This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/particle_system.c

4110 lines
111 KiB
C

/* particle_system.c
*
*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2007 by Janne Karhu.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Raul Fernandez Hernandez (Farsthary), Stephen Swhitehorn.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <stddef.h>
#include "BLI_storage.h" /* _LARGEFILE_SOURCE */
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "DNA_anim_types.h"
#include "DNA_boid_types.h"
#include "DNA_particle_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_modifier_types.h"
#include "DNA_object_force.h"
#include "DNA_object_types.h"
#include "DNA_material_types.h"
#include "DNA_curve_types.h"
#include "DNA_group_types.h"
#include "DNA_scene_types.h"
#include "DNA_texture_types.h"
#include "DNA_ipo_types.h" // XXX old animation system stuff... to be removed!
#include "DNA_listBase.h"
#include "BLI_rand.h"
#include "BLI_jitter.h"
#include "BLI_math.h"
#include "BLI_blenlib.h"
#include "BLI_kdtree.h"
#include "BLI_kdopbvh.h"
#include "BLI_listbase.h"
#include "BLI_threads.h"
#include "BLI_storage.h" /* For _LARGEFILE64_SOURCE; zlib needs this on some systems */
#include "BKE_main.h"
#include "BKE_animsys.h"
#include "BKE_boids.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_collision.h"
#include "BKE_displist.h"
#include "BKE_effect.h"
#include "BKE_particle.h"
#include "BKE_global.h"
#include "BKE_utildefines.h"
#include "BKE_DerivedMesh.h"
#include "BKE_object.h"
#include "BKE_material.h"
#include "BKE_cloth.h"
#include "BKE_depsgraph.h"
#include "BKE_lattice.h"
#include "BKE_pointcache.h"
#include "BKE_mesh.h"
#include "BKE_modifier.h"
#include "BKE_scene.h"
#include "BKE_bvhutils.h"
#include "PIL_time.h"
#include "RE_shader_ext.h"
/* fluid sim particle import */
#ifndef DISABLE_ELBEEM
#include "DNA_object_fluidsim.h"
#include "LBM_fluidsim.h"
#include <zlib.h>
#include <string.h>
#ifdef WIN32
#ifndef snprintf
#define snprintf _snprintf
#endif
#endif
#endif // DISABLE_ELBEEM
/************************************************/
/* Reacting to system events */
/************************************************/
static int particles_are_dynamic(ParticleSystem *psys) {
if(psys->pointcache->flag & PTCACHE_BAKED)
return 0;
if(psys->part->type == PART_HAIR)
return psys->flag & PSYS_HAIR_DYNAMICS;
else
return ELEM3(psys->part->phystype, PART_PHYS_NEWTON, PART_PHYS_BOIDS, PART_PHYS_FLUID);
}
int psys_get_current_display_percentage(ParticleSystem *psys)
{
ParticleSettings *part=psys->part;
if((psys->renderdata && !particles_are_dynamic(psys)) /* non-dynamic particles can be rendered fully */
|| (part->child_nbr && part->childtype) /* display percentage applies to children */
|| (psys->pointcache->flag & PTCACHE_BAKING)) /* baking is always done with full amount */
return 100;
return psys->part->disp;
}
void psys_reset(ParticleSystem *psys, int mode)
{
PARTICLE_P;
if(ELEM(mode, PSYS_RESET_ALL, PSYS_RESET_DEPSGRAPH)) {
if(mode == PSYS_RESET_ALL || !(psys->flag & PSYS_EDITED)) {
psys_free_particles(psys);
psys->totpart= 0;
psys->totkeyed= 0;
psys->flag &= ~(PSYS_HAIR_DONE|PSYS_KEYED);
if(psys->edit && psys->free_edit) {
psys->free_edit(psys->edit);
psys->edit = NULL;
psys->free_edit = NULL;
}
}
}
else if(mode == PSYS_RESET_CACHE_MISS) {
/* set all particles to be skipped */
LOOP_PARTICLES
pa->flag |= PARS_NO_DISP;
}
/* reset children */
if(psys->child) {
MEM_freeN(psys->child);
psys->child= 0;
}
psys->totchild= 0;
/* reset path cache */
psys_free_path_cache(psys, psys->edit);
/* reset point cache */
BKE_ptcache_invalidate(psys->pointcache);
}
static void realloc_particles(ParticleSimulationData *sim, int new_totpart)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
ParticleData *newpars = NULL;
BoidParticle *newboids = NULL;
PARTICLE_P;
int totpart, totsaved = 0;
if(new_totpart<0) {
if(part->distr==PART_DISTR_GRID && part->from != PART_FROM_VERT) {
totpart= part->grid_res;
totpart*=totpart*totpart;
}
else
totpart=part->totpart;
}
else
totpart=new_totpart;
if(totpart != psys->totpart) {
if(psys->edit && psys->free_edit) {
psys->free_edit(psys->edit);
psys->edit = NULL;
psys->free_edit = NULL;
}
if(totpart) {
newpars= MEM_callocN(totpart*sizeof(ParticleData), "particles");
if(psys->part->phystype == PART_PHYS_BOIDS)
newboids= MEM_callocN(totpart*sizeof(BoidParticle), "boid particles");
}
if(psys->particles) {
totsaved=MIN2(psys->totpart,totpart);
/*save old pars*/
if(totsaved) {
memcpy(newpars,psys->particles,totsaved*sizeof(ParticleData));
if(psys->particles->boid)
memcpy(newboids, psys->particles->boid, totsaved*sizeof(BoidParticle));
}
if(psys->particles->keys)
MEM_freeN(psys->particles->keys);
if(psys->particles->boid)
MEM_freeN(psys->particles->boid);
for(p=0, pa=newpars; p<totsaved; p++, pa++) {
if(pa->keys) {
pa->keys= NULL;
pa->totkey= 0;
}
}
for(p=totsaved, pa=psys->particles+totsaved; p<psys->totpart; p++, pa++)
if(pa->hair) MEM_freeN(pa->hair);
MEM_freeN(psys->particles);
psys_free_pdd(psys);
}
psys->particles=newpars;
psys->totpart=totpart;
if(newboids) {
LOOP_PARTICLES
pa->boid = newboids++;
}
}
if(psys->child) {
MEM_freeN(psys->child);
psys->child=0;
psys->totchild=0;
}
}
static int get_psys_child_number(struct Scene *scene, ParticleSystem *psys)
{
int nbr;
if(!psys->part->childtype)
return 0;
if(psys->renderdata)
nbr= psys->part->ren_child_nbr;
else
nbr= psys->part->child_nbr;
return get_render_child_particle_number(&scene->r, nbr);
}
static int get_psys_tot_child(struct Scene *scene, ParticleSystem *psys)
{
return psys->totpart*get_psys_child_number(scene, psys);
}
static void alloc_child_particles(ParticleSystem *psys, int tot)
{
if(psys->child){
/* only re-allocate if we have to */
if(psys->part->childtype && psys->totchild == tot) {
memset(psys->child, 0, tot*sizeof(ChildParticle));
return;
}
MEM_freeN(psys->child);
psys->child=0;
psys->totchild=0;
}
if(psys->part->childtype) {
psys->totchild= tot;
if(psys->totchild)
psys->child= MEM_callocN(psys->totchild*sizeof(ChildParticle), "child_particles");
}
}
void psys_calc_dmcache(Object *ob, DerivedMesh *dm, ParticleSystem *psys)
{
/* use for building derived mesh mapping info:
node: the allocated links - total derived mesh element count
nodearray: the array of nodes aligned with the base mesh's elements, so
each original elements can reference its derived elements
*/
Mesh *me= (Mesh*)ob->data;
PARTICLE_P;
/* CACHE LOCATIONS */
if(!dm->deformedOnly) {
/* Will use later to speed up subsurf/derivedmesh */
LinkNode *node, *nodedmelem, **nodearray;
int totdmelem, totelem, i, *origindex;
if(psys->part->from == PART_FROM_VERT) {
totdmelem= dm->getNumVerts(dm);
totelem= me->totvert;
origindex= dm->getVertDataArray(dm, CD_ORIGINDEX);
}
else { /* FROM_FACE/FROM_VOLUME */
totdmelem= dm->getNumFaces(dm);
totelem= me->totface;
origindex= dm->getFaceDataArray(dm, CD_ORIGINDEX);
}
nodedmelem= MEM_callocN(sizeof(LinkNode)*totdmelem, "psys node elems");
nodearray= MEM_callocN(sizeof(LinkNode *)*totelem, "psys node array");
for(i=0, node=nodedmelem; i<totdmelem; i++, origindex++, node++) {
node->link= SET_INT_IN_POINTER(i);
if(*origindex != -1) {
if(nodearray[*origindex]) {
/* prepend */
node->next = nodearray[*origindex];
nodearray[*origindex]= node;
}
else
nodearray[*origindex]= node;
}
}
/* cache the verts/faces! */
LOOP_PARTICLES {
if(psys->part->from == PART_FROM_VERT) {
if(nodearray[pa->num])
pa->num_dmcache= GET_INT_FROM_POINTER(nodearray[pa->num]->link);
}
else { /* FROM_FACE/FROM_VOLUME */
/* Note that somtimes the pa->num is over the nodearray size, this is bad, maybe there is a better place to fix this,
* but for now passing NULL is OK. every face will be searched for the particle so its slower - Campbell */
pa->num_dmcache= psys_particle_dm_face_lookup(ob, dm, pa->num, pa->fuv, pa->num < totelem ? nodearray[pa->num] : NULL);
}
}
MEM_freeN(nodearray);
MEM_freeN(nodedmelem);
}
else {
/* TODO PARTICLE, make the following line unnecessary, each function
* should know to use the num or num_dmcache, set the num_dmcache to
* an invalid value, just incase */
LOOP_PARTICLES
pa->num_dmcache = -1;
}
}
static void distribute_particles_in_grid(DerivedMesh *dm, ParticleSystem *psys)
{
ParticleData *pa=0;
float min[3], max[3], delta[3], d;
MVert *mv, *mvert = dm->getVertDataArray(dm,0);
int totvert=dm->getNumVerts(dm), from=psys->part->from;
int i, j, k, p, res=psys->part->grid_res, size[3], axis;
mv=mvert;
/* find bounding box of dm */
VECCOPY(min,mv->co);
VECCOPY(max,mv->co);
mv++;
for(i=1; i<totvert; i++, mv++){
min[0]=MIN2(min[0],mv->co[0]);
min[1]=MIN2(min[1],mv->co[1]);
min[2]=MIN2(min[2],mv->co[2]);
max[0]=MAX2(max[0],mv->co[0]);
max[1]=MAX2(max[1],mv->co[1]);
max[2]=MAX2(max[2],mv->co[2]);
}
VECSUB(delta,max,min);
/* determine major axis */
axis = (delta[0]>=delta[1])?0:((delta[1]>=delta[2])?1:2);
d = delta[axis]/(float)res;
size[axis]=res;
size[(axis+1)%3]=(int)ceil(delta[(axis+1)%3]/d);
size[(axis+2)%3]=(int)ceil(delta[(axis+2)%3]/d);
/* float errors grrr.. */
size[(axis+1)%3] = MIN2(size[(axis+1)%3],res);
size[(axis+2)%3] = MIN2(size[(axis+2)%3],res);
min[0]+=d/2.0f;
min[1]+=d/2.0f;
min[2]+=d/2.0f;
for(i=0,p=0,pa=psys->particles; i<res; i++){
for(j=0; j<res; j++){
for(k=0; k<res; k++,p++,pa++){
pa->fuv[0]=min[0]+(float)i*d;
pa->fuv[1]=min[1]+(float)j*d;
pa->fuv[2]=min[2]+(float)k*d;
pa->flag |= PARS_UNEXIST;
pa->hair_index=0; /* abused in volume calculation */
}
}
}
/* enable particles near verts/edges/faces/inside surface */
if(from==PART_FROM_VERT){
float vec[3];
pa=psys->particles;
min[0]-=d/2.0f;
min[1]-=d/2.0f;
min[2]-=d/2.0f;
for(i=0,mv=mvert; i<totvert; i++,mv++){
sub_v3_v3v3(vec,mv->co,min);
vec[0]/=delta[0];
vec[1]/=delta[1];
vec[2]/=delta[2];
(pa +((int)(vec[0]*(size[0]-1))*res
+(int)(vec[1]*(size[1]-1)))*res
+(int)(vec[2]*(size[2]-1)))->flag &= ~PARS_UNEXIST;
}
}
else if(ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)){
float co1[3], co2[3];
MFace *mface=0;
float v1[3], v2[3], v3[3], v4[4], lambda;
int a, a1, a2, a0mul, a1mul, a2mul, totface;
int amax= from==PART_FROM_FACE ? 3 : 1;
totface=dm->getNumFaces(dm);
mface=dm->getFaceDataArray(dm,CD_MFACE);
for(a=0; a<amax; a++){
if(a==0){ a0mul=res*res; a1mul=res; a2mul=1; }
else if(a==1){ a0mul=res; a1mul=1; a2mul=res*res; }
else{ a0mul=1; a1mul=res*res; a2mul=res; }
for(a1=0; a1<size[(a+1)%3]; a1++){
for(a2=0; a2<size[(a+2)%3]; a2++){
mface=dm->getFaceDataArray(dm,CD_MFACE);
pa=psys->particles + a1*a1mul + a2*a2mul;
VECCOPY(co1,pa->fuv);
co1[a]-=d/2.0f;
VECCOPY(co2,co1);
co2[a]+=delta[a] + 0.001f*d;
co1[a]-=0.001f*d;
/* lets intersect the faces */
for(i=0; i<totface; i++,mface++){
VECCOPY(v1,mvert[mface->v1].co);
VECCOPY(v2,mvert[mface->v2].co);
VECCOPY(v3,mvert[mface->v3].co);
if(isect_axial_line_tri_v3(a,co1, co2, v2, v3, v1, &lambda)){
if(from==PART_FROM_FACE)
(pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
else /* store number of intersections */
(pa+(int)(lambda*size[a])*a0mul)->hair_index++;
}
if(mface->v4){
VECCOPY(v4,mvert[mface->v4].co);
if(isect_axial_line_tri_v3(a,co1, co2, v4, v1, v3, &lambda)){
if(from==PART_FROM_FACE)
(pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
else
(pa+(int)(lambda*size[a])*a0mul)->hair_index++;
}
}
}
if(from==PART_FROM_VOLUME){
int in=pa->hair_index%2;
if(in) pa->hair_index++;
for(i=0; i<size[0]; i++){
if(in || (pa+i*a0mul)->hair_index%2)
(pa+i*a0mul)->flag &= ~PARS_UNEXIST;
/* odd intersections == in->out / out->in */
/* even intersections -> in stays same */
in=(in + (pa+i*a0mul)->hair_index) % 2;
}
}
}
}
}
}
if(psys->part->flag & PART_GRID_INVERT){
for(i=0,pa=psys->particles; i<size[0]; i++){
for(j=0; j<size[1]; j++){
pa=psys->particles + res*(i*res + j);
for(k=0; k<size[2]; k++, pa++){
pa->flag ^= PARS_UNEXIST;
}
}
}
}
}
/* modified copy from rayshade.c */
static void hammersley_create(float *out, int n, int seed, float amount)
{
RNG *rng;
double p, t, offs[2];
int k, kk;
rng = rng_new(31415926 + n + seed);
offs[0]= rng_getDouble(rng) + amount;
offs[1]= rng_getDouble(rng) + amount;
rng_free(rng);
for (k = 0; k < n; k++) {
t = 0;
for (p = 0.5, kk = k; kk; p *= 0.5, kk >>= 1)
if (kk & 1) /* kk mod 2 = 1 */
t += p;
out[2*k + 0]= fmod((double)k/(double)n + offs[0], 1.0);
out[2*k + 1]= fmod(t + offs[1], 1.0);
}
}
/* modified copy from effect.c */
static void init_mv_jit(float *jit, int num, int seed2, float amount)
{
RNG *rng;
float *jit2, x, rad1, rad2, rad3;
int i, num2;
if(num==0) return;
rad1= (float)(1.0/sqrt((float)num));
rad2= (float)(1.0/((float)num));
rad3= (float)sqrt((float)num)/((float)num);
rng = rng_new(31415926 + num + seed2);
x= 0;
num2 = 2 * num;
for(i=0; i<num2; i+=2) {
jit[i]= x + amount*rad1*(0.5f - rng_getFloat(rng));
jit[i+1]= i/(2.0f*num) + amount*rad1*(0.5f - rng_getFloat(rng));
jit[i]-= (float)floor(jit[i]);
jit[i+1]-= (float)floor(jit[i+1]);
x+= rad3;
x -= (float)floor(x);
}
jit2= MEM_mallocN(12 + 2*sizeof(float)*num, "initjit");
for (i=0 ; i<4 ; i++) {
BLI_jitterate1(jit, jit2, num, rad1);
BLI_jitterate1(jit, jit2, num, rad1);
BLI_jitterate2(jit, jit2, num, rad2);
}
MEM_freeN(jit2);
rng_free(rng);
}
static void psys_uv_to_w(float u, float v, int quad, float *w)
{
float vert[4][3], co[3];
if(!quad) {
if(u+v > 1.0f)
v= 1.0f-v;
else
u= 1.0f-u;
}
vert[0][0]= 0.0f; vert[0][1]= 0.0f; vert[0][2]= 0.0f;
vert[1][0]= 1.0f; vert[1][1]= 0.0f; vert[1][2]= 0.0f;
vert[2][0]= 1.0f; vert[2][1]= 1.0f; vert[2][2]= 0.0f;
co[0]= u;
co[1]= v;
co[2]= 0.0f;
if(quad) {
vert[3][0]= 0.0f; vert[3][1]= 1.0f; vert[3][2]= 0.0f;
interp_weights_poly_v3( w,vert, 4, co);
}
else {
interp_weights_poly_v3( w,vert, 3, co);
w[3]= 0.0f;
}
}
static int binary_search_distribution(float *sum, int n, float value)
{
int mid, low=0, high=n;
while(low <= high) {
mid= (low + high)/2;
if(sum[mid] <= value && value <= sum[mid+1])
return mid;
else if(sum[mid] > value)
high= mid - 1;
else if(sum[mid] < value)
low= mid + 1;
else
return mid;
}
return low;
}
/* the max number if calls to rng_* funcs within psys_thread_distribute_particle
* be sure to keep up to date if this changes */
#define PSYS_RND_DIST_SKIP 2
/* note: this function must be thread safe, for from == PART_FROM_CHILD */
#define ONLY_WORKING_WITH_PA_VERTS 0
static void psys_thread_distribute_particle(ParticleThread *thread, ParticleData *pa, ChildParticle *cpa, int p)
{
ParticleThreadContext *ctx= thread->ctx;
Object *ob= ctx->sim.ob;
DerivedMesh *dm= ctx->dm;
ParticleData *tpa;
/* ParticleSettings *part= ctx->sim.psys->part; */
float *v1, *v2, *v3, *v4, nor[3], orco1[3], co1[3], co2[3], nor1[3], ornor1[3];
float cur_d, min_d, randu, randv;
int from= ctx->from;
int cfrom= ctx->cfrom;
int distr= ctx->distr;
int i, intersect, tot;
int rng_skip_tot= PSYS_RND_DIST_SKIP; /* count how many rng_* calls wont need skipping */
if(from == PART_FROM_VERT) {
/* TODO_PARTICLE - use original index */
pa->num= ctx->index[p];
pa->fuv[0] = 1.0f;
pa->fuv[1] = pa->fuv[2] = pa->fuv[3] = 0.0;
#if ONLY_WORKING_WITH_PA_VERTS
if(ctx->tree){
KDTreeNearest ptn[3];
int w, maxw;
psys_particle_on_dm(ctx->dm,from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co1,0,0,0,orco1,0);
transform_mesh_orco_verts((Mesh*)ob->data, &orco1, 1, 1);
maxw = BLI_kdtree_find_n_nearest(ctx->tree,3,orco1,NULL,ptn);
for(w=0; w<maxw; w++){
pa->verts[w]=ptn->num;
}
}
#endif
}
else if(from == PART_FROM_FACE || from == PART_FROM_VOLUME) {
MFace *mface;
pa->num = i = ctx->index[p];
mface = dm->getFaceData(dm,i,CD_MFACE);
switch(distr){
case PART_DISTR_JIT:
ctx->jitoff[i] = fmod(ctx->jitoff[i],(float)ctx->jitlevel);
psys_uv_to_w(ctx->jit[2*(int)ctx->jitoff[i]], ctx->jit[2*(int)ctx->jitoff[i]+1], mface->v4, pa->fuv);
ctx->jitoff[i]++;
break;
case PART_DISTR_RAND:
randu= rng_getFloat(thread->rng);
randv= rng_getFloat(thread->rng);
rng_skip_tot -= 2;
psys_uv_to_w(randu, randv, mface->v4, pa->fuv);
break;
}
pa->foffset= 0.0f;
/* experimental */
if(from==PART_FROM_VOLUME){
MVert *mvert=dm->getVertDataArray(dm,CD_MVERT);
tot=dm->getNumFaces(dm);
psys_interpolate_face(mvert,mface,0,0,pa->fuv,co1,nor,0,0,0,0);
normalize_v3(nor);
mul_v3_fl(nor,-100.0);
VECADD(co2,co1,nor);
min_d=2.0;
intersect=0;
for(i=0,mface=dm->getFaceDataArray(dm,CD_MFACE); i<tot; i++,mface++){
if(i==pa->num) continue;
v1=mvert[mface->v1].co;
v2=mvert[mface->v2].co;
v3=mvert[mface->v3].co;
if(isect_line_tri_v3(co1, co2, v2, v3, v1, &cur_d, 0)){
if(cur_d<min_d){
min_d=cur_d;
pa->foffset=cur_d*50.0f; /* to the middle of volume */
intersect=1;
}
}
if(mface->v4){
v4=mvert[mface->v4].co;
if(isect_line_tri_v3(co1, co2, v4, v1, v3, &cur_d, 0)){
if(cur_d<min_d){
min_d=cur_d;
pa->foffset=cur_d*50.0f; /* to the middle of volume */
intersect=1;
}
}
}
}
if(intersect==0)
pa->foffset=0.0;
else switch(distr){
case PART_DISTR_JIT:
pa->foffset*= ctx->jit[p%(2*ctx->jitlevel)];
break;
case PART_DISTR_RAND:
pa->foffset*=BLI_frand();
break;
}
}
}
else if(from == PART_FROM_PARTICLE) {
tpa=ctx->tpars+ctx->index[p];
pa->num=ctx->index[p];
pa->fuv[0]=tpa->fuv[0];
pa->fuv[1]=tpa->fuv[1];
/* abusing foffset a little for timing in near reaction */
pa->foffset=ctx->weight[ctx->index[p]];
ctx->weight[ctx->index[p]]+=ctx->maxweight;
}
else if(from == PART_FROM_CHILD) {
MFace *mf;
if(ctx->index[p] < 0) {
cpa->num=0;
cpa->fuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3]=0.0f;
cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0;
return;
}
mf= dm->getFaceData(dm, ctx->index[p], CD_MFACE);
randu= rng_getFloat(thread->rng);
randv= rng_getFloat(thread->rng);
rng_skip_tot -= 2;
psys_uv_to_w(randu, randv, mf->v4, cpa->fuv);
cpa->num = ctx->index[p];
if(ctx->tree){
KDTreeNearest ptn[10];
int w,maxw;//, do_seams;
float maxd,mind,dd,totw=0.0;
int parent[10];
float pweight[10];
/*do_seams= (part->flag&PART_CHILD_SEAMS && ctx->seams);*/
psys_particle_on_dm(dm,cfrom,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,co1,nor1,0,0,orco1,ornor1);
transform_mesh_orco_verts((Mesh*)ob->data, &orco1, 1, 1);
//maxw = BLI_kdtree_find_n_nearest(ctx->tree,(do_seams)?10:4,orco1,ornor1,ptn);
maxw = BLI_kdtree_find_n_nearest(ctx->tree,4,orco1,ornor1,ptn);
maxd=ptn[maxw-1].dist;
mind=ptn[0].dist;
dd=maxd-mind;
/* the weights here could be done better */
for(w=0; w<maxw; w++){
parent[w]=ptn[w].index;
pweight[w]=(float)pow(2.0,(double)(-6.0f*ptn[w].dist/maxd));
}
for(;w<10; w++){
parent[w]=-1;
pweight[w]=0.0f;
}
//if(do_seams){
// ParticleSeam *seam=ctx->seams;
// float temp[3],temp2[3],tan[3];
// float inp,cur_len,min_len=10000.0f;
// int min_seam=0, near_vert=0;
// /* find closest seam */
// for(i=0; i<ctx->totseam; i++, seam++){
// sub_v3_v3v3(temp,co1,seam->v0);
// inp=dot_v3v3(temp,seam->dir)/seam->length2;
// if(inp<0.0f){
// cur_len=len_v3v3(co1,seam->v0);
// }
// else if(inp>1.0f){
// cur_len=len_v3v3(co1,seam->v1);
// }
// else{
// copy_v3_v3(temp2,seam->dir);
// mul_v3_fl(temp2,inp);
// cur_len=len_v3v3(temp,temp2);
// }
// if(cur_len<min_len){
// min_len=cur_len;
// min_seam=i;
// if(inp<0.0f) near_vert=-1;
// else if(inp>1.0f) near_vert=1;
// else near_vert=0;
// }
// }
// seam=ctx->seams+min_seam;
//
// copy_v3_v3(temp,seam->v0);
//
// if(near_vert){
// if(near_vert==-1)
// sub_v3_v3v3(tan,co1,seam->v0);
// else{
// sub_v3_v3v3(tan,co1,seam->v1);
// copy_v3_v3(temp,seam->v1);
// }
// normalize_v3(tan);
// }
// else{
// copy_v3_v3(tan,seam->tan);
// sub_v3_v3v3(temp2,co1,temp);
// if(dot_v3v3(tan,temp2)<0.0f)
// negate_v3(tan);
// }
// for(w=0; w<maxw; w++){
// sub_v3_v3v3(temp2,ptn[w].co,temp);
// if(dot_v3v3(tan,temp2)<0.0f){
// parent[w]=-1;
// pweight[w]=0.0f;
// }
// }
//}
for(w=0,i=0; w<maxw && i<4; w++){
if(parent[w]>=0){
cpa->pa[i]=parent[w];
cpa->w[i]=pweight[w];
totw+=pweight[w];
i++;
}
}
for(;i<4; i++){
cpa->pa[i]=-1;
cpa->w[i]=0.0f;
}
if(totw>0.0f) for(w=0; w<4; w++)
cpa->w[w]/=totw;
cpa->parent=cpa->pa[0];
}
}
if(rng_skip_tot > 0) /* should never be below zero */
rng_skip(thread->rng, rng_skip_tot);
}
static void *exec_distribution(void *data)
{
ParticleThread *thread= (ParticleThread*)data;
ParticleSystem *psys= thread->ctx->sim.psys;
ParticleData *pa;
ChildParticle *cpa;
int p, totpart;
if(thread->ctx->from == PART_FROM_CHILD) {
totpart= psys->totchild;
cpa= psys->child;
for(p=0; p<totpart; p++, cpa++) {
if(thread->ctx->skip) /* simplification skip */
rng_skip(thread->rng, PSYS_RND_DIST_SKIP * thread->ctx->skip[p]);
if((p+thread->num) % thread->tot == 0)
psys_thread_distribute_particle(thread, NULL, cpa, p);
else /* thread skip */
rng_skip(thread->rng, PSYS_RND_DIST_SKIP);
}
}
else {
totpart= psys->totpart;
pa= psys->particles + thread->num;
for(p=thread->num; p<totpart; p+=thread->tot, pa+=thread->tot)
psys_thread_distribute_particle(thread, pa, NULL, p);
}
return 0;
}
/* not thread safe, but qsort doesn't take userdata argument */
static int *COMPARE_ORIG_INDEX = NULL;
static int compare_orig_index(const void *p1, const void *p2)
{
int index1 = COMPARE_ORIG_INDEX[*(const int*)p1];
int index2 = COMPARE_ORIG_INDEX[*(const int*)p2];
if(index1 < index2)
return -1;
else if(index1 == index2) {
/* this pointer comparison appears to make qsort stable for glibc,
* and apparently on solaris too, makes the renders reproducable */
if(p1 < p2)
return -1;
else if(p1 == p2)
return 0;
else
return 1;
}
else
return 1;
}
/* creates a distribution of coordinates on a DerivedMesh */
/* */
/* 1. lets check from what we are emitting */
/* 2. now we know that we have something to emit from so */
/* let's calculate some weights */
/* 2.1 from even distribution */
/* 2.2 and from vertex groups */
/* 3. next we determine the indexes of emitting thing that */
/* the particles will have */
/* 4. let's do jitter if we need it */
/* 5. now we're ready to set the indexes & distributions to */
/* the particles */
/* 6. and we're done! */
/* This is to denote functionality that does not yet work with mesh - only derived mesh */
static int psys_threads_init_distribution(ParticleThread *threads, Scene *scene, DerivedMesh *finaldm, int from)
{
ParticleThreadContext *ctx= threads[0].ctx;
Object *ob= ctx->sim.ob;
ParticleSystem *psys= ctx->sim.psys;
Object *tob;
ParticleData *pa=0, *tpars= 0;
ParticleSettings *part;
ParticleSystem *tpsys;
ParticleSeam *seams= 0;
ChildParticle *cpa=0;
KDTree *tree=0;
DerivedMesh *dm= NULL;
float *jit= NULL;
int i, seed, p=0, totthread= threads[0].tot;
int no_distr=0, cfrom=0;
int tot=0, totpart, *index=0, children=0, totseam=0;
//int *vertpart=0;
int jitlevel= 1, distr;
float *weight=0,*sum=0,*jitoff=0;
float cur, maxweight=0.0, tweight, totweight, co[3], nor[3], orco[3], ornor[3];
if(ob==0 || psys==0 || psys->part==0)
return 0;
part=psys->part;
totpart=psys->totpart;
if(totpart==0)
return 0;
if (!finaldm->deformedOnly && !finaldm->getFaceDataArray(finaldm, CD_ORIGINDEX)) {
printf("Can't create particles with the current modifier stack, disable destructive modifiers\n");
// XXX error("Can't paint with the current modifier stack, disable destructive modifiers");
return 0;
}
BLI_srandom(31415926 + psys->seed);
if(from==PART_FROM_CHILD){
distr=PART_DISTR_RAND;
if(part->from!=PART_FROM_PARTICLE && part->childtype==PART_CHILD_FACES){
dm= finaldm;
children=1;
tree=BLI_kdtree_new(totpart);
for(p=0,pa=psys->particles; p<totpart; p++,pa++){
psys_particle_on_dm(dm,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,nor,0,0,orco,ornor);
transform_mesh_orco_verts((Mesh*)ob->data, &orco, 1, 1);
BLI_kdtree_insert(tree, p, orco, ornor);
}
BLI_kdtree_balance(tree);
totpart=get_psys_tot_child(scene, psys);
cfrom=from=PART_FROM_FACE;
//if(part->flag&PART_CHILD_SEAMS){
// MEdge *ed, *medge=dm->getEdgeDataArray(dm,CD_MEDGE);
// MVert *mvert=dm->getVertDataArray(dm,CD_MVERT);
// int totedge=dm->getNumEdges(dm);
// for(p=0, ed=medge; p<totedge; p++,ed++)
// if(ed->flag&ME_SEAM)
// totseam++;
// if(totseam){
// ParticleSeam *cur_seam=seams=MEM_callocN(totseam*sizeof(ParticleSeam),"Child Distribution Seams");
// float temp[3],temp2[3];
// for(p=0, ed=medge; p<totedge; p++,ed++){
// if(ed->flag&ME_SEAM){
// copy_v3_v3(cur_seam->v0,(mvert+ed->v1)->co);
// copy_v3_v3(cur_seam->v1,(mvert+ed->v2)->co);
// sub_v3_v3v3(cur_seam->dir,cur_seam->v1,cur_seam->v0);
// cur_seam->length2=len_v3(cur_seam->dir);
// cur_seam->length2*=cur_seam->length2;
// temp[0]=(float)((mvert+ed->v1)->no[0]);
// temp[1]=(float)((mvert+ed->v1)->no[1]);
// temp[2]=(float)((mvert+ed->v1)->no[2]);
// temp2[0]=(float)((mvert+ed->v2)->no[0]);
// temp2[1]=(float)((mvert+ed->v2)->no[1]);
// temp2[2]=(float)((mvert+ed->v2)->no[2]);
// add_v3_v3v3(cur_seam->nor,temp,temp2);
// normalize_v3(cur_seam->nor);
// cross_v3_v3v3(cur_seam->tan,cur_seam->dir,cur_seam->nor);
// normalize_v3(cur_seam->tan);
// cur_seam++;
// }
// }
// }
//
//}
}
else{
/* no need to figure out distribution */
int child_nbr= get_psys_child_number(scene, psys);
totpart= get_psys_tot_child(scene, psys);
alloc_child_particles(psys, totpart);
cpa=psys->child;
for(i=0; i<child_nbr; i++){
for(p=0; p<psys->totpart; p++,cpa++){
float length=2.0;
cpa->parent=p;
/* create even spherical distribution inside unit sphere */
while(length>=1.0f){
cpa->fuv[0]=2.0f*BLI_frand()-1.0f;
cpa->fuv[1]=2.0f*BLI_frand()-1.0f;
cpa->fuv[2]=2.0f*BLI_frand()-1.0f;
length=len_v3(cpa->fuv);
}
cpa->num=-1;
}
}
/* dmcache must be updated for parent particles if children from faces is used */
psys_calc_dmcache(ob, finaldm, psys);
return 0;
}
}
else{
dm= CDDM_from_mesh((Mesh*)ob->data, ob);
/* special handling of grid distribution */
if(part->distr==PART_DISTR_GRID && from != PART_FROM_VERT){
distribute_particles_in_grid(dm,psys);
dm->release(dm);
return 0;
}
/* we need orco for consistent distributions */
DM_add_vert_layer(dm, CD_ORCO, CD_ASSIGN, get_mesh_orco_verts(ob));
distr=part->distr;
pa=psys->particles;
if(from==PART_FROM_VERT){
MVert *mv= dm->getVertDataArray(dm, CD_MVERT);
float (*orcodata)[3]= dm->getVertDataArray(dm, CD_ORCO);
int totvert = dm->getNumVerts(dm);
tree=BLI_kdtree_new(totvert);
for(p=0; p<totvert; p++){
if(orcodata) {
VECCOPY(co,orcodata[p])
transform_mesh_orco_verts((Mesh*)ob->data, &co, 1, 1);
}
else
VECCOPY(co,mv[p].co)
BLI_kdtree_insert(tree,p,co,NULL);
}
BLI_kdtree_balance(tree);
}
}
/* 1. */
switch(from){
case PART_FROM_VERT:
tot = dm->getNumVerts(dm);
break;
case PART_FROM_VOLUME:
case PART_FROM_FACE:
tot = dm->getNumFaces(dm);
break;
case PART_FROM_PARTICLE:
if(psys->target_ob)
tob=psys->target_ob;
else
tob=ob;
if((tpsys=BLI_findlink(&tob->particlesystem,psys->target_psys-1))){
tpars=tpsys->particles;
tot=tpsys->totpart;
}
break;
}
if(tot==0){
no_distr=1;
if(children){
if(G.f & G_DEBUG)
fprintf(stderr,"Particle child distribution error: Nothing to emit from!\n");
if(psys->child) {
for(p=0,cpa=psys->child; p<totpart; p++,cpa++){
cpa->fuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3]= 0.0;
cpa->foffset= 0.0f;
cpa->parent=0;
cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0;
cpa->num= -1;
}
}
}
else {
if(G.f & G_DEBUG)
fprintf(stderr,"Particle distribution error: Nothing to emit from!\n");
for(p=0,pa=psys->particles; p<totpart; p++,pa++){
pa->fuv[0]=pa->fuv[1]=pa->fuv[2]= pa->fuv[3]= 0.0;
pa->foffset= 0.0f;
pa->num= -1;
}
}
if(dm != finaldm) dm->release(dm);
return 0;
}
/* 2. */
weight=MEM_callocN(sizeof(float)*tot, "particle_distribution_weights");
index=MEM_callocN(sizeof(int)*totpart, "particle_distribution_indexes");
sum=MEM_callocN(sizeof(float)*(tot+1), "particle_distribution_sum");
jitoff=MEM_callocN(sizeof(float)*tot, "particle_distribution_jitoff");
/* 2.1 */
if((part->flag&PART_EDISTR || children) && ELEM(from,PART_FROM_PARTICLE,PART_FROM_VERT)==0){
MVert *v1, *v2, *v3, *v4;
float totarea=0.0, co1[3], co2[3], co3[3], co4[3];
float (*orcodata)[3];
orcodata= dm->getVertDataArray(dm, CD_ORCO);
for(i=0; i<tot; i++){
MFace *mf=dm->getFaceData(dm,i,CD_MFACE);
if(orcodata) {
VECCOPY(co1, orcodata[mf->v1]);
VECCOPY(co2, orcodata[mf->v2]);
VECCOPY(co3, orcodata[mf->v3]);
transform_mesh_orco_verts((Mesh*)ob->data, &co1, 1, 1);
transform_mesh_orco_verts((Mesh*)ob->data, &co2, 1, 1);
transform_mesh_orco_verts((Mesh*)ob->data, &co3, 1, 1);
}
else {
v1= (MVert*)dm->getVertData(dm,mf->v1,CD_MVERT);
v2= (MVert*)dm->getVertData(dm,mf->v2,CD_MVERT);
v3= (MVert*)dm->getVertData(dm,mf->v3,CD_MVERT);
VECCOPY(co1, v1->co);
VECCOPY(co2, v2->co);
VECCOPY(co3, v3->co);
}
if (mf->v4){
if(orcodata) {
VECCOPY(co4, orcodata[mf->v4]);
transform_mesh_orco_verts((Mesh*)ob->data, &co4, 1, 1);
}
else {
v4= (MVert*)dm->getVertData(dm,mf->v4,CD_MVERT);
VECCOPY(co4, v4->co);
}
cur= area_quad_v3(co1, co2, co3, co4);
}
else
cur= area_tri_v3(co1, co2, co3);
if(cur>maxweight)
maxweight=cur;
weight[i]= cur;
totarea+=cur;
}
for(i=0; i<tot; i++)
weight[i] /= totarea;
maxweight /= totarea;
}
else if(from==PART_FROM_PARTICLE){
float val=(float)tot/(float)totpart;
for(i=0; i<tot; i++)
weight[i]=val;
maxweight=val;
}
else{
float min=1.0f/(float)(MIN2(tot,totpart));
for(i=0; i<tot; i++)
weight[i]=min;
maxweight=min;
}
/* 2.2 */
if(ELEM3(from,PART_FROM_VERT,PART_FROM_FACE,PART_FROM_VOLUME)){
float *vweight= psys_cache_vgroup(dm,psys,PSYS_VG_DENSITY);
if(vweight){
if(from==PART_FROM_VERT) {
for(i=0;i<tot; i++)
weight[i]*=vweight[i];
}
else { /* PART_FROM_FACE / PART_FROM_VOLUME */
for(i=0;i<tot; i++){
MFace *mf=dm->getFaceData(dm,i,CD_MFACE);
tweight = vweight[mf->v1] + vweight[mf->v2] + vweight[mf->v3];
if(mf->v4) {
tweight += vweight[mf->v4];
tweight /= 4.0;
}
else {
tweight /= 3.0;
}
weight[i]*=tweight;
}
}
MEM_freeN(vweight);
}
}
/* 3. */
totweight= 0.0f;
for(i=0;i<tot; i++)
totweight += weight[i];
if(totweight > 0.0f)
totweight= 1.0f/totweight;
sum[0]= 0.0f;
for(i=0;i<tot; i++)
sum[i+1]= sum[i]+weight[i]*totweight;
if((part->flag&PART_TRAND) || (part->simplify_flag&PART_SIMPLIFY_ENABLE)) {
float pos;
for(p=0; p<totpart; p++) {
pos= BLI_frand();
index[p]= binary_search_distribution(sum, tot, pos);
index[p]= MIN2(tot-1, index[p]);
jitoff[index[p]]= pos;
}
}
else {
double step, pos;
step= (totpart <= 1)? 0.5: 1.0/(totpart-1);
pos= 1e-16f; /* tiny offset to avoid zero weight face */
i= 0;
for(p=0; p<totpart; p++, pos+=step) {
while((i < tot) && (pos > sum[i+1]))
i++;
index[p]= MIN2(tot-1, i);
/* avoid zero weight face */
if(p == totpart-1 && weight[index[p]] == 0.0f)
index[p]= index[p-1];
jitoff[index[p]]= pos;
}
}
MEM_freeN(sum);
/* for hair, sort by origindex, allows optimizations in rendering */
/* however with virtual parents the children need to be in random order */
if(part->type == PART_HAIR && !(part->childtype==PART_CHILD_FACES && part->parents!=0.0)) {
if(from != PART_FROM_PARTICLE) {
COMPARE_ORIG_INDEX = NULL;
if(from == PART_FROM_VERT) {
if(dm->numVertData)
COMPARE_ORIG_INDEX= dm->getVertDataArray(dm, CD_ORIGINDEX);
}
else {
if(dm->numFaceData)
COMPARE_ORIG_INDEX= dm->getFaceDataArray(dm, CD_ORIGINDEX);
}
if(COMPARE_ORIG_INDEX) {
qsort(index, totpart, sizeof(int), compare_orig_index);
COMPARE_ORIG_INDEX = NULL;
}
}
}
/* weights are no longer used except for FROM_PARTICLE, which needs them zeroed for indexing */
if(from==PART_FROM_PARTICLE){
for(i=0; i<tot; i++)
weight[i]=0.0f;
}
/* 4. */
if(distr==PART_DISTR_JIT && ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)) {
jitlevel= part->userjit;
if(jitlevel == 0) {
jitlevel= totpart/tot;
if(part->flag & PART_EDISTR) jitlevel*= 2; /* looks better in general, not very scietific */
if(jitlevel<3) jitlevel= 3;
}
jit= MEM_callocN((2+ jitlevel*2)*sizeof(float), "jit");
/* for small amounts of particles we use regular jitter since it looks
* a bit better, for larger amounts we switch to hammersley sequence
* because it is much faster */
if(jitlevel < 25)
init_mv_jit(jit, jitlevel, psys->seed, part->jitfac);
else
hammersley_create(jit, jitlevel+1, psys->seed, part->jitfac);
BLI_array_randomize(jit, 2*sizeof(float), jitlevel, psys->seed); /* for custom jit or even distribution */
}
/* 5. */
ctx->tree= tree;
ctx->seams= seams;
ctx->totseam= totseam;
ctx->sim.psys= psys;
ctx->index= index;
ctx->jit= jit;
ctx->jitlevel= jitlevel;
ctx->jitoff= jitoff;
ctx->weight= weight;
ctx->maxweight= maxweight;
ctx->from= (children)? PART_FROM_CHILD: from;
ctx->cfrom= cfrom;
ctx->distr= distr;
ctx->dm= dm;
ctx->tpars= tpars;
if(children) {
totpart= psys_render_simplify_distribution(ctx, totpart);
alloc_child_particles(psys, totpart);
}
if(!children || psys->totchild < 10000)
totthread= 1;
seed= 31415926 + ctx->sim.psys->seed;
for(i=0; i<totthread; i++) {
threads[i].rng= rng_new(seed);
threads[i].tot= totthread;
}
return 1;
}
static void distribute_particles_on_dm(ParticleSimulationData *sim, int from)
{
DerivedMesh *finaldm = sim->psmd->dm;
ListBase threads;
ParticleThread *pthreads;
ParticleThreadContext *ctx;
int i, totthread;
pthreads= psys_threads_create(sim);
if(!psys_threads_init_distribution(pthreads, sim->scene, finaldm, from)) {
psys_threads_free(pthreads);
return;
}
totthread= pthreads[0].tot;
if(totthread > 1) {
BLI_init_threads(&threads, exec_distribution, totthread);
for(i=0; i<totthread; i++)
BLI_insert_thread(&threads, &pthreads[i]);
BLI_end_threads(&threads);
}
else
exec_distribution(&pthreads[0]);
psys_calc_dmcache(sim->ob, finaldm, sim->psys);
ctx= pthreads[0].ctx;
if(ctx->dm != finaldm)
ctx->dm->release(ctx->dm);
psys_threads_free(pthreads);
}
/* ready for future use, to emit particles without geometry */
static void distribute_particles_on_shape(ParticleSimulationData *sim, int UNUSED(from))
{
ParticleSystem *psys = sim->psys;
PARTICLE_P;
fprintf(stderr,"Shape emission not yet possible!\n");
LOOP_PARTICLES {
pa->fuv[0]=pa->fuv[1]=pa->fuv[2]=pa->fuv[3]= 0.0;
pa->foffset= 0.0f;
pa->num= -1;
}
}
static void distribute_particles(ParticleSimulationData *sim, int from)
{
PARTICLE_PSMD;
int distr_error=0;
if(psmd){
if(psmd->dm)
distribute_particles_on_dm(sim, from);
else
distr_error=1;
}
else
distribute_particles_on_shape(sim, from);
if(distr_error){
ParticleSystem *psys = sim->psys;
PARTICLE_P;
fprintf(stderr,"Particle distribution error!\n");
LOOP_PARTICLES {
pa->fuv[0]=pa->fuv[1]=pa->fuv[2]=pa->fuv[3]= 0.0;
pa->foffset= 0.0f;
pa->num= -1;
}
}
}
/* threaded child particle distribution and path caching */
ParticleThread *psys_threads_create(ParticleSimulationData *sim)
{
ParticleThread *threads;
ParticleThreadContext *ctx;
int i, totthread;
if(sim->scene->r.mode & R_FIXED_THREADS)
totthread= sim->scene->r.threads;
else
totthread= BLI_system_thread_count();
threads= MEM_callocN(sizeof(ParticleThread)*totthread, "ParticleThread");
ctx= MEM_callocN(sizeof(ParticleThreadContext), "ParticleThreadContext");
ctx->sim = *sim;
ctx->dm= ctx->sim.psmd->dm;
ctx->ma= give_current_material(sim->ob, sim->psys->part->omat);
memset(threads, 0, sizeof(ParticleThread)*totthread);
for(i=0; i<totthread; i++) {
threads[i].ctx= ctx;
threads[i].num= i;
threads[i].tot= totthread;
}
return threads;
}
void psys_threads_free(ParticleThread *threads)
{
ParticleThreadContext *ctx= threads[0].ctx;
int i, totthread= threads[0].tot;
/* path caching */
if(ctx->vg_length)
MEM_freeN(ctx->vg_length);
if(ctx->vg_clump)
MEM_freeN(ctx->vg_clump);
if(ctx->vg_kink)
MEM_freeN(ctx->vg_kink);
if(ctx->vg_rough1)
MEM_freeN(ctx->vg_rough1);
if(ctx->vg_rough2)
MEM_freeN(ctx->vg_rough2);
if(ctx->vg_roughe)
MEM_freeN(ctx->vg_roughe);
if(ctx->sim.psys->lattice){
end_latt_deform(ctx->sim.psys->lattice);
ctx->sim.psys->lattice= NULL;
}
/* distribution */
if(ctx->jit) MEM_freeN(ctx->jit);
if(ctx->jitoff) MEM_freeN(ctx->jitoff);
if(ctx->weight) MEM_freeN(ctx->weight);
if(ctx->index) MEM_freeN(ctx->index);
if(ctx->skip) MEM_freeN(ctx->skip);
if(ctx->seams) MEM_freeN(ctx->seams);
//if(ctx->vertpart) MEM_freeN(ctx->vertpart);
BLI_kdtree_free(ctx->tree);
/* threads */
for(i=0; i<totthread; i++) {
if(threads[i].rng)
rng_free(threads[i].rng);
if(threads[i].rng_path)
rng_free(threads[i].rng_path);
}
MEM_freeN(ctx);
MEM_freeN(threads);
}
/* set particle parameters that don't change during particle's life */
void initialize_particle(ParticleSimulationData *sim, ParticleData *pa, int p)
{
ParticleSettings *part = sim->psys->part;
ParticleTexture ptex;
Material *ma=0;
//IpoCurve *icu=0; // XXX old animation system
int totpart;
totpart=sim->psys->totpart;
ptex.life=ptex.size=ptex.exist=ptex.length=1.0;
ptex.time=(float)p/(float)totpart;
BLI_srandom(sim->psys->seed + p + 125);
if(part->from!=PART_FROM_PARTICLE && part->type!=PART_FLUID){
ma=give_current_material(sim->ob,part->omat);
/* TODO: needs some work to make most blendtypes generally usefull */
psys_get_texture(sim,ma,pa,&ptex,MAP_PA_INIT);
}
if(part->type==PART_HAIR)
pa->time= 0.0f;
//else if(part->type==PART_REACTOR && (part->flag&PART_REACT_STA_END)==0)
// pa->time= 300000.0f; /* max frame */
else{
//icu=find_ipocurve(psys->part->ipo,PART_EMIT_TIME);
//if(icu){
// calc_icu(icu,100*ptex.time);
// ptex.time=icu->curval;
//}
pa->time= part->sta + (part->end - part->sta)*ptex.time;
}
if(part->type!=PART_HAIR && part->distr!=PART_DISTR_GRID && part->from != PART_FROM_VERT){
if(ptex.exist < BLI_frand())
pa->flag |= PARS_UNEXIST;
else
pa->flag &= ~PARS_UNEXIST;
}
pa->hair_index=0;
/* we can't reset to -1 anymore since we've figured out correct index in distribute_particles */
/* usage other than straight after distribute has to handle this index by itself - jahka*/
//pa->num_dmcache = DMCACHE_NOTFOUND; /* assume we dont have a derived mesh face */
}
static void initialize_all_particles(ParticleSimulationData *sim)
{
//IpoCurve *icu=0; // XXX old animation system
ParticleSystem *psys = sim->psys;
PARTICLE_P;
LOOP_PARTICLES
initialize_particle(sim, pa, p);
if(psys->part->type != PART_FLUID) {
#if 0 // XXX old animation system
icu=find_ipocurve(psys->part->ipo,PART_EMIT_FREQ);
if(icu){
float time=psys->part->sta, end=psys->part->end;
float v1, v2, a=0.0f, t1,t2, d;
p=0;
pa=psys->particles;
calc_icu(icu,time);
v1=icu->curval;
if(v1<0.0f) v1=0.0f;
calc_icu(icu,time+1.0f);
v2=icu->curval;
if(v2<0.0f) v2=0.0f;
for(p=0, pa=psys->particles; p<totpart && time<end; p++, pa++){
while(a+0.5f*(v1+v2) < (float)(p+1) && time<end){
a+=0.5f*(v1+v2);
v1=v2;
time++;
calc_icu(icu,time+1.0f);
v2=icu->curval;
}
if(time<end){
if(v1==v2){
pa->time=time+((float)(p+1)-a)/v1;
}
else{
d=(float)sqrt(v1*v1-2.0f*(v2-v1)*(a-(float)(p+1)));
t1=(-v1+d)/(v2-v1);
t2=(-v1-d)/(v2-v1);
/* the root between 0-1 is the correct one */
if(t1>0.0f && t1<=1.0f)
pa->time=time+t1;
else
pa->time=time+t2;
}
}
pa->dietime = pa->time+pa->lifetime;
pa->flag &= ~PARS_UNEXIST;
}
for(; p<totpart; p++, pa++){
pa->flag |= PARS_UNEXIST;
}
}
#endif // XXX old animation system
}
}
/* sets particle to the emitter surface with initial velocity & rotation */
void reset_particle(ParticleSimulationData *sim, ParticleData *pa, float dtime, float cfra)
{
Object *ob = sim->ob;
ParticleSystem *psys = sim->psys;
ParticleSettings *part;
ParticleTexture ptex;
ParticleKey state;
//IpoCurve *icu=0; // XXX old animation system
float fac, phasefac, nor[3]={0,0,0},loc[3],vel[3]={0.0,0.0,0.0},rot[4],q2[4];
float r_vel[3],r_ave[3],r_rot[4],vec[3],p_vel[3]={0.0,0.0,0.0};
float x_vec[3]={1.0,0.0,0.0}, utan[3]={0.0,1.0,0.0}, vtan[3]={0.0,0.0,1.0}, rot_vec[3]={0.0,0.0,0.0};
float q_phase[4], r_phase;
int p = pa - psys->particles;
part=psys->part;
ptex.ivel=1.0;
ptex.life=1.0;
/* we need to get every random even if they're not used so that they don't effect eachother */
r_vel[0] = 2.0f * (PSYS_FRAND(p + 10) - 0.5f);
r_vel[1] = 2.0f * (PSYS_FRAND(p + 11) - 0.5f);
r_vel[2] = 2.0f * (PSYS_FRAND(p + 12) - 0.5f);
r_ave[0] = 2.0f * (PSYS_FRAND(p + 13) - 0.5f);
r_ave[1] = 2.0f * (PSYS_FRAND(p + 14) - 0.5f);
r_ave[2] = 2.0f * (PSYS_FRAND(p + 15) - 0.5f);
r_rot[0] = 2.0f * (PSYS_FRAND(p + 16) - 0.5f);
r_rot[1] = 2.0f * (PSYS_FRAND(p + 17) - 0.5f);
r_rot[2] = 2.0f * (PSYS_FRAND(p + 18) - 0.5f);
r_rot[3] = 2.0f * (PSYS_FRAND(p + 19) - 0.5f);
normalize_qt(r_rot);
r_phase = PSYS_FRAND(p + 20);
if(part->from==PART_FROM_PARTICLE){
ParticleSimulationData tsim = {sim->scene, psys->target_ob ? psys->target_ob : ob, NULL, NULL};
float speed;
tsim.psys = BLI_findlink(&tsim.ob->particlesystem, sim->psys->target_psys-1);
state.time = pa->time;
if(pa->num == -1)
memset(&state, 0, sizeof(state));
else
psys_get_particle_state(&tsim, pa->num, &state, 1);
psys_get_from_key(&state, loc, nor, rot, 0);
mul_qt_v3(rot, vtan);
mul_qt_v3(rot, utan);
speed= normalize_v3_v3(p_vel, state.vel);
mul_v3_fl(p_vel, dot_v3v3(r_vel, p_vel));
VECSUB(p_vel, r_vel, p_vel);
normalize_v3(p_vel);
mul_v3_fl(p_vel, speed);
VECCOPY(pa->fuv, loc); /* abusing pa->fuv (not used for "from particle") for storing emit location */
}
else{
/* get precise emitter matrix if particle is born */
if(part->type!=PART_HAIR && pa->time < cfra && pa->time >= sim->psys->cfra) {
/* we have to force RECALC_ANIM here since where_is_objec_time only does drivers */
BKE_animsys_evaluate_animdata(&sim->ob->id, sim->ob->adt, pa->time, ADT_RECALC_ANIM);
where_is_object_time(sim->scene, sim->ob, pa->time);
}
/* get birth location from object */
if(part->tanfac!=0.0)
psys_particle_on_emitter(sim->psmd, part->from,pa->num, pa->num_dmcache, pa->fuv,pa->foffset,loc,nor,utan,vtan,0,0);
else
psys_particle_on_emitter(sim->psmd, part->from,pa->num, pa->num_dmcache, pa->fuv,pa->foffset,loc,nor,0,0,0,0);
/* get possible textural influence */
psys_get_texture(sim, give_current_material(sim->ob,part->omat), pa, &ptex, MAP_PA_IVEL|MAP_PA_LIFE);
//if(vg_vel && pa->num != -1)
// ptex.ivel*=psys_particle_value_from_verts(sim->psmd->dm,part->from,pa,vg_vel);
/* particles live in global space so */
/* let's convert: */
/* -location */
mul_m4_v3(ob->obmat,loc);
/* -normal */
mul_mat3_m4_v3(ob->obmat,nor);
normalize_v3(nor);
/* -tangent */
if(part->tanfac!=0.0){
//float phase=vg_rot?2.0f*(psys_particle_value_from_verts(sim->psmd->dm,part->from,pa,vg_rot)-0.5f):0.0f;
float phase=0.0f;
mul_v3_fl(vtan,-(float)cos(M_PI*(part->tanphase+phase)));
fac=-(float)sin(M_PI*(part->tanphase+phase));
VECADDFAC(vtan,vtan,utan,fac);
mul_mat3_m4_v3(ob->obmat,vtan);
VECCOPY(utan,nor);
mul_v3_fl(utan,dot_v3v3(vtan,nor));
VECSUB(vtan,vtan,utan);
normalize_v3(vtan);
}
/* -velocity */
if(part->randfac!=0.0){
mul_mat3_m4_v3(ob->obmat,r_vel);
normalize_v3(r_vel);
}
/* -angular velocity */
if(part->avemode==PART_AVE_RAND){
mul_mat3_m4_v3(ob->obmat,r_ave);
normalize_v3(r_ave);
}
/* -rotation */
if(part->randrotfac != 0.0f){
mat4_to_quat(rot,ob->obmat);
mul_qt_qtqt(r_rot,r_rot,rot);
}
}
if(part->phystype==PART_PHYS_BOIDS && pa->boid) {
BoidParticle *bpa = pa->boid;
float dvec[3], q[4], mat[3][3];
VECCOPY(pa->state.co,loc);
/* boids don't get any initial velocity */
pa->state.vel[0]=pa->state.vel[1]=pa->state.vel[2]=0.0f;
/* boids store direction in ave */
if(fabs(nor[2])==1.0f) {
sub_v3_v3v3(pa->state.ave, loc, ob->obmat[3]);
normalize_v3(pa->state.ave);
}
else {
VECCOPY(pa->state.ave, nor);
}
/* and gravity in r_ve */
bpa->gravity[0] = bpa->gravity[1] = 0.0f;
bpa->gravity[2] = -1.0f;
if((sim->scene->physics_settings.flag & PHYS_GLOBAL_GRAVITY)
&& sim->scene->physics_settings.gravity[2]!=0.0f)
bpa->gravity[2] = sim->scene->physics_settings.gravity[2];
/* calculate rotation matrix */
project_v3_v3v3(dvec, r_vel, pa->state.ave);
sub_v3_v3v3(mat[0], pa->state.ave, dvec);
normalize_v3(mat[0]);
negate_v3_v3(mat[2], r_vel);
normalize_v3(mat[2]);
cross_v3_v3v3(mat[1], mat[2], mat[0]);
/* apply rotation */
mat3_to_quat_is_ok( q,mat);
copy_qt_qt(pa->state.rot, q);
bpa->data.health = part->boids->health;
bpa->data.mode = eBoidMode_InAir;
bpa->data.state_id = ((BoidState*)part->boids->states.first)->id;
bpa->data.acc[0]=bpa->data.acc[1]=bpa->data.acc[2]=0.0f;
}
else {
/* conversion done so now we apply new: */
/* -velocity from: */
/* *reactions */
if(dtime>0.0f){
VECSUB(vel,pa->state.vel,pa->prev_state.vel);
}
/* *emitter velocity */
if(dtime!=0.0 && part->obfac!=0.0){
VECSUB(vel,loc,pa->state.co);
mul_v3_fl(vel,part->obfac/dtime);
}
/* *emitter normal */
if(part->normfac!=0.0)
VECADDFAC(vel,vel,nor,part->normfac);
/* *emitter tangent */
if(sim->psmd && part->tanfac!=0.0)
VECADDFAC(vel,vel,vtan,part->tanfac);
//VECADDFAC(vel,vel,vtan,part->tanfac*(vg_tan?psys_particle_value_from_verts(sim->psmd->dm,part->from,pa,vg_tan):1.0f));
/* *emitter object orientation */
if(part->ob_vel[0]!=0.0) {
normalize_v3_v3(vec, ob->obmat[0]);
VECADDFAC(vel, vel, vec, part->ob_vel[0]);
}
if(part->ob_vel[1]!=0.0) {
normalize_v3_v3(vec, ob->obmat[1]);
VECADDFAC(vel, vel, vec, part->ob_vel[1]);
}
if(part->ob_vel[2]!=0.0) {
normalize_v3_v3(vec, ob->obmat[2]);
VECADDFAC(vel, vel, vec, part->ob_vel[2]);
}
/* *texture */
/* TODO */
/* *random */
if(part->randfac!=0.0)
VECADDFAC(vel,vel,r_vel,part->randfac);
/* *particle */
if(part->partfac!=0.0)
VECADDFAC(vel,vel,p_vel,part->partfac);
//icu=find_ipocurve(psys->part->ipo,PART_EMIT_VEL);
//if(icu){
// calc_icu(icu,100*((pa->time-part->sta)/(part->end-part->sta)));
// ptex.ivel*=icu->curval;
//}
mul_v3_fl(vel,ptex.ivel);
VECCOPY(pa->state.vel,vel);
/* -location from emitter */
VECCOPY(pa->state.co,loc);
/* -rotation */
pa->state.rot[0]=1.0;
pa->state.rot[1]=pa->state.rot[2]=pa->state.rot[3]=0.0;
if(part->rotmode){
/* create vector into which rotation is aligned */
switch(part->rotmode){
case PART_ROT_NOR:
copy_v3_v3(rot_vec, nor);
break;
case PART_ROT_VEL:
copy_v3_v3(rot_vec, vel);
break;
case PART_ROT_GLOB_X:
case PART_ROT_GLOB_Y:
case PART_ROT_GLOB_Z:
rot_vec[part->rotmode - PART_ROT_GLOB_X] = 1.0f;
break;
case PART_ROT_OB_X:
case PART_ROT_OB_Y:
case PART_ROT_OB_Z:
copy_v3_v3(rot_vec, ob->obmat[part->rotmode - PART_ROT_OB_X]);
break;
}
/* create rotation quat */
negate_v3(rot_vec);
vec_to_quat( q2,rot_vec, OB_POSX, OB_POSZ);
/* randomize rotation quat */
if(part->randrotfac!=0.0f)
interp_qt_qtqt(rot, q2, r_rot, part->randrotfac);
else
copy_qt_qt(rot,q2);
/* rotation phase */
phasefac = part->phasefac;
if(part->randphasefac != 0.0f)
phasefac += part->randphasefac * r_phase;
axis_angle_to_quat( q_phase,x_vec, phasefac*(float)M_PI);
/* combine base rotation & phase */
mul_qt_qtqt(pa->state.rot, rot, q_phase);
}
/* -angular velocity */
pa->state.ave[0] = pa->state.ave[1] = pa->state.ave[2] = 0.0;
if(part->avemode){
switch(part->avemode){
case PART_AVE_SPIN:
VECCOPY(pa->state.ave,vel);
break;
case PART_AVE_RAND:
VECCOPY(pa->state.ave,r_ave);
break;
}
normalize_v3(pa->state.ave);
mul_v3_fl(pa->state.ave,part->avefac);
//icu=find_ipocurve(psys->part->ipo,PART_EMIT_AVE);
//if(icu){
// calc_icu(icu,100*((pa->time-part->sta)/(part->end-part->sta)));
// mul_v3_fl(pa->state.ave,icu->curval);
//}
}
}
if(part->type == PART_HAIR){
pa->lifetime = 100.0f;
}
else{
pa->lifetime = part->lifetime*ptex.life;
if(part->randlife != 0.0)
pa->lifetime *= 1.0f - part->randlife * PSYS_FRAND(p + 21);
}
pa->dietime = pa->time + pa->lifetime;
if(sim->psys->pointcache && sim->psys->pointcache->flag & PTCACHE_BAKED &&
sim->psys->pointcache->mem_cache.first) {
float dietime = psys_get_dietime_from_cache(sim->psys->pointcache, p);
pa->dietime = MIN2(pa->dietime, dietime);
}
if(pa->time > cfra)
pa->alive = PARS_UNBORN;
else if(pa->dietime <= cfra)
pa->alive = PARS_DEAD;
else
pa->alive = PARS_ALIVE;
pa->state.time = cfra;
}
static void reset_all_particles(ParticleSimulationData *sim, float dtime, float cfra, int from)
{
ParticleData *pa;
int p, totpart=sim->psys->totpart;
//float *vg_vel=psys_cache_vgroup(sim->psmd->dm,sim->psys,PSYS_VG_VEL);
//float *vg_tan=psys_cache_vgroup(sim->psmd->dm,sim->psys,PSYS_VG_TAN);
//float *vg_rot=psys_cache_vgroup(sim->psmd->dm,sim->psys,PSYS_VG_ROT);
for(p=from, pa=sim->psys->particles+from; p<totpart; p++, pa++)
reset_particle(sim, pa, dtime, cfra);
//if(vg_vel)
// MEM_freeN(vg_vel);
}
/************************************************/
/* Particle targets */
/************************************************/
ParticleSystem *psys_get_target_system(Object *ob, ParticleTarget *pt)
{
ParticleSystem *psys = NULL;
if(pt->ob == NULL || pt->ob == ob)
psys = BLI_findlink(&ob->particlesystem, pt->psys-1);
else
psys = BLI_findlink(&pt->ob->particlesystem, pt->psys-1);
if(psys)
pt->flag |= PTARGET_VALID;
else
pt->flag &= ~PTARGET_VALID;
return psys;
}
/************************************************/
/* Keyed particles */
/************************************************/
/* Counts valid keyed targets */
void psys_count_keyed_targets(ParticleSimulationData *sim)
{
ParticleSystem *psys = sim->psys, *kpsys;
ParticleTarget *pt = psys->targets.first;
int keys_valid = 1;
psys->totkeyed = 0;
for(; pt; pt=pt->next) {
kpsys = psys_get_target_system(sim->ob, pt);
if(kpsys && kpsys->totpart) {
psys->totkeyed += keys_valid;
if(psys->flag & PSYS_KEYED_TIMING && pt->duration != 0.0f)
psys->totkeyed += 1;
}
else {
keys_valid = 0;
}
}
psys->totkeyed *= psys->flag & PSYS_KEYED_TIMING ? 1 : psys->part->keyed_loops;
}
static void set_keyed_keys(ParticleSimulationData *sim)
{
ParticleSystem *psys = sim->psys;
ParticleSimulationData ksim = {sim->scene, NULL, NULL, NULL};
ParticleTarget *pt;
PARTICLE_P;
ParticleKey *key;
int totpart = psys->totpart, k, totkeys = psys->totkeyed;
/* no proper targets so let's clear and bail out */
if(psys->totkeyed==0) {
free_keyed_keys(psys);
psys->flag &= ~PSYS_KEYED;
return;
}
if(totpart && psys->particles->totkey != totkeys) {
free_keyed_keys(psys);
key = MEM_callocN(totpart*totkeys*sizeof(ParticleKey), "Keyed keys");
LOOP_PARTICLES {
pa->keys = key;
pa->totkey = totkeys;
key += totkeys;
}
}
psys->flag &= ~PSYS_KEYED;
pt = psys->targets.first;
for(k=0; k<totkeys; k++) {
ksim.ob = pt->ob ? pt->ob : sim->ob;
ksim.psys = BLI_findlink(&ksim.ob->particlesystem, pt->psys - 1);
LOOP_PARTICLES {
key = pa->keys + k;
key->time = -1.0; /* use current time */
psys_get_particle_state(&ksim, p%ksim.psys->totpart, key, 1);
if(psys->flag & PSYS_KEYED_TIMING){
key->time = pa->time + pt->time;
if(pt->duration != 0.0f && k+1 < totkeys) {
copy_particle_key(key+1, key, 1);
(key+1)->time = pa->time + pt->time + pt->duration;
}
}
else if(totkeys > 1)
key->time = pa->time + (float)k / (float)(totkeys - 1) * pa->lifetime;
else
key->time = pa->time;
}
if(psys->flag & PSYS_KEYED_TIMING && pt->duration!=0.0f)
k++;
pt = (pt->next && pt->next->flag & PTARGET_VALID)? pt->next : psys->targets.first;
}
psys->flag |= PSYS_KEYED;
}
/************************************************/
/* Reactors */
/************************************************/
//static void push_reaction(ParticleSimulationData *sim, int pa_num, int event, ParticleKey *state)
//{
// Object *rob;
// ParticleSystem *rpsys;
// ParticleSettings *rpart;
// ParticleData *pa;
// ListBase *lb=&sim->psys->effectors;
// ParticleEffectorCache *ec;
// ParticleReactEvent *re;
//
// if(lb->first) for(ec = lb->first; ec; ec= ec->next){
// if(ec->type & PSYS_EC_REACTOR){
// /* all validity checks already done in add_to_effectors */
// rob=ec->ob;
// rpsys=BLI_findlink(&rob->particlesystem,ec->psys_nbr);
// rpart=rpsys->part;
// if(rpsys->part->reactevent==event){
// pa=sim->psys->particles+pa_num;
// re= MEM_callocN(sizeof(ParticleReactEvent), "react event");
// re->event=event;
// re->pa_num = pa_num;
// re->ob = sim->ob;
// re->psys = sim->psys;
// re->size = pa->size;
// copy_particle_key(&re->state,state,1);
//
// switch(event){
// case PART_EVENT_DEATH:
// re->time=pa->dietime;
// break;
// case PART_EVENT_COLLIDE:
// re->time=state->time;
// break;
// case PART_EVENT_NEAR:
// re->time=state->time;
// break;
// }
//
// BLI_addtail(&rpsys->reactevents, re);
// }
// }
// }
//}
//static void react_to_events(ParticleSystem *psys, int pa_num)
//{
// ParticleSettings *part=psys->part;
// ParticleData *pa=psys->particles+pa_num;
// ParticleReactEvent *re=psys->reactevents.first;
// int birth=0;
// float dist=0.0f;
//
// for(re=psys->reactevents.first; re; re=re->next){
// birth=0;
// if(part->from==PART_FROM_PARTICLE){
// if(pa->num==re->pa_num && pa->alive==PARS_UNBORN){
// if(re->event==PART_EVENT_NEAR){
// ParticleData *tpa = re->psys->particles+re->pa_num;
// float pa_time=tpa->time + pa->foffset*tpa->lifetime;
// if(re->time >= pa_time){
// pa->time=pa_time;
// pa->dietime=pa->time+pa->lifetime;
// }
// }
// else{
// pa->time=re->time;
// pa->dietime=pa->time+pa->lifetime;
// }
// }
// }
// else{
// dist=len_v3v3(pa->state.co, re->state.co);
// if(dist <= re->size){
// if(pa->alive==PARS_UNBORN){
// pa->time=re->time;
// pa->dietime=pa->time+pa->lifetime;
// birth=1;
// }
// if(birth || part->flag&PART_REACT_MULTIPLE){
// float vec[3];
// VECSUB(vec,pa->state.co, re->state.co);
// if(birth==0)
// mul_v3_fl(vec,(float)pow(1.0f-dist/re->size,part->reactshape));
// VECADDFAC(pa->state.vel,pa->state.vel,vec,part->reactfac);
// VECADDFAC(pa->state.vel,pa->state.vel,re->state.vel,part->partfac);
// }
// if(birth)
// mul_v3_fl(pa->state.vel,(float)pow(1.0f-dist/re->size,part->reactshape));
// }
// }
// }
//}
//void psys_get_reactor_target(ParticleSimulationData *sim, Object **target_ob, ParticleSystem **target_psys)
//{
// Object *tob;
//
// tob = sim->psys->target_ob ? sim->psys->target_ob : sim->ob;
//
// *target_psys = BLI_findlink(&tob->particlesystem, sim->psys->target_psys-1);
// if(*target_psys)
// *target_ob=tob;
// else
// *target_ob=0;
//}
/************************************************/
/* Point Cache */
/************************************************/
void psys_make_temp_pointcache(Object *ob, ParticleSystem *psys)
{
PointCache *cache = psys->pointcache;
if(cache->flag & PTCACHE_DISK_CACHE && cache->mem_cache.first == NULL) {
PTCacheID pid;
BKE_ptcache_id_from_particles(&pid, ob, psys);
BKE_ptcache_disk_to_mem(&pid);
}
}
static void psys_clear_temp_pointcache(ParticleSystem *psys)
{
if(psys->pointcache->flag & PTCACHE_DISK_CACHE)
BKE_ptcache_free_mem(&psys->pointcache->mem_cache);
}
void psys_get_pointcache_start_end(Scene *scene, ParticleSystem *psys, int *sfra, int *efra)
{
ParticleSettings *part = psys->part;
*sfra = MAX2(1, (int)part->sta);
*efra = MIN2((int)(part->end + part->lifetime + 1.0), scene->r.efra);
}
/************************************************/
/* Effectors */
/************************************************/
void psys_update_particle_tree(ParticleSystem *psys, float cfra)
{
if(psys) {
PARTICLE_P;
if(!psys->tree || psys->tree_frame != cfra) {
BLI_kdtree_free(psys->tree);
psys->tree = BLI_kdtree_new(psys->totpart);
LOOP_SHOWN_PARTICLES {
if(pa->alive == PARS_ALIVE) {
if(pa->state.time == cfra)
BLI_kdtree_insert(psys->tree, p, pa->prev_state.co, NULL);
else
BLI_kdtree_insert(psys->tree, p, pa->state.co, NULL);
}
}
BLI_kdtree_balance(psys->tree);
psys->tree_frame = psys->cfra;
}
}
}
static void psys_update_effectors(ParticleSimulationData *sim)
{
pdEndEffectors(&sim->psys->effectors);
sim->psys->effectors = pdInitEffectors(sim->scene, sim->ob, sim->psys, sim->psys->part->effector_weights);
precalc_guides(sim, sim->psys->effectors);
}
/*************************************************
SPH fluid physics
In theory, there could be unlimited implementation
of SPH simulators
**************************************************/
void particle_fluidsim(ParticleSystem *psys, ParticleData *pa, ParticleSettings *part, ParticleSimulationData *sim, float dfra, float UNUSED(cfra), float mass){
/****************************************************************************************************************
* This code uses in some parts adapted algorithms from the pseduo code as outlined in the Research paper
* Titled: Particle-based Viscoelastic Fluid Simulation.
* Authors: Simon Clavet, Philippe Beaudoin and Pierre Poulin
*
* Website: http://www.iro.umontreal.ca/labs/infographie/papers/Clavet-2005-PVFS/
* Presented at Siggraph, (2005)
*
*****************************************************************************************************************/
KDTree *tree = psys->tree;
KDTreeNearest *ptn = NULL;
SPHFluidSettings *fluid = part->fluid;
ParticleData *second_particle;
float start[3], end[3], v[3];
float temp[3];
float q, radius, D;
float p, pnear, pressure_near, pressure;
float dtime = dfra * psys_get_timestep(sim);
float omega = fluid->viscosity_omega;
float beta = fluid->viscosity_omega;
float massfactor = 1.0f/mass;
int n, neighbours;
radius = fluid->radius;
VECCOPY(start, pa->prev_state.co);
VECCOPY(end, pa->state.co);
VECCOPY(v, pa->state.vel);
neighbours = BLI_kdtree_range_search(tree, radius, start, NULL, &ptn);
/* use ptn[n].co to store relative direction */
for(n=1; n<neighbours; n++) {
sub_v3_v3(ptn[n].co, start);
normalize_v3(ptn[n].co);
}
/* Viscosity - Algorithm 5 */
if (omega > 0.f || beta > 0.f) {
float u, I;
for(n=1; n<neighbours; n++) {
second_particle = psys->particles + ptn[n].index;
q = ptn[n].dist/radius;
sub_v3_v3v3(temp, v, second_particle->prev_state.vel);
u = dot_v3v3(ptn[n].co, temp);
if (u > 0){
I = dtime * ((1-q) * (omega * u + beta * u*u)) * 0.5f;
madd_v3_v3fl(v, ptn[n].co, -I * massfactor);
}
}
}
/* Hooke's spring force */
if (fluid->spring_k > 0.f) {
float D, L = fluid->rest_length;
for(n=1; n<neighbours; n++) {
/* L is a factor of radius */
D = dtime * 10.f * fluid->spring_k * (1.f - L) * (L - ptn[n].dist/radius);
madd_v3_v3fl(v, ptn[n].co, -D * massfactor);
}
}
/* Update particle position */
VECADDFAC(end, start, v, dtime);
/* Double Density Relaxation - Algorithm 2 */
p = 0;
pnear = 0;
for(n=1; n<neighbours; n++) {
q = ptn[n].dist/radius;
p += ((1-q)*(1-q));
pnear += ((1-q)*(1-q)*(1-q));
}
p *= part->mass;
pnear *= part->mass;
pressure = fluid->stiffness_k * (p - fluid->rest_density);
pressure_near = fluid->stiffness_knear * pnear;
for(n=1; n<neighbours; n++) {
q = ptn[n].dist/radius;
D = dtime * dtime * (pressure*(1-q) + pressure_near*(1-q)*(1-q))* 0.5f;
madd_v3_v3fl(end, ptn[n].co, -D * massfactor);
}
/* Artificial buoyancy force in negative gravity direction */
if (fluid->buoyancy >= 0.f && psys_uses_gravity(sim)) {
float B = -dtime * dtime * fluid->buoyancy * (p - fluid->rest_density) * 0.5f;
madd_v3_v3fl(end, sim->scene->physics_settings.gravity, -B * massfactor);
}
/* apply final result and recalculate velocity */
VECCOPY(pa->state.co, end);
sub_v3_v3v3(pa->state.vel, end, start);
mul_v3_fl(pa->state.vel, 1.f/dtime);
if(ptn){ MEM_freeN(ptn); ptn=NULL;}
}
static void apply_particle_fluidsim(ParticleSystem *psys, ParticleData *pa, ParticleSettings *part, ParticleSimulationData *sim, float dfra, float cfra){
ParticleTarget *pt;
// float dtime = dfra*psys_get_timestep(sim);
float particle_mass = part->mass;
particle_fluidsim(psys, pa, part, sim, dfra, cfra, particle_mass);
/*----check other SPH systems (Multifluids) , each fluid has its own parameters---*/
for(pt=sim->psys->targets.first; pt; pt=pt->next) {
ParticleSystem *epsys = psys_get_target_system(sim->ob, pt);
if(epsys)
particle_fluidsim(epsys, pa, epsys->part, sim, dfra, cfra, particle_mass);
}
/*----------------------------------------------------------------*/
}
/************************************************/
/* Newtonian physics */
/************************************************/
/* gathers all forces that effect particles and calculates a new state for the particle */
static void apply_particle_forces(ParticleSimulationData *sim, int p, float dfra, float cfra)
{
ParticleSettings *part = sim->psys->part;
ParticleData *pa = sim->psys->particles + p;
EffectedPoint epoint;
ParticleKey states[5], tkey;
float timestep = psys_get_timestep(sim);
float force[3],impulse[3],dx[4][3],dv[4][3],oldpos[3];
float dtime=dfra*timestep, time, pa_mass=part->mass, fac, fra=sim->psys->cfra;
int i, steps=1;
/* maintain angular velocity */
VECCOPY(pa->state.ave,pa->prev_state.ave);
VECCOPY(oldpos,pa->state.co);
if(part->flag & PART_SIZEMASS)
pa_mass*=pa->size;
switch(part->integrator){
case PART_INT_EULER:
steps=1;
break;
case PART_INT_MIDPOINT:
steps=2;
break;
case PART_INT_RK4:
steps=4;
break;
case PART_INT_VERLET:
steps=1;
break;
}
copy_particle_key(states,&pa->state,1);
for(i=0; i<steps; i++){
force[0]=force[1]=force[2]=0.0;
impulse[0]=impulse[1]=impulse[2]=0.0;
/* add effectors */
pd_point_from_particle(sim, pa, states+i, &epoint);
if(part->type != PART_HAIR || part->effector_weights->flag & EFF_WEIGHT_DO_HAIR)
pdDoEffectors(sim->psys->effectors, sim->colliders, part->effector_weights, &epoint, force, impulse);
/* calculate air-particle interaction */
if(part->dragfac!=0.0f){
fac=-part->dragfac*pa->size*pa->size*len_v3(states[i].vel);
VECADDFAC(force,force,states[i].vel,fac);
}
/* brownian force */
if(part->brownfac!=0.0){
force[0]+=(BLI_frand()-0.5f)*part->brownfac;
force[1]+=(BLI_frand()-0.5f)*part->brownfac;
force[2]+=(BLI_frand()-0.5f)*part->brownfac;
}
/* force to acceleration*/
mul_v3_fl(force,1.0f/pa_mass);
/* add global acceleration (gravitation) */
if(psys_uses_gravity(sim)
/* normal gravity is too strong for hair so it's disabled by default */
&& (part->type != PART_HAIR || part->effector_weights->flag & EFF_WEIGHT_DO_HAIR)) {
float gravity[3];
VECCOPY(gravity, sim->scene->physics_settings.gravity);
mul_v3_fl(gravity, part->effector_weights->global_gravity);
VECADD(force,force,gravity);
}
/* calculate next state */
VECADD(states[i].vel,states[i].vel,impulse);
switch(part->integrator){
case PART_INT_EULER:
VECADDFAC(pa->state.co,states->co,states->vel,dtime);
VECADDFAC(pa->state.vel,states->vel,force,dtime);
break;
case PART_INT_MIDPOINT:
if(i==0){
VECADDFAC(states[1].co,states->co,states->vel,dtime*0.5f);
VECADDFAC(states[1].vel,states->vel,force,dtime*0.5f);
fra=sim->psys->cfra+0.5f*dfra;
}
else{
VECADDFAC(pa->state.co,states->co,states[1].vel,dtime);
VECADDFAC(pa->state.vel,states->vel,force,dtime);
}
break;
case PART_INT_RK4:
switch(i){
case 0:
VECCOPY(dx[0],states->vel);
mul_v3_fl(dx[0],dtime);
VECCOPY(dv[0],force);
mul_v3_fl(dv[0],dtime);
VECADDFAC(states[1].co,states->co,dx[0],0.5f);
VECADDFAC(states[1].vel,states->vel,dv[0],0.5f);
fra=sim->psys->cfra+0.5f*dfra;
break;
case 1:
VECADDFAC(dx[1],states->vel,dv[0],0.5f);
mul_v3_fl(dx[1],dtime);
VECCOPY(dv[1],force);
mul_v3_fl(dv[1],dtime);
VECADDFAC(states[2].co,states->co,dx[1],0.5f);
VECADDFAC(states[2].vel,states->vel,dv[1],0.5f);
break;
case 2:
VECADDFAC(dx[2],states->vel,dv[1],0.5f);
mul_v3_fl(dx[2],dtime);
VECCOPY(dv[2],force);
mul_v3_fl(dv[2],dtime);
VECADD(states[3].co,states->co,dx[2]);
VECADD(states[3].vel,states->vel,dv[2]);
fra=cfra;
break;
case 3:
VECADD(dx[3],states->vel,dv[2]);
mul_v3_fl(dx[3],dtime);
VECCOPY(dv[3],force);
mul_v3_fl(dv[3],dtime);
VECADDFAC(pa->state.co,states->co,dx[0],1.0f/6.0f);
VECADDFAC(pa->state.co,pa->state.co,dx[1],1.0f/3.0f);
VECADDFAC(pa->state.co,pa->state.co,dx[2],1.0f/3.0f);
VECADDFAC(pa->state.co,pa->state.co,dx[3],1.0f/6.0f);
VECADDFAC(pa->state.vel,states->vel,dv[0],1.0f/6.0f);
VECADDFAC(pa->state.vel,pa->state.vel,dv[1],1.0f/3.0f);
VECADDFAC(pa->state.vel,pa->state.vel,dv[2],1.0f/3.0f);
VECADDFAC(pa->state.vel,pa->state.vel,dv[3],1.0f/6.0f);
}
break;
case PART_INT_VERLET: /* Verlet integration */
VECADDFAC(pa->state.vel,pa->state.vel,force,dtime);
VECADDFAC(pa->state.co,pa->state.co,pa->state.vel,dtime);
VECSUB(pa->state.vel,pa->state.co,oldpos);
mul_v3_fl(pa->state.vel,1.0f/dtime);
break;
}
}
/* damp affects final velocity */
if(part->dampfac!=0.0)
mul_v3_fl(pa->state.vel,1.0f-part->dampfac);
VECCOPY(pa->state.ave, states->ave);
/* finally we do guides */
time=(cfra-pa->time)/pa->lifetime;
CLAMP(time,0.0,1.0);
VECCOPY(tkey.co,pa->state.co);
VECCOPY(tkey.vel,pa->state.vel);
tkey.time=pa->state.time;
if(part->type != PART_HAIR) {
if(do_guides(sim->psys->effectors, &tkey, p, time)) {
VECCOPY(pa->state.co,tkey.co);
/* guides don't produce valid velocity */
VECSUB(pa->state.vel,tkey.co,pa->prev_state.co);
mul_v3_fl(pa->state.vel,1.0f/dtime);
pa->state.time=tkey.time;
}
}
}
static void rotate_particle(ParticleSettings *part, ParticleData *pa, float dfra, float timestep)
{
float rotfac, rot1[4], rot2[4]={1.0,0.0,0.0,0.0}, dtime=dfra*timestep;
if((part->flag & PART_ROT_DYN)==0){
if(part->avemode==PART_AVE_SPIN){
float angle;
float len1 = len_v3(pa->prev_state.vel);
float len2 = len_v3(pa->state.vel);
if(len1==0.0f || len2==0.0f)
pa->state.ave[0]=pa->state.ave[1]=pa->state.ave[2]=0.0f;
else{
cross_v3_v3v3(pa->state.ave,pa->prev_state.vel,pa->state.vel);
normalize_v3(pa->state.ave);
angle=dot_v3v3(pa->prev_state.vel,pa->state.vel)/(len1*len2);
mul_v3_fl(pa->state.ave,saacos(angle)/dtime);
}
axis_angle_to_quat(rot2,pa->state.vel,dtime*part->avefac);
}
}
rotfac=len_v3(pa->state.ave);
if(rotfac==0.0){ /* unit_qt(in VecRotToQuat) doesn't give unit quat [1,0,0,0]?? */
rot1[0]=1.0;
rot1[1]=rot1[2]=rot1[3]=0;
}
else{
axis_angle_to_quat(rot1,pa->state.ave,rotfac*dtime);
}
mul_qt_qtqt(pa->state.rot,rot1,pa->prev_state.rot);
mul_qt_qtqt(pa->state.rot,rot2,pa->state.rot);
/* keep rotation quat in good health */
normalize_qt(pa->state.rot);
}
/* convert from triangle barycentric weights to quad mean value weights */
static void intersect_dm_quad_weights(float *v1, float *v2, float *v3, float *v4, float *w)
{
float co[3], vert[4][3];
VECCOPY(vert[0], v1);
VECCOPY(vert[1], v2);
VECCOPY(vert[2], v3);
VECCOPY(vert[3], v4);
co[0]= v1[0]*w[0] + v2[0]*w[1] + v3[0]*w[2] + v4[0]*w[3];
co[1]= v1[1]*w[0] + v2[1]*w[1] + v3[1]*w[2] + v4[1]*w[3];
co[2]= v1[2]*w[0] + v2[2]*w[1] + v3[2]*w[2] + v4[2]*w[3];
interp_weights_poly_v3( w,vert, 4, co);
}
/* check intersection with a derivedmesh */
int psys_intersect_dm(Scene *scene, Object *ob, DerivedMesh *dm, float *vert_cos, float *co1, float* co2, float *min_d, int *min_face, float *min_w,
float *face_minmax, float *pa_minmax, float radius, float *ipoint)
{
MFace *mface=0;
MVert *mvert=0;
int i, totface, intersect=0;
float cur_d, cur_uv[2], v1[3], v2[3], v3[3], v4[3], min[3], max[3], p_min[3],p_max[3];
float cur_ipoint[3];
if(dm==0){
psys_disable_all(ob);
dm=mesh_get_derived_final(scene, ob, 0);
if(dm==0)
dm=mesh_get_derived_deform(scene, ob, 0);
psys_enable_all(ob);
if(dm==0)
return 0;
}
if(pa_minmax==0){
INIT_MINMAX(p_min,p_max);
DO_MINMAX(co1,p_min,p_max);
DO_MINMAX(co2,p_min,p_max);
}
else{
VECCOPY(p_min,pa_minmax);
VECCOPY(p_max,pa_minmax+3);
}
totface=dm->getNumFaces(dm);
mface=dm->getFaceDataArray(dm,CD_MFACE);
mvert=dm->getVertDataArray(dm,CD_MVERT);
/* lets intersect the faces */
for(i=0; i<totface; i++,mface++){
if(vert_cos){
VECCOPY(v1,vert_cos+3*mface->v1);
VECCOPY(v2,vert_cos+3*mface->v2);
VECCOPY(v3,vert_cos+3*mface->v3);
if(mface->v4)
VECCOPY(v4,vert_cos+3*mface->v4)
}
else{
VECCOPY(v1,mvert[mface->v1].co);
VECCOPY(v2,mvert[mface->v2].co);
VECCOPY(v3,mvert[mface->v3].co);
if(mface->v4)
VECCOPY(v4,mvert[mface->v4].co)
}
if(face_minmax==0){
INIT_MINMAX(min,max);
DO_MINMAX(v1,min,max);
DO_MINMAX(v2,min,max);
DO_MINMAX(v3,min,max);
if(mface->v4)
DO_MINMAX(v4,min,max)
if(isect_aabb_aabb_v3(min,max,p_min,p_max)==0)
continue;
}
else{
VECCOPY(min, face_minmax+6*i);
VECCOPY(max, face_minmax+6*i+3);
if(isect_aabb_aabb_v3(min,max,p_min,p_max)==0)
continue;
}
if(radius>0.0f){
if(isect_sweeping_sphere_tri_v3(co1, co2, radius, v2, v3, v1, &cur_d, cur_ipoint)){
if(cur_d<*min_d){
*min_d=cur_d;
VECCOPY(ipoint,cur_ipoint);
*min_face=i;
intersect=1;
}
}
if(mface->v4){
if(isect_sweeping_sphere_tri_v3(co1, co2, radius, v4, v1, v3, &cur_d, cur_ipoint)){
if(cur_d<*min_d){
*min_d=cur_d;
VECCOPY(ipoint,cur_ipoint);
*min_face=i;
intersect=1;
}
}
}
}
else{
if(isect_line_tri_v3(co1, co2, v1, v2, v3, &cur_d, cur_uv)){
if(cur_d<*min_d){
*min_d=cur_d;
min_w[0]= 1.0 - cur_uv[0] - cur_uv[1];
min_w[1]= cur_uv[0];
min_w[2]= cur_uv[1];
min_w[3]= 0.0f;
if(mface->v4)
intersect_dm_quad_weights(v1, v2, v3, v4, min_w);
*min_face=i;
intersect=1;
}
}
if(mface->v4){
if(isect_line_tri_v3(co1, co2, v1, v3, v4, &cur_d, cur_uv)){
if(cur_d<*min_d){
*min_d=cur_d;
min_w[0]= 1.0 - cur_uv[0] - cur_uv[1];
min_w[1]= 0.0f;
min_w[2]= cur_uv[0];
min_w[3]= cur_uv[1];
intersect_dm_quad_weights(v1, v2, v3, v4, min_w);
*min_face=i;
intersect=1;
}
}
}
}
}
return intersect;
}
void particle_intersect_face(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit)
{
ParticleCollision *col = (ParticleCollision *) userdata;
MFace *face = col->md->mfaces + index;
MVert *x = col->md->x;
MVert *v = col->md->current_v;
float vel[3], co1[3], co2[3], uv[2], ipoint[3], temp[3], t;
float *t0, *t1, *t2, *t3;
t0 = x[ face->v1 ].co;
t1 = x[ face->v2 ].co;
t2 = x[ face->v3 ].co;
t3 = face->v4 ? x[ face->v4].co : NULL;
/* calculate average velocity of face */
VECCOPY(vel, v[ face->v1 ].co);
VECADD(vel, vel, v[ face->v2 ].co);
VECADD(vel, vel, v[ face->v3 ].co);
mul_v3_fl(vel, 0.33334f);
/* substract face velocity, in other words convert to
a coordinate system where only the particle moves */
VECADDFAC(co1, col->co1, vel, -col->t);
VECSUB(co2, col->co2, vel);
do
{
if(ray->radius == 0.0f) {
if(isect_line_tri_v3(co1, co2, t0, t1, t2, &t, uv)) {
if(t >= 0.0f && t < hit->dist/col->ray_len) {
hit->dist = col->ray_len * t;
hit->index = index;
/* calculate normal that's facing the particle */
normal_tri_v3( col->nor,t0, t1, t2);
VECSUB(temp, co2, co1);
if(dot_v3v3(col->nor, temp) > 0.0f)
negate_v3(col->nor);
VECCOPY(col->vel,vel);
col->hit_ob = col->ob;
col->hit_md = col->md;
}
}
}
else {
if(isect_sweeping_sphere_tri_v3(co1, co2, ray->radius, t0, t1, t2, &t, ipoint)) {
if(t >=0.0f && t < hit->dist/col->ray_len) {
hit->dist = col->ray_len * t;
hit->index = index;
interp_v3_v3v3(temp, co1, co2, t);
VECSUB(col->nor, temp, ipoint);
normalize_v3(col->nor);
VECCOPY(col->vel,vel);
col->hit_ob = col->ob;
col->hit_md = col->md;
}
}
}
t1 = t2;
t2 = t3;
t3 = NULL;
} while(t2);
}
/* Particle - Mesh collision code
* Features:
* - point and swept sphere to mesh surface collisions
* - moving colliders (but not yet rotating or deforming colliders)
* - friction & damping
* - angular momentum <-> linear momentum
* - high accuracy by re-applying particle acceleration after collision
* - behaves relatively well even if limit of 10 collisions per simulation step is exceeded
* Main parts:
* 1. check for all possible deflectors for closest intersection on particle path
* 2. if deflection was found calculate new coordinates or kill the particle
*/
static void deflect_particle(ParticleSimulationData *sim, int p, float dfra, float cfra){
Object *ground_ob = NULL;
ParticleSettings *part = sim->psys->part;
ParticleData *pa = sim->psys->particles + p;
ParticleCollision col;
ColliderCache *coll;
BVHTreeRayHit hit;
float ray_dir[3], acc[3];
float radius = ((part->flag & PART_SIZE_DEFL)?pa->size:0.0f), boid_z = 0.0f;
float timestep = psys_get_timestep(sim) * dfra;
float inv_timestep = 1.0f/timestep;
int deflections=0, max_deflections=10;
/* get acceleration (from gravity, forcefields etc. to be re-applied after collision) */
sub_v3_v3v3(acc, pa->state.vel, pa->prev_state.vel);
mul_v3_fl(acc, inv_timestep);
/* set values for first iteration */
copy_v3_v3(col.co1, pa->prev_state.co);
copy_v3_v3(col.co2, pa->state.co);
copy_v3_v3(col.ve1, pa->prev_state.vel);
copy_v3_v3(col.ve2, pa->state.vel);
col.t = 0.0f;
/* override for boids */
if(part->phystype == PART_PHYS_BOIDS) {
BoidParticle *bpa = pa->boid;
radius = pa->size;
boid_z = pa->state.co[2];
ground_ob = bpa->ground;
}
/* 10 iterations to catch multiple deflections */
if(sim->colliders) while(deflections < max_deflections){
/* 1. */
sub_v3_v3v3(ray_dir, col.co2, col.co1);
hit.index = -1;
hit.dist = col.ray_len = len_v3(ray_dir);
/* even if particle is stationary we want to check for moving colliders */
/* if hit.dist is zero the bvhtree_ray_cast will just ignore everything */
if(hit.dist == 0.0f)
hit.dist = col.ray_len = 0.000001f;
for(coll = sim->colliders->first; coll; coll=coll->next){
/* for boids: don't check with current ground object */
if(coll->ob == ground_ob)
continue;
/* particles should not collide with emitter at birth */
if(coll->ob == sim->ob && pa->time < cfra && pa->time >= sim->psys->cfra)
continue;
col.ob = coll->ob;
col.md = coll->collmd;
if(col.md && col.md->bvhtree)
BLI_bvhtree_ray_cast(col.md->bvhtree, col.co1, ray_dir, radius, &hit, particle_intersect_face, &col);
}
/* 2. */
if(hit.index>=0) {
PartDeflect *pd = col.hit_ob->pd;
float co[3]; /* point of collision */
float x = hit.dist/col.ray_len; /* location of collision between this iteration */
float df = col.t + x * (1.0f - col.t); /* time of collision between frame change*/
float dt1 = (df - col.t) * timestep; /* iteration time of collision (in seconds) */
float dt2 = (1.0f - df) * timestep; /* time left after collision (in seconds) */
int through = (BLI_frand() < pd->pdef_perm) ? 1 : 0; /* did particle pass through the collision surface? */
deflections++;
interp_v3_v3v3(co, col.co1, col.co2, x);
/* make sure we don't hit the current face again */
/* TODO: could/should this be proportional to pa->size? */
madd_v3_v3fl(co, col.nor, (through ? -0.0001f : 0.0001f));
/* particle dies in collision */
if(through == 0 && (part->flag & PART_DIE_ON_COL || pd->flag & PDEFLE_KILL_PART)) {
pa->alive = PARS_DYING;
pa->dietime = pa->state.time + (cfra - pa->state.time) * df;
copy_v3_v3(pa->state.co, co);
interp_v3_v3v3(pa->state.vel, pa->prev_state.vel, pa->state.vel, df);
interp_qt_qtqt(pa->state.rot, pa->prev_state.rot, pa->state.rot, df);
interp_v3_v3v3(pa->state.ave, pa->prev_state.ave, pa->state.ave, df);
/* particle is dead so we don't need to calculate further */
return;
}
/* figure out velocity and other data after collision */
else {
float v0[3]; /* velocity directly before collision to be modified into velocity directly after collision */
float v0_nor[3];/* normal component of v0 */
float v0_tan[3];/* tangential component of v0 */
float vc_tan[3];/* tangential component of collision surface velocity */
float check[3];
float v0_dot, vc_dot, check_dot;
float damp, frict;
/* get exact velocity right before collision */
madd_v3_v3v3fl(v0, col.ve1, acc, dt1);
/* convert collider velocity from 1/framestep to 1/s */
mul_v3_fl(col.vel, inv_timestep);
/* get damping & friction factors */
damp = pd->pdef_damp + pd->pdef_rdamp * 2 * (BLI_frand() - 0.5f);
CLAMP(damp,0.0,1.0);
frict = pd->pdef_frict + pd->pdef_rfrict * 2 * (BLI_frand() - 0.5f);
CLAMP(frict,0.0,1.0);
/* treat normal & tangent components separately */
v0_dot = dot_v3v3(col.nor, v0);
madd_v3_v3v3fl(v0_tan, v0, col.nor, -v0_dot);
vc_dot = dot_v3v3(col.nor, col.vel);
madd_v3_v3v3fl(vc_tan, col.vel, col.nor, -vc_dot);
/* handle friction effects (tangential and angular velocity) */
if(frict > 0.0f) {
/* angular <-> linear velocity */
if(part->flag & PART_ROT_DYN) {
float vr_tan[3], v1_tan[3], ave[3];
/* linear velocity of particle surface */
cross_v3_v3v3(vr_tan, col.nor, pa->state.ave);
mul_v3_fl(vr_tan, pa->size);
/* change to coordinates that move with the collision plane */
sub_v3_v3v3(v1_tan, v0_tan, vc_tan);
/* The resulting velocity is a weighted average of particle cm & surface
* velocity. This weight (related to particle's moment of inertia) could
* be made a parameter for angular <-> linear conversion.
*/
madd_v3_v3fl(v1_tan, vr_tan, -0.4);
mul_v3_fl(v1_tan, 1.0f/1.4f); /* 1/(1+0.4) */
/* rolling friction is around 0.01 of sliding friction (could be made a parameter) */
mul_v3_fl(v1_tan, 1.0f - 0.01f * frict);
/* surface_velocity is opposite to cm velocity */
mul_v3_v3fl(vr_tan, v1_tan, -1.0f);
/* get back to global coordinates */
add_v3_v3(v1_tan, vc_tan);
/* convert to angular velocity*/
cross_v3_v3v3(ave, vr_tan, col.nor);
mul_v3_fl(ave, 1.0f/MAX2(pa->size, 0.001));
/* only friction will cause change in linear & angular velocity */
interp_v3_v3v3(pa->state.ave, pa->state.ave, ave, frict);
interp_v3_v3v3(v0_tan, v0_tan, v1_tan, frict);
}
else {
/* just basic friction (unphysical due to the friction model used in Blender) */
interp_v3_v3v3(v0_tan, v0_tan, vc_tan, frict);
}
}
/* stickness was possibly added before, so cancel that before calculating new normal velocity */
/* otherwise particles go flying out of the surface because of high reversed sticky velocity */
if(v0_dot < 0.0f) {
v0_dot += pd->pdef_stickness;
if(v0_dot > 0.0f)
v0_dot = 0.0f;
}
/* damping and flipping of velocity around normal */
v0_dot *= 1.0f - damp;
vc_dot *= through ? damp : 1.0f;
/* special case for object hitting the particle from behind */
if(through==0 && ((vc_dot>0.0f && v0_dot>0.0f && vc_dot>v0_dot) || (vc_dot<0.0f && v0_dot<0.0f && vc_dot<v0_dot)))
mul_v3_v3fl(v0_nor, col.nor, vc_dot);
else
mul_v3_v3fl(v0_nor, col.nor, vc_dot + (through ? 1.0f : -1.0f) * v0_dot);
/* combine components together again */
add_v3_v3v3(v0, v0_nor, v0_tan);
/* keep boids above ground */
if(part->phystype == PART_PHYS_BOIDS && part->boids->options & BOID_ALLOW_LAND) {
BoidParticle *bpa = pa->boid;
if(bpa->data.mode == eBoidMode_OnLand || co[2] <= boid_z) {
co[2] = boid_z;
v0[2] = 0.0f;
}
}
if(deflections < max_deflections) {
/* re-apply acceleration to final velocity and location */
madd_v3_v3v3fl(pa->state.vel, v0, acc, dt2);
madd_v3_v3v3fl(pa->state.co, co, v0, dt2);
madd_v3_v3fl(pa->state.co, acc, 0.5f*dt2*dt2);
/* make sure particle stays on the right side of the surface */
sub_v3_v3v3(check, pa->state.co, co);
/* (collision surface has moved during the time too) */
madd_v3_v3fl(check, col.vel, -dt2);
check_dot = dot_v3v3(check, col.nor);
if((!through && check_dot < 0.0f) || (through && check_dot > 0.0f))
madd_v3_v3fl(pa->state.co, col.nor, (through ? -0.0001f : 0.0001f) - check_dot);
/* Stickness to surface */
madd_v3_v3fl(pa->state.vel, col.nor, -pd->pdef_stickness);
/* set coordinates for next iteration */
copy_v3_v3(col.co1, co);
copy_v3_v3(col.co2, pa->state.co);
copy_v3_v3(col.ve1, v0);
copy_v3_v3(col.ve2, pa->state.vel);
col.t = df;
}
else {
/* final chance to prevent failure, so don't do anything fancy */
copy_v3_v3(pa->state.co, co);
copy_v3_v3(pa->state.vel, v0);
}
}
}
else
return;
}
}
/************************************************/
/* Hair */
/************************************************/
/* check if path cache or children need updating and do it if needed */
static void psys_update_path_cache(ParticleSimulationData *sim, float cfra)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
ParticleEditSettings *pset = &sim->scene->toolsettings->particle;
int distr=0, alloc=0, skip=0;
if((psys->part->childtype && psys->totchild != get_psys_tot_child(sim->scene, psys)) || psys->recalc&PSYS_RECALC_RESET)
alloc=1;
if(alloc || psys->recalc&PSYS_RECALC_CHILD || (psys->vgroup[PSYS_VG_DENSITY] && (sim->ob && sim->ob->mode & OB_MODE_WEIGHT_PAINT)))
distr=1;
if(distr){
if(alloc)
realloc_particles(sim, sim->psys->totpart);
if(get_psys_tot_child(sim->scene, psys)) {
/* don't generate children while computing the hair keys */
if(!(psys->part->type == PART_HAIR) || (psys->flag & PSYS_HAIR_DONE)) {
distribute_particles(sim, PART_FROM_CHILD);
if(part->from!=PART_FROM_PARTICLE && part->childtype==PART_CHILD_FACES && part->parents!=0.0)
psys_find_parents(sim);
}
}
else
psys_free_children(psys);
}
if((part->type==PART_HAIR || psys->flag&PSYS_KEYED || psys->pointcache->flag & PTCACHE_BAKED)==0)
skip = 1; /* only hair, keyed and baked stuff can have paths */
else if(part->ren_as != PART_DRAW_PATH && !(part->type==PART_HAIR && ELEM(part->ren_as, PART_DRAW_OB, PART_DRAW_GR)))
skip = 1; /* particle visualization must be set as path */
else if(!psys->renderdata) {
if(part->draw_as != PART_DRAW_REND)
skip = 1; /* draw visualization */
else if(psys->pointcache->flag & PTCACHE_BAKING)
skip = 1; /* no need to cache paths while baking dynamics */
else if(psys_in_edit_mode(sim->scene, psys)) {
if((pset->flag & PE_DRAW_PART)==0)
skip = 1;
else if(part->childtype==0 && (psys->flag & PSYS_HAIR_DYNAMICS && psys->pointcache->flag & PTCACHE_BAKED)==0)
skip = 1; /* in edit mode paths are needed for child particles and dynamic hair */
}
}
if(!skip) {
psys_cache_paths(sim, cfra);
/* for render, child particle paths are computed on the fly */
if(part->childtype) {
if(!psys->totchild)
skip = 1;
else if(psys->part->type == PART_HAIR && (psys->flag & PSYS_HAIR_DONE)==0)
skip = 1;
if(!skip)
psys_cache_child_paths(sim, cfra, 0);
}
}
else if(psys->pathcache)
psys_free_path_cache(psys, NULL);
}
static void do_hair_dynamics(ParticleSimulationData *sim)
{
ParticleSystem *psys = sim->psys;
DerivedMesh *dm = psys->hair_in_dm;
MVert *mvert = NULL;
MEdge *medge = NULL;
MDeformVert *dvert = NULL;
HairKey *key;
PARTICLE_P;
int totpoint = 0;
int totedge;
int k;
float hairmat[4][4];
if(!psys->clmd) {
psys->clmd = (ClothModifierData*)modifier_new(eModifierType_Cloth);
psys->clmd->sim_parms->goalspring = 0.0f;
psys->clmd->sim_parms->flags |= CLOTH_SIMSETTINGS_FLAG_GOAL|CLOTH_SIMSETTINGS_FLAG_NO_SPRING_COMPRESS;
psys->clmd->coll_parms->flags &= ~CLOTH_COLLSETTINGS_FLAG_SELF;
}
/* create a dm from hair vertices */
LOOP_PARTICLES
totpoint += pa->totkey;
totedge = totpoint;
totpoint += psys->totpart;
if(dm && (totpoint != dm->getNumVerts(dm) || totedge != dm->getNumEdges(dm))) {
dm->release(dm);
dm = psys->hair_in_dm = NULL;
}
if(!dm) {
dm = psys->hair_in_dm = CDDM_new(totpoint, totedge, 0);
DM_add_vert_layer(dm, CD_MDEFORMVERT, CD_CALLOC, NULL);
}
mvert = CDDM_get_verts(dm);
medge = CDDM_get_edges(dm);
dvert = DM_get_vert_data_layer(dm, CD_MDEFORMVERT);
psys->clmd->sim_parms->vgroup_mass = 1;
/* make vgroup for pin roots etc.. */
psys->particles->hair_index = 1;
LOOP_PARTICLES {
if(p)
pa->hair_index = (pa-1)->hair_index + (pa-1)->totkey + 1;
psys_mat_hair_to_object(sim->ob, sim->psmd->dm, psys->part->from, pa, hairmat);
for(k=0, key=pa->hair; k<pa->totkey; k++,key++) {
/* create fake root before actual root to resist bending */
if(k==0) {
float temp[3];
VECSUB(temp, key->co, (key+1)->co);
VECCOPY(mvert->co, key->co);
VECADD(mvert->co, mvert->co, temp);
mul_m4_v3(hairmat, mvert->co);
mvert++;
medge->v1 = pa->hair_index - 1;
medge->v2 = pa->hair_index;
medge++;
if(dvert) {
if(!dvert->totweight) {
dvert->dw = MEM_callocN (sizeof(MDeformWeight), "deformWeight");
dvert->totweight = 1;
}
dvert->dw->weight = 1.0f;
dvert++;
}
}
VECCOPY(mvert->co, key->co);
mul_m4_v3(hairmat, mvert->co);
mvert++;
if(k) {
medge->v1 = pa->hair_index + k - 1;
medge->v2 = pa->hair_index + k;
medge++;
}
if(dvert) {
if(!dvert->totweight) {
dvert->dw = MEM_callocN (sizeof(MDeformWeight), "deformWeight");
dvert->totweight = 1;
}
/* roots should be 1.0, the rest can be anything from 0.0 to 1.0 */
dvert->dw->weight = key->weight;
dvert++;
}
}
}
if(psys->hair_out_dm)
psys->hair_out_dm->release(psys->hair_out_dm);
psys->clmd->point_cache = psys->pointcache;
psys->clmd->sim_parms->effector_weights = psys->part->effector_weights;
psys->hair_out_dm = clothModifier_do(psys->clmd, sim->scene, sim->ob, dm);
psys->clmd->sim_parms->effector_weights = NULL;
}
static void hair_step(ParticleSimulationData *sim, float cfra)
{
ParticleSystem *psys = sim->psys;
/* ParticleSettings *part = psys->part; */
PARTICLE_P;
float disp = (float)psys_get_current_display_percentage(psys)/100.0f;
BLI_srandom(psys->seed);
LOOP_PARTICLES {
if(PSYS_FRAND(p) > disp)
pa->flag |= PARS_NO_DISP;
else
pa->flag &= ~PARS_NO_DISP;
}
if(psys->recalc & PSYS_RECALC_RESET) {
/* need this for changing subsurf levels */
psys_calc_dmcache(sim->ob, sim->psmd->dm, psys);
if(psys->clmd)
cloth_free_modifier(psys->clmd);
}
/* dynamics with cloth simulation */
if(psys->part->type==PART_HAIR && psys->flag & PSYS_HAIR_DYNAMICS)
do_hair_dynamics(sim);
/* following lines were removed r29079 but cause bug [#22811], see report for details */
psys_update_effectors(sim);
psys_update_path_cache(sim, cfra);
psys->flag |= PSYS_HAIR_UPDATED;
}
static void save_hair(ParticleSimulationData *sim, float UNUSED(cfra)){
Object *ob = sim->ob;
ParticleSystem *psys = sim->psys;
HairKey *key, *root;
PARTICLE_P;
int totpart;
invert_m4_m4(ob->imat, ob->obmat);
psys->lattice= psys_get_lattice(sim);
if(psys->totpart==0) return;
totpart=psys->totpart;
/* save new keys for elements if needed */
LOOP_PARTICLES {
/* first time alloc */
if(pa->totkey==0 || pa->hair==NULL) {
pa->hair = MEM_callocN((psys->part->hair_step + 1) * sizeof(HairKey), "HairKeys");
pa->totkey = 0;
}
key = root = pa->hair;
key += pa->totkey;
/* convert from global to geometry space */
copy_v3_v3(key->co, pa->state.co);
mul_m4_v3(ob->imat, key->co);
if(pa->totkey) {
VECSUB(key->co, key->co, root->co);
psys_vec_rot_to_face(sim->psmd->dm, pa, key->co);
}
key->time = pa->state.time;
key->weight = 1.0f - key->time / 100.0f;
pa->totkey++;
/* root is always in the origin of hair space so we set it to be so after the last key is saved*/
if(pa->totkey == psys->part->hair_step + 1)
root->co[0] = root->co[1] = root->co[2] = 0.0f;
}
}
/************************************************/
/* System Core */
/************************************************/
/* unbaked particles are calculated dynamically */
static void dynamics_step(ParticleSimulationData *sim, float cfra)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part=psys->part;
BoidBrainData bbd;
PARTICLE_P;
float timestep;
/* current time */
float ctime;
/* frame & time changes */
float dfra, dtime, pa_dtime, pa_dfra=0.0;
float birthtime, dietime;
int invalidParticles=0;
/* where have we gone in time since last time */
dfra= cfra - psys->cfra;
timestep = psys_get_timestep(sim);
dtime= dfra*timestep;
ctime= cfra*timestep;
if(dfra<0.0){
LOOP_EXISTING_PARTICLES {
pa->size = part->size;
if(part->randsize > 0.0)
pa->size *= 1.0f - part->randsize * PSYS_FRAND(p + 1);
reset_particle(sim, pa, dtime, cfra);
}
return;
}
BLI_srandom(31415926 + (int)cfra + psys->seed);
psys_update_effectors(sim);
if(part->type != PART_HAIR)
sim->colliders = get_collider_cache(sim->scene, NULL, NULL);
if(part->phystype==PART_PHYS_BOIDS){
ParticleTarget *pt = psys->targets.first;
bbd.sim = sim;
bbd.part = part;
bbd.cfra = cfra;
bbd.dfra = dfra;
bbd.timestep = timestep;
psys_update_particle_tree(psys, cfra);
boids_precalc_rules(part, cfra);
for(; pt; pt=pt->next) {
if(pt->ob)
psys_update_particle_tree(BLI_findlink(&pt->ob->particlesystem, pt->psys-1), cfra);
}
}
else if(part->phystype==PART_PHYS_FLUID){
ParticleTarget *pt = psys->targets.first;
psys_update_particle_tree(psys, cfra);
for(; pt; pt=pt->next) { /* Updating others systems particle tree for fluid-fluid interaction */
if(pt->ob) psys_update_particle_tree(BLI_findlink(&pt->ob->particlesystem, pt->psys-1), cfra);
}
}
/* main loop: calculate physics for all particles */
LOOP_SHOWN_PARTICLES {
copy_particle_key(&pa->prev_state,&pa->state,1);
pa->size = part->size;
if(part->randsize > 0.0)
pa->size *= 1.0f - part->randsize * PSYS_FRAND(p + 1);
///* reactions can change birth time so they need to be checked first */
//if(psys->reactevents.first && ELEM(pa->alive,PARS_DEAD,PARS_KILLED)==0)
// react_to_events(psys,p);
birthtime = pa->time;
dietime = birthtime + pa->lifetime;
pa_dfra = dfra;
pa_dtime = dtime;
if(dietime <= cfra && psys->cfra < dietime){
/* particle dies some time between this and last step */
pa_dfra = dietime - ((birthtime > psys->cfra) ? birthtime : psys->cfra);
pa_dtime = pa_dfra * timestep;
pa->alive = PARS_DYING;
}
else if(birthtime <= cfra && birthtime >= psys->cfra){
/* particle is born some time between this and last step*/
reset_particle(sim, pa, dtime, cfra);
pa->alive = PARS_ALIVE;
pa_dfra = cfra - birthtime;
pa_dtime = pa_dfra*timestep;
}
else if(dietime < cfra){
/* nothing to be done when particle is dead */
}
/* only reset unborn particles if they're shown or if the particle is born soon*/
if(pa->alive==PARS_UNBORN
&& (part->flag & PART_UNBORN || cfra + psys->pointcache->step > pa->time))
reset_particle(sim, pa, dtime, cfra);
else if(part->phystype == PART_PHYS_NO)
reset_particle(sim, pa, dtime, cfra);
if(pa_dfra>0.0 && ELEM(pa->alive,PARS_ALIVE,PARS_DYING)){
switch(part->phystype){
case PART_PHYS_NEWTON:
/* do global forces & effectors */
apply_particle_forces(sim, p, pa_dfra, cfra);
/* deflection */
if(sim->colliders)
deflect_particle(sim, p, pa_dfra, cfra);
/* rotations */
rotate_particle(part, pa, pa_dfra, timestep);
break;
case PART_PHYS_BOIDS:
{
bbd.goal_ob = NULL;
boid_brain(&bbd, p, pa);
if(pa->alive != PARS_DYING) {
boid_body(&bbd, pa);
/* deflection */
if(sim->colliders)
deflect_particle(sim, p, pa_dfra, cfra);
}
break;
}
case PART_PHYS_FLUID:
{
/* do global forces & effectors */
apply_particle_forces(sim, p, pa_dfra, cfra);
/* do fluid sim */
apply_particle_fluidsim(psys, pa, part, sim, pa_dfra, cfra);
/* deflection */
if(sim->colliders)
deflect_particle(sim, p, pa_dfra, cfra);
/* rotations, SPH particles are not physical particles, just interpolation particles, thus rotation has not a direct sense for them */
rotate_particle(part, pa, pa_dfra, timestep);
break;
}
}
if(pa->alive == PARS_DYING){
//push_reaction(ob,psys,p,PART_EVENT_DEATH,&pa->state);
pa->alive=PARS_DEAD;
pa->state.time=pa->dietime;
}
else
pa->state.time=cfra;
//push_reaction(ob,psys,p,PART_EVENT_NEAR,&pa->state);
}
if (isnan(pa->state.co[0]) || isnan(pa->state.co[1]) || isnan(pa->state.co[2])) {invalidParticles++;}
}
free_collider_cache(&sim->colliders);
}
static void update_children(ParticleSimulationData *sim)
{
if((sim->psys->part->type == PART_HAIR) && (sim->psys->flag & PSYS_HAIR_DONE)==0)
/* don't generate children while growing hair - waste of time */
psys_free_children(sim->psys);
else if(sim->psys->part->childtype && sim->psys->totchild != get_psys_tot_child(sim->scene, sim->psys))
distribute_particles(sim, PART_FROM_CHILD);
else
psys_free_children(sim->psys);
}
/* updates cached particles' alive & other flags etc..*/
static void cached_step(ParticleSimulationData *sim, float cfra)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
PARTICLE_P;
float disp, birthtime, dietime;
BLI_srandom(psys->seed);
psys_update_effectors(sim);
disp= (float)psys_get_current_display_percentage(psys)/100.0f;
LOOP_PARTICLES {
pa->size = part->size;
if(part->randsize > 0.0)
pa->size *= 1.0f - part->randsize * PSYS_FRAND(p + 1);
psys->lattice= psys_get_lattice(sim);
birthtime = pa->time;
dietime = pa->dietime;
/* update alive status and push events */
if(pa->time > cfra) {
pa->alive = PARS_UNBORN;
if(part->flag & PART_UNBORN && (psys->pointcache->flag & PTCACHE_EXTERNAL) == 0)
reset_particle(sim, pa, 0.0f, cfra);
}
else if(dietime <= cfra)
pa->alive = PARS_DEAD;
else
pa->alive = PARS_ALIVE;
if(psys->lattice){
end_latt_deform(psys->lattice);
psys->lattice= NULL;
}
if(PSYS_FRAND(p) > disp)
pa->flag |= PARS_NO_DISP;
else
pa->flag &= ~PARS_NO_DISP;
}
}
static void particles_fluid_step(ParticleSimulationData *sim, int UNUSED(cfra))
{
ParticleSystem *psys = sim->psys;
if(psys->particles){
MEM_freeN(psys->particles);
psys->particles = 0;
psys->totpart = 0;
}
/* fluid sim particle import handling, actual loading of particles from file */
#ifndef DISABLE_ELBEEM
{
FluidsimModifierData *fluidmd = (FluidsimModifierData *)modifiers_findByType(sim->ob, eModifierType_Fluidsim);
if( fluidmd && fluidmd->fss) {
FluidsimSettings *fss= fluidmd->fss;
ParticleSettings *part = psys->part;
ParticleData *pa=0;
char *suffix = "fluidsurface_particles_####";
char *suffix2 = ".gz";
char filename[256];
char debugStrBuffer[256];
int curFrame = sim->scene->r.cfra -1; // warning - sync with derived mesh fsmesh loading
int p, j, numFileParts, totpart;
int readMask, activeParts = 0, fileParts = 0;
gzFile gzf;
// XXX if(ob==G.obedit) // off...
// return;
// ok, start loading
strcpy(filename, fss->surfdataPath);
strcat(filename, suffix);
BLI_path_abs(filename, G.main->name);
BLI_path_frame(filename, curFrame, 0); // fixed #frame-no
strcat(filename, suffix2);
gzf = gzopen(filename, "rb");
if (!gzf) {
snprintf(debugStrBuffer,256,"readFsPartData::error - Unable to open file for reading '%s' \n", filename);
// XXX bad level call elbeemDebugOut(debugStrBuffer);
return;
}
gzread(gzf, &totpart, sizeof(totpart));
numFileParts = totpart;
totpart = (G.rendering)?totpart:(part->disp*totpart)/100;
part->totpart= totpart;
part->sta=part->end = 1.0f;
part->lifetime = sim->scene->r.efra + 1;
/* initialize particles */
realloc_particles(sim, part->totpart);
initialize_all_particles(sim);
// set up reading mask
readMask = fss->typeFlags;
for(p=0, pa=psys->particles; p<totpart; p++, pa++) {
int ptype=0;
gzread(gzf, &ptype, sizeof( ptype ));
if(ptype&readMask) {
activeParts++;
gzread(gzf, &(pa->size), sizeof( float ));
pa->size /= 10.0f;
for(j=0; j<3; j++) {
float wrf;
gzread(gzf, &wrf, sizeof( wrf ));
pa->state.co[j] = wrf;
//fprintf(stderr,"Rj%d ",j);
}
for(j=0; j<3; j++) {
float wrf;
gzread(gzf, &wrf, sizeof( wrf ));
pa->state.vel[j] = wrf;
}
pa->state.ave[0] = pa->state.ave[1] = pa->state.ave[2] = 0.0f;
pa->state.rot[0] = 1.0;
pa->state.rot[1] = pa->state.rot[2] = pa->state.rot[3] = 0.0;
pa->alive = PARS_ALIVE;
//if(a<25) fprintf(stderr,"FSPARTICLE debug set %s , a%d = %f,%f,%f , life=%f \n", filename, a, pa->co[0],pa->co[1],pa->co[2], pa->lifetime );
} else {
// skip...
for(j=0; j<2*3+1; j++) {
float wrf; gzread(gzf, &wrf, sizeof( wrf ));
}
}
fileParts++;
}
gzclose( gzf );
totpart = psys->totpart = activeParts;
snprintf(debugStrBuffer,256,"readFsPartData::done - particles:%d, active:%d, file:%d, mask:%d \n", psys->totpart,activeParts,fileParts,readMask);
// bad level call
// XXX elbeemDebugOut(debugStrBuffer);
} // fluid sim particles done
}
#endif // DISABLE_ELBEEM
}
static int emit_particles(ParticleSimulationData *sim, PTCacheID *pid, float UNUSED(cfra))
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
int oldtotpart = psys->totpart;
int totpart = oldtotpart;
if(pid && psys->pointcache->flag & PTCACHE_EXTERNAL)
totpart = pid->cache->totpoint;
else if(part->distr == PART_DISTR_GRID && part->from != PART_FROM_VERT)
totpart = part->grid_res*part->grid_res*part->grid_res;
else
totpart = psys->part->totpart;
if(totpart != oldtotpart)
realloc_particles(sim, totpart);
return totpart - oldtotpart;
}
/* Calculates the next state for all particles of the system
* In particles code most fra-ending are frames, time-ending are fra*timestep (seconds)
* 1. Emit particles
* 2. Check cache (if used) and return if frame is cached
* 3. Do dynamics
* 4. Save to cache */
static void system_step(ParticleSimulationData *sim, float cfra)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
PointCache *cache = psys->pointcache;
PTCacheID pid, *use_cache = NULL;
PARTICLE_P;
int oldtotpart;
float disp; /*, *vg_vel= 0, *vg_tan= 0, *vg_rot= 0, *vg_size= 0; */
int init= 0, emit= 0; //, only_children_changed= 0;
int framenr, framedelta, startframe = 0, endframe = 100;
framenr= (int)sim->scene->r.cfra;
framedelta= framenr - cache->simframe;
/* cache shouldn't be used for hair or "continue physics" */
if(part->type != PART_HAIR && BKE_ptcache_get_continue_physics() == 0) {
BKE_ptcache_id_from_particles(&pid, sim->ob, psys);
use_cache = &pid;
}
if(use_cache) {
psys_clear_temp_pointcache(sim->psys);
/* set suitable cache range automatically */
if((cache->flag & (PTCACHE_BAKING|PTCACHE_BAKED))==0)
psys_get_pointcache_start_end(sim->scene, sim->psys, &cache->startframe, &cache->endframe);
BKE_ptcache_id_time(&pid, sim->scene, 0.0f, &startframe, &endframe, NULL);
/* simulation is only active during a specific period */
if(framenr < startframe) {
psys_reset(psys, PSYS_RESET_CACHE_MISS);
return;
}
else if(framenr > endframe) {
framenr= endframe;
}
if(framenr == startframe) {
BKE_ptcache_id_reset(sim->scene, use_cache, PTCACHE_RESET_OUTDATED);
BKE_ptcache_validate(cache, framenr);
cache->flag &= ~PTCACHE_REDO_NEEDED;
}
}
/* 1. emit particles */
/* verify if we need to reallocate */
oldtotpart = psys->totpart;
emit = emit_particles(sim, use_cache, cfra);
if(use_cache && emit > 0)
BKE_ptcache_id_clear(&pid, PTCACHE_CLEAR_ALL, cfra);
init = emit*emit + (psys->recalc & PSYS_RECALC_RESET);
if(init) {
distribute_particles(sim, part->from);
initialize_all_particles(sim);
reset_all_particles(sim, 0.0, cfra, oldtotpart);
/* flag for possible explode modifiers after this system */
sim->psmd->flag |= eParticleSystemFlag_Pars;
}
/* 2. try to read from the cache */
if(use_cache) {
int cache_result = BKE_ptcache_read_cache(use_cache, cfra, sim->scene->r.frs_sec);
if(ELEM(cache_result, PTCACHE_READ_EXACT, PTCACHE_READ_INTERPOLATED)) {
cached_step(sim, cfra);
update_children(sim);
psys_update_path_cache(sim, cfra);
BKE_ptcache_validate(cache, framenr);
if(cache_result == PTCACHE_READ_INTERPOLATED && cache->flag & PTCACHE_REDO_NEEDED)
BKE_ptcache_write_cache(use_cache, framenr);
return;
}
else if(cache_result == PTCACHE_READ_OLD) {
psys->cfra = (float)cache->simframe;
cached_step(sim, psys->cfra);
}
else if(cfra != startframe && ( /*sim->ob->id.lib ||*/ (cache->flag & PTCACHE_BAKED))) { /* 2.4x disabled lib, but this can be used in some cases, testing further - campbell */
psys_reset(psys, PSYS_RESET_CACHE_MISS);
return;
}
/* if on second frame, write cache for first frame */
if(psys->cfra == startframe && (cache->flag & PTCACHE_OUTDATED || cache->last_exact==0))
BKE_ptcache_write_cache(use_cache, startframe);
}
else
BKE_ptcache_invalidate(cache);
/* 3. do dynamics */
/* set particles to be not calculated TODO: can't work with pointcache */
disp= (float)psys_get_current_display_percentage(psys)/100.0f;
BLI_srandom(psys->seed);
LOOP_PARTICLES {
if(PSYS_FRAND(p) > disp)
pa->flag |= PARS_NO_DISP;
else
pa->flag &= ~PARS_NO_DISP;
}
if(psys->totpart) {
int dframe, subframe = 0, totframesback = 0, totsubframe = part->subframes+1;
float fraction;
/* handle negative frame start at the first frame by doing
* all the steps before the first frame */
if(framenr == startframe && part->sta < startframe)
totframesback = (startframe - (int)part->sta);
for(dframe=-totframesback; dframe<=0; dframe++) {
/* ok now we're all set so let's go */
for (subframe = 1; subframe <= totsubframe; subframe++) {
fraction = (float)subframe/(float)totsubframe;
dynamics_step(sim, cfra+dframe+fraction - 1.f);
psys->cfra = cfra+dframe+fraction - 1.f;
}
}
}
/* 4. only write cache starting from second frame */
if(use_cache) {
BKE_ptcache_validate(cache, framenr);
if(framenr != startframe)
BKE_ptcache_write_cache(use_cache, framenr);
}
if(init)
update_children(sim);
/* cleanup */
if(psys->lattice){
end_latt_deform(psys->lattice);
psys->lattice= NULL;
}
}
/* system type has changed so set sensible defaults and clear non applicable flags */
static void psys_changed_type(ParticleSimulationData *sim)
{
ParticleSettings *part = sim->psys->part;
PTCacheID pid;
BKE_ptcache_id_from_particles(&pid, sim->ob, sim->psys);
if(part->from == PART_FROM_PARTICLE) {
//if(part->type != PART_REACTOR)
part->from = PART_FROM_FACE;
if(part->distr == PART_DISTR_GRID && part->from != PART_FROM_VERT)
part->distr = PART_DISTR_JIT;
}
if(part->phystype != PART_PHYS_KEYED)
sim->psys->flag &= ~PSYS_KEYED;
if(part->type == PART_HAIR) {
if(ELEM4(part->ren_as, PART_DRAW_NOT, PART_DRAW_PATH, PART_DRAW_OB, PART_DRAW_GR)==0)
part->ren_as = PART_DRAW_PATH;
if(ELEM3(part->draw_as, PART_DRAW_NOT, PART_DRAW_REND, PART_DRAW_PATH)==0)
part->draw_as = PART_DRAW_REND;
CLAMP(part->path_start, 0.0f, 100.0f);
CLAMP(part->path_end, 0.0f, 100.0f);
BKE_ptcache_id_clear(&pid, PTCACHE_CLEAR_ALL, 0);
}
else {
free_hair(sim->ob, sim->psys, 1);
CLAMP(part->path_start, 0.0f, MAX2(100.0f, part->end + part->lifetime));
CLAMP(part->path_end, 0.0f, MAX2(100.0f, part->end + part->lifetime));
}
psys_reset(sim->psys, PSYS_RESET_ALL);
}
void psys_check_boid_data(ParticleSystem *psys)
{
BoidParticle *bpa;
PARTICLE_P;
pa = psys->particles;
if(!pa)
return;
if(psys->part && psys->part->phystype==PART_PHYS_BOIDS) {
if(!pa->boid) {
bpa = MEM_callocN(psys->totpart * sizeof(BoidParticle), "Boid Data");
LOOP_PARTICLES
pa->boid = bpa++;
}
}
else if(pa->boid){
MEM_freeN(pa->boid);
LOOP_PARTICLES
pa->boid = NULL;
}
}
static void fluid_default_settings(ParticleSettings *part){
SPHFluidSettings *fluid = part->fluid;
fluid->radius = 0.5f;
fluid->spring_k = 0.f;
fluid->rest_length = 0.5f;
fluid->viscosity_omega = 2.f;
fluid->viscosity_beta = 0.f;
fluid->stiffness_k = 0.1f;
fluid->stiffness_knear = 0.05f;
fluid->rest_density = 10.f;
fluid->buoyancy = 0.f;
}
static void psys_changed_physics(ParticleSimulationData *sim)
{
ParticleSettings *part = sim->psys->part;
if(ELEM(part->phystype, PART_PHYS_NO, PART_PHYS_KEYED)) {
PTCacheID pid;
BKE_ptcache_id_from_particles(&pid, sim->ob, sim->psys);
BKE_ptcache_id_clear(&pid, PTCACHE_CLEAR_ALL, 0);
}
else {
free_keyed_keys(sim->psys);
sim->psys->flag &= ~PSYS_KEYED;
}
if(part->phystype == PART_PHYS_BOIDS && part->boids == NULL) {
BoidState *state;
part->boids = MEM_callocN(sizeof(BoidSettings), "Boid Settings");
boid_default_settings(part->boids);
state = boid_new_state(part->boids);
BLI_addtail(&state->rules, boid_new_rule(eBoidRuleType_Separate));
BLI_addtail(&state->rules, boid_new_rule(eBoidRuleType_Flock));
((BoidRule*)state->rules.first)->flag |= BOIDRULE_CURRENT;
state->flag |= BOIDSTATE_CURRENT;
BLI_addtail(&part->boids->states, state);
}
else if(part->phystype == PART_PHYS_FLUID && part->fluid == NULL) {
part->fluid = MEM_callocN(sizeof(SPHFluidSettings), "SPH Fluid Settings");
fluid_default_settings(part);
}
psys_check_boid_data(sim->psys);
}
static int hair_needs_recalc(ParticleSystem *psys)
{
if(!(psys->flag & PSYS_EDITED) && (!psys->edit || !psys->edit->edited) &&
((psys->flag & PSYS_HAIR_DONE)==0 || psys->recalc & PSYS_RECALC_RESET)) {
return 1;
}
return 0;
}
/* main particle update call, checks that things are ok on the large scale and
* then advances in to actual particle calculations depending on particle type */
void particle_system_update(Scene *scene, Object *ob, ParticleSystem *psys)
{
ParticleSimulationData sim = {scene, ob, psys, NULL, NULL};
ParticleSettings *part = psys->part;
float cfra;
/* drawdata is outdated after ANY change */
if(psys->pdd) psys->pdd->flag &= ~PARTICLE_DRAW_DATA_UPDATED;
if(!psys_check_enabled(ob, psys))
return;
cfra= BKE_curframe(scene);
sim.psmd= psys_get_modifier(ob, psys);
/* system was already updated from modifier stack */
if(sim.psmd->flag & eParticleSystemFlag_psys_updated) {
sim.psmd->flag &= ~eParticleSystemFlag_psys_updated;
/* make sure it really was updated to cfra */
if(psys->cfra == cfra)
return;
}
if(!sim.psmd->dm)
return;
/* execute drivers only, as animation has already been done */
BKE_animsys_evaluate_animdata(&part->id, part->adt, cfra, ADT_RECALC_DRIVERS);
if(psys->recalc & PSYS_RECALC_TYPE)
psys_changed_type(&sim);
else if(psys->recalc & PSYS_RECALC_PHYS)
psys_changed_physics(&sim);
switch(part->type) {
case PART_HAIR:
{
/* nothing to do so bail out early */
if(psys->totpart == 0 && part->totpart == 0) {
psys_free_path_cache(psys, NULL);
free_hair(ob, psys, 0);
}
/* (re-)create hair */
else if(hair_needs_recalc(psys)) {
float hcfra=0.0f;
int i, recalc = psys->recalc;
free_hair(ob, psys, 0);
/* first step is negative so particles get killed and reset */
psys->cfra= 1.0f;
for(i=0; i<=part->hair_step; i++){
hcfra=100.0f*(float)i/(float)psys->part->hair_step;
BKE_animsys_evaluate_animdata(&part->id, part->adt, hcfra, ADT_RECALC_ANIM);
system_step(&sim, hcfra);
psys->cfra = hcfra;
psys->recalc = 0;
save_hair(&sim, hcfra);
}
psys->flag |= PSYS_HAIR_DONE;
psys->recalc = recalc;
}
if(psys->flag & PSYS_HAIR_DONE)
hair_step(&sim, cfra);
break;
}
case PART_FLUID:
{
particles_fluid_step(&sim, (int)cfra);
break;
}
default:
{
switch(part->phystype) {
case PART_PHYS_NO:
case PART_PHYS_KEYED:
{
PARTICLE_P;
/* Particles without dynamics haven't been reset yet because they don't use pointcache */
if(psys->recalc & PSYS_RECALC_RESET)
psys_reset(psys, PSYS_RESET_ALL);
if(emit_particles(&sim, NULL, cfra)) {
free_keyed_keys(psys);
distribute_particles(&sim, part->from);
initialize_all_particles(&sim);
}
LOOP_EXISTING_PARTICLES {
pa->size = part->size;
if(part->randsize > 0.0)
pa->size *= 1.0f - part->randsize * PSYS_FRAND(p + 1);
reset_particle(&sim, pa, 0.0, cfra);
}
if(part->phystype == PART_PHYS_KEYED) {
psys_count_keyed_targets(&sim);
set_keyed_keys(&sim);
psys_update_path_cache(&sim,(int)cfra);
}
break;
}
default:
{
/* the main dynamic particle system step */
system_step(&sim, cfra);
break;
}
}
break;
}
}
psys->cfra = cfra;
psys->recalc = 0;
/* save matrix for duplicators, at rendertime the actual dupliobject's matrix is used so don't update! */
if(psys->renderdata==0)
invert_m4_m4(psys->imat, ob->obmat);
}