPositions();
get_weight_and_index(config, schema.getTimeSampling(), schema.getNumSamples());
if (config.weight != 0.0f) {
Alembic::AbcGeom::IPolyMeshSchema::Sample ceil_sample;
schema.get(ceil_sample, Alembic::Abc::ISampleSelector(config.ceil_index));
abc_mesh_data.ceil_positions = ceil_sample.getPositions();
}
if ((settings->read_flag & MOD_MESHSEQ_READ_UV) != 0) {
read_uvs_params(config, abc_mesh_data, schema.getUVsParam(), selector);
}
if ((settings->read_flag & MOD_MESHSEQ_READ_VERT) != 0) {
read_mverts(config, abc_mesh_data);
}
if ((settings->read_flag & MOD_MESHSEQ_READ_POLY) != 0) {
read_mpolys(config, abc_mesh_data);
process_normals(config, schema.getNormalsParam(), selector);
}
if ((settings->read_flag & (MOD_MESHSEQ_READ_UV | MOD_MESHSEQ_READ_COLOR)) != 0) {
read_custom_data(iobject_full_name, schema.getArbGeomParams(), config, selector);
}
}
CDStreamConfig get_config(Mesh *mesh, const bool use_vertex_interpolation)
{
CDStreamConfig config;
BLI_assert(mesh->mvert || mesh->totvert == 0);
config.mesh = mesh;
config.mvert = mesh->mvert;
config.mloop = mesh->mloop;
config.mpoly = mesh->mpoly;
config.totloop = mesh->totloop;
config.totpoly = mesh->totpoly;
config.loopdata = &mesh->ldata;
config.add_customdata_cb = add_customdata_cb;
config.use_vertex_interpolation = use_vertex_interpolation;
return config;
}
/* ************************************************************************** */
AbcMeshReader::AbcMeshReader(const IObject &object, ImportSettings &settings)
: AbcObjectReader(object, settings)
{
m_settings->read_flag |= MOD_MESHSEQ_READ_ALL;
IPolyMesh ipoly_mesh(m_iobject, kWrapExisting);
m_schema = ipoly_mesh.getSchema();
get_min_max_time(m_iobject, m_schema, m_min_time, m_max_time);
}
bool AbcMeshReader::valid() const
{
return m_schema.valid();
}
template<class typedGeomParam>
bool is_valid_animated(const ICompoundProperty arbGeomParams, const PropertyHeader &prop_header)
{
if (!typedGeomParam::matches(prop_header)) {
return false;
}
typedGeomParam geom_param(arbGeomParams, prop_header.getName());
return geom_param.valid() && !geom_param.isConstant();
}
static bool has_animated_geom_params(const ICompoundProperty arbGeomParams)
{
if (!arbGeomParams.valid()) {
return false;
}
const int num_props = arbGeomParams.getNumProperties();
for (int i = 0; i < num_props; i++) {
const PropertyHeader &prop_header = arbGeomParams.getPropertyHeader(i);
/* These are interpreted as vertex colors later (see 'read_custom_data'). */
if (is_valid_animated<IC3fGeomParam>(arbGeomParams, prop_header)) {
return true;
}
if (is_valid_animated<IC4fGeomParam>(arbGeomParams, prop_header)) {
return true;
}
}
return false;
}
/* Specialisation of has_animations() as defined in abc_reader_object.h. */
template<> bool has_animations(Alembic::AbcGeom::IPolyMeshSchema &schema, ImportSettings *settings)
{
if (settings->is_sequence || !schema.isConstant()) {
return true;
}
IV2fGeomParam uvsParam = schema.getUVsParam();
if (uvsParam.valid() && !uvsParam.isConstant()) {
return true;
}
IN3fGeomParam normalsParam = schema.getNormalsParam();
if (normalsParam.valid() && !normalsParam.isConstant()) {
return true;
}
ICompoundProperty arbGeomParams = schema.getArbGeomParams();
if (has_animated_geom_params(arbGeomParams)) {
return true;
}
return false;
}
void AbcMeshReader::readObjectData(Main *bmain, const Alembic::Abc::ISampleSelector &sample_sel)
{
Mesh *mesh = BKE_mesh_add(bmain, m_data_name.c_str());
m_object = BKE_object_add_only_object(bmain, OB_MESH, m_object_name.c_str());
m_object->data = mesh;
Mesh *read_mesh = this->read_mesh(mesh, sample_sel, MOD_MESHSEQ_READ_ALL, nullptr);
if (read_mesh != mesh) {
/* XXX fixme after 2.80; mesh->flag isn't copied by BKE_mesh_nomain_to_mesh() */
/* read_mesh can be freed by BKE_mesh_nomain_to_mesh(), so get the flag before that happens. */
short autosmooth = (read_mesh->flag & ME_AUTOSMOOTH);
BKE_mesh_nomain_to_mesh(read_mesh, mesh, m_object, &CD_MASK_MESH, true);
mesh->flag |= autosmooth;
}
if (m_settings->validate_meshes) {
BKE_mesh_validate(mesh, false, false);
}
readFaceSetsSample(bmain, mesh, sample_sel);
if (has_animations(m_schema, m_settings)) {
addCacheModifier();
}
}
bool AbcMeshReader::accepts_object_type(
const Alembic::AbcCoreAbstract::ObjectHeader &alembic_header,
const Object *const ob,
const char **err_str) const
{
if (!Alembic::AbcGeom::IPolyMesh::matches(alembic_header)) {
*err_str =
"Object type mismatch, Alembic object path pointed to PolyMesh when importing, but not "
"any more.";
return false;
}
if (ob->type != OB_MESH) {
*err_str = "Object type mismatch, Alembic object path points to PolyMesh.";
return false;
}
return true;
}
bool AbcMeshReader::topology_changed(Mesh *existing_mesh, const ISampleSelector &sample_sel)
{
IPolyMeshSchema::Sample sample;
try {
sample = m_schema.getValue(sample_sel);
}
catch (Alembic::Util::Exception &ex) {
printf("Alembic: error reading mesh sample for '%s/%s' at time %f: %s\n",
m_iobject.getFullName().c_str(),
m_schema.getName().c_str(),
sample_sel.getRequestedTime(),
ex.what());
/* A similar error in read_mesh() would just return existing_mesh. */
return false;
}
const P3fArraySamplePtr &positions = sample.getPositions();
const Alembic::Abc::Int32ArraySamplePtr &face_indices = sample.getFaceIndices();
const Alembic::Abc::Int32ArraySamplePtr &face_counts = sample.getFaceCounts();
return positions->size() != existing_mesh->totvert ||
face_counts->size() != existing_mesh->totpoly ||
face_indices->size() != existing_mesh->totloop;
}
Mesh *AbcMeshReader::read_mesh(Mesh *existing_mesh,
const ISampleSelector &sample_sel,
int read_flag,
const char **err_str)
{
IPolyMeshSchema::Sample sample;
try {
sample = m_schema.getValue(sample_sel);
}
catch (Alembic::Util::Exception &ex) {
if (err_str != nullptr) {
*err_str = "Error reading mesh sample; more detail on the console";
}
printf("Alembic: error reading mesh sample for '%s/%s' at time %f: %s\n",
m_iobject.getFullName().c_str(),
m_schema.getName().c_str(),
sample_sel.getRequestedTime(),
ex.what());
return existing_mesh;
}
const P3fArraySamplePtr &positions = sample.getPositions();
const Alembic::Abc::Int32ArraySamplePtr &face_indices = sample.getFaceIndices();
const Alembic::Abc::Int32ArraySamplePtr &face_counts = sample.getFaceCounts();
/* Do some very minimal mesh validation. */
const int poly_count = face_counts->size();
const int loop_count = face_indices->size();
/* This is the same test as in poly_to_tri_count(). */
if (poly_count > 0 && loop_count < poly_count * 2) {
if (err_str != nullptr) {
*err_str = "Invalid mesh; more detail on the console";
}
printf("Alembic: invalid mesh sample for '%s/%s' at time %f, less than 2 loops per face\n",
m_iobject.getFullName().c_str(),
m_schema.getName().c_str(),
sample_sel.getRequestedTime());
return existing_mesh;
}
Mesh *new_mesh = nullptr;
/* Only read point data when streaming meshes, unless we need to create new ones. */
ImportSettings settings;
settings.read_flag |= read_flag;
if (topology_changed(existing_mesh, sample_sel)) {
new_mesh = BKE_mesh_new_nomain_from_template(
existing_mesh, positions->size(), 0, 0, face_indices->size(), face_counts->size());
settings.read_flag |= MOD_MESHSEQ_READ_ALL;
}
else {
/* If the face count changed (e.g. by triangulation), only read points.
* This prevents crash from T49813.
* TODO(kevin): perhaps find a better way to do this? */
if (face_counts->size() != existing_mesh->totpoly ||
face_indices->size() != existing_mesh->totloop) {
settings.read_flag = MOD_MESHSEQ_READ_VERT;
if (err_str) {
*err_str =
"Topology has changed, perhaps by triangulating the"
" mesh. Only vertices will be read!";
}
}
}
Mesh *mesh_to_export = new_mesh ? new_mesh : existing_mesh;
const bool use_vertex_interpolation = read_flag & MOD_MESHSEQ_INTERPOLATE_VERTICES;
CDStreamConfig config = get_config(mesh_to_export, use_vertex_interpolation);
config.time = sample_sel.getRequestedTime();
config.modifier_error_message = err_str;
read_mesh_sample(m_iobject.getFullName(), &settings, m_schema, sample_sel, config);
if (new_mesh) {
/* Here we assume that the number of materials doesn't change, i.e. that
* the material slots that were created when the object was loaded from
* Alembic are still valid now. */
size_t num_polys = new_mesh->totpoly;
if (num_polys > 0) {
std::map<std::string, int> mat_map;
assign_facesets_to_mpoly(sample_sel, new_mesh->mpoly, num_polys, mat_map);
}
return new_mesh;
}
return existing_mesh;
}
void AbcMeshReader::assign_facesets_to_mpoly(const ISampleSelector &sample_sel,
MPoly *mpoly,
int totpoly,
std::map<std::string, int> &r_mat_map)
{
std::vector<std::string> face_sets;
m_schema.getFaceSetNames(face_sets);
if (face_sets.empty()) {
return;
}
int current_mat = 0;
for (const std::string &grp_name : face_sets) {
if (r_mat_map.find(grp_name) == r_mat_map.end()) {
r_mat_map[grp_name] = ++current_mat;
}
const int assigned_mat = r_mat_map[grp_name];
const IFaceSet faceset = m_schema.getFaceSet(grp_name);
if (!faceset.valid()) {
std::cerr << " Face set " << grp_name << " invalid for " << m_object_name << "\n";
continue;
}
const IFaceSetSchema face_schem = faceset.getSchema();
const IFaceSetSchema::Sample face_sample = face_schem.getValue(sample_sel);
const Int32ArraySamplePtr group_faces = face_sample.getFaces();
const size_t num_group_faces = group_faces->size();
for (size_t l = 0; l < num_group_faces; l++) {
size_t pos = (*group_faces)[l];
if (pos >= totpoly) {
std::cerr << "Faceset overflow on " << faceset.getName() << '\n';
break;
}
MPoly &poly = mpoly[pos];
poly.mat_nr = assigned_mat - 1;
}
}
}
void AbcMeshReader::readFaceSetsSample(Main *bmain, Mesh *mesh, const ISampleSelector &sample_sel)
{
std::map<std::string, int> mat_map;
assign_facesets_to_mpoly(sample_sel, mesh->mpoly, mesh->totpoly, mat_map);
utils::assign_materials(bmain, m_object, mat_map);
}
/* ************************************************************************** */
BLI_INLINE MEdge *find_edge(MEdge *edges, int totedge, int v1, int v2)
{
for (int i = 0, e = totedge; i < e; i++) {
MEdge &edge = edges[i];
if (edge.v1 == v1 && edge.v2 == v2) {
return &edge;
}
}
return nullptr;
}
static void read_subd_sample(const std::string &iobject_full_name,
ImportSettings *settings,
const ISubDSchema &schema,
const ISampleSelector &selector,
CDStreamConfig &config)
{
const ISubDSchema::Sample sample = schema.getValue(selector);
AbcMeshData abc_mesh_data;
abc_mesh_data.face_counts = sample.getFaceCounts();
abc_mesh_data.face_indices = sample.getFaceIndices();
abc_mesh_data.positions = sample.getPositions();
get_weight_and_index(config, schema.getTimeSampling(), schema.getNumSamples());
if (config.weight != 0.0f) {
Alembic::AbcGeom::ISubDSchema::Sample ceil_sample;
schema.get(ceil_sample, Alembic::Abc::ISampleSelector(config.ceil_index));
abc_mesh_data.ceil_positions = ceil_sample.getPositions();
}
if ((settings->read_flag & MOD_MESHSEQ_READ_UV) != 0) {
read_uvs_params(config, abc_mesh_data, schema.getUVsParam(), selector);
}
if ((settings->read_flag & MOD_MESHSEQ_READ_VERT) != 0) {
read_mverts(config, abc_mesh_data);
}
if ((settings->read_flag & MOD_MESHSEQ_READ_POLY) != 0) {
/* Alembic's 'SubD' scheme is used to store subdivision surfaces, i.e. the pre-subdivision
* mesh. Currently we don't add a subdivision modifier when we load such data. This code is
* assuming that the subdivided surface should be smooth. */
read_mpolys(config, abc_mesh_data);
process_no_normals(config);
}
if ((settings->read_flag & (MOD_MESHSEQ_READ_UV | MOD_MESHSEQ_READ_COLOR)) != 0) {
read_custom_data(iobject_full_name, schema.getArbGeomParams(), config, selector);
}
}
/* ************************************************************************** */
AbcSubDReader::AbcSubDReader(const IObject &object, ImportSettings &settings)
: AbcObjectReader(object, settings)
{
m_settings->read_flag |= MOD_MESHSEQ_READ_ALL;
ISubD isubd_mesh(m_iobject, kWrapExisting);
m_schema = isubd_mesh.getSchema();
get_min_max_time(m_iobject, m_schema, m_min_time, m_max_time);
}
bool AbcSubDReader::valid() const
{
return m_schema.valid();
}
bool AbcSubDReader::accepts_object_type(
const Alembic::AbcCoreAbstract::ObjectHeader &alembic_header,
const Object *const ob,
const char **err_str) const
{
if (!Alembic::AbcGeom::ISubD::matches(alembic_header)) {
*err_str =
"Object type mismatch, Alembic object path pointed to SubD when importing, but not any "
"more.";
return false;
}
if (ob->type != OB_MESH) {
*err_str = "Object type mismatch, Alembic object path points to SubD.";
return false;
}
return true;
}
void AbcSubDReader::readObjectData(Main *bmain, const Alembic::Abc::ISampleSelector &sample_sel)
{
Mesh *mesh = BKE_mesh_add(bmain, m_data_name.c_str());
m_object = BKE_object_add_only_object(bmain, OB_MESH, m_object_name.c_str());
m_object->data = mesh;
Mesh *read_mesh = this->read_mesh(mesh, sample_sel, MOD_MESHSEQ_READ_ALL, nullptr);
if (read_mesh != mesh) {
BKE_mesh_nomain_to_mesh(read_mesh, mesh, m_object, &CD_MASK_MESH, true);
}
ISubDSchema::Sample sample;
try {
sample = m_schema.getValue(sample_sel);
}
catch (Alembic::Util::Exception &ex) {
printf("Alembic: error reading mesh sample for '%s/%s' at time %f: %s\n",
m_iobject.getFullName().c_str(),
m_schema.getName().c_str(),
sample_sel.getRequestedTime(),
ex.what());
return;
}
Int32ArraySamplePtr indices = sample.getCreaseIndices();
Alembic::Abc::FloatArraySamplePtr sharpnesses = sample.getCreaseSharpnesses();
if (indices && sharpnesses) {
MEdge *edges = mesh->medge;
int totedge = mesh->totedge;
for (int i = 0, s = 0, e = indices->size(); i < e; i += 2, s++) {
int v1 = (*indices)[i];
int v2 = (*indices)[i + 1];
if (v2 < v1) {
/* It appears to be common to store edges with the smallest index first, in which case this
* prevents us from doing the second search below. */
std::swap(v1, v2);
}
MEdge *edge = find_edge(edges, totedge, v1, v2);
if (edge == nullptr) {
edge = find_edge(edges, totedge, v2, v1);
}
if (edge) {
edge->crease = unit_float_to_uchar_clamp((*sharpnesses)[s]);
}
}
mesh->cd_flag |= ME_CDFLAG_EDGE_CREASE;
}
if (m_settings->validate_meshes) {
BKE_mesh_validate(mesh, false, false);
}
if (has_animations(m_schema, m_settings)) {
addCacheModifier();
}
}
Mesh *AbcSubDReader::read_mesh(Mesh *existing_mesh,
const ISampleSelector &sample_sel,
int read_flag,
const char **err_str)
{
ISubDSchema::Sample sample;
try {
sample = m_schema.getValue(sample_sel);
}
catch (Alembic::Util::Exception &ex) {
if (err_str != nullptr) {
*err_str = "Error reading mesh sample; more detail on the console";
}
printf("Alembic: error reading mesh sample for '%s/%s' at time %f: %s\n",
m_iobject.getFullName().c_str(),
m_schema.getName().c_str(),
sample_sel.getRequestedTime(),
ex.what());
return existing_mesh;
}
const P3fArraySamplePtr &positions = sample.getPositions();
const Alembic::Abc::Int32ArraySamplePtr &face_indices = sample.getFaceIndices();
const Alembic::Abc::Int32ArraySamplePtr &face_counts = sample.getFaceCounts();
Mesh *new_mesh = nullptr;
ImportSettings settings;
settings.read_flag |= read_flag;
if (existing_mesh->totvert != positions->size()) {
new_mesh = BKE_mesh_new_nomain_from_template(
existing_mesh, positions->size(), 0, 0, face_indices->size(), face_counts->size());
settings.read_flag |= MOD_MESHSEQ_READ_ALL;
}
else {
/* If the face count changed (e.g. by triangulation), only read points.
* This prevents crash from T49813.
* TODO(kevin): perhaps find a better way to do this? */
if (face_counts->size() != existing_mesh->totpoly ||
face_indices->size() != existing_mesh->totloop) {
settings.read_flag = MOD_MESHSEQ_READ_VERT;
if (err_str) {
*err_str =
"Topology has changed, perhaps by triangulating the"
" mesh. Only vertices will be read!";
}
}
}
/* Only read point data when streaming meshes, unless we need to create new ones. */
Mesh *mesh_to_export = new_mesh ? new_mesh : existing_mesh;
const bool use_vertex_interpolation = read_flag & MOD_MESHSEQ_INTERPOLATE_VERTICES;
CDStreamConfig config = get_config(mesh_to_export, use_vertex_interpolation);
config.time = sample_sel.getRequestedTime();
read_subd_sample(m_iobject.getFullName(), &settings, m_schema, sample_sel, config);
return mesh_to_export;
}
} // namespace blender::io::alembic