This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/modifiers/intern/MOD_normal_edit.cc
Hans Goudey 1af62cb3bf Mesh: Move positions to a generic attribute
**Changes**
As described in T93602, this patch removes all use of the `MVert`
struct, replacing it with a generic named attribute with the name
`"position"`, consistent with other geometry types.

Variable names have been changed from `verts` to `positions`, to align
with the attribute name and the more generic design (positions are not
vertices, they are just an attribute stored on the point domain).

This change is made possible by previous commits that moved all other
data out of `MVert` to runtime data or other generic attributes. What
remains is mostly a simple type change. Though, the type still shows up
859 times, so the patch is quite large.

One compromise is that now `CD_MASK_BAREMESH` now contains
`CD_PROP_FLOAT3`. With the general move towards generic attributes
over custom data types, we are removing use of these type masks anyway.

**Benefits**
The most obvious benefit is reduced memory usage and the benefits
that brings in memory-bound situations. `float3` is only 3 bytes, in
comparison to `MVert` which was 4. When there are millions of vertices
this starts to matter more.

The other benefits come from using a more generic type. Instead of
writing algorithms specifically for `MVert`, code can just use arrays
of vectors. This will allow eliminating many temporary arrays or
wrappers used to extract positions.

Many possible improvements aren't implemented in this patch, though
I did switch simplify or remove the process of creating temporary
position arrays in a few places.

The design clarity that "positions are just another attribute" brings
allows removing explicit copying of vertices in some procedural
operations-- they are just processed like most other attributes.

**Performance**
This touches so many areas that it's hard to benchmark exhaustively,
but I observed some areas as examples.
* The mesh line node with 4 million count was 1.5x (8ms to 12ms) faster.
* The Spring splash screen went from ~4.3 to ~4.5 fps.
* The subdivision surface modifier/node was slightly faster
RNA access through Python may be slightly slower, since now we need
a name lookup instead of just a custom data type lookup for each index.

**Future Improvements**
* Remove uses of "vert_coords" functions:
  * `BKE_mesh_vert_coords_alloc`
  * `BKE_mesh_vert_coords_get`
  * `BKE_mesh_vert_coords_apply{_with_mat4}`
* Remove more hidden copying of positions
* General simplification now possible in many areas
* Convert more code to C++ to use `float3` instead of `float[3]`
  * Currently `reinterpret_cast` is used for those C-API functions

Differential Revision: https://developer.blender.org/D15982
2023-01-10 00:10:43 -05:00

796 lines
26 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup modifiers
*/
#include <cstring>
#include "MEM_guardedalloc.h"
#include "BLI_utildefines.h"
#include "BLI_bitmap.h"
#include "BLI_math.h"
#include "BLT_translation.h"
#include "DNA_defaults.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "DNA_screen_types.h"
#include "BKE_context.h"
#include "BKE_deform.h"
#include "BKE_lib_id.h"
#include "BKE_lib_query.h"
#include "BKE_mesh.h"
#include "BKE_screen.h"
#include "UI_interface.h"
#include "UI_resources.h"
#include "RNA_access.h"
#include "RNA_prototypes.h"
#include "DEG_depsgraph_query.h"
#include "MOD_ui_common.h"
#include "MOD_util.h"
static void generate_vert_coordinates(Mesh *mesh,
Object *ob,
Object *ob_center,
const float offset[3],
const int verts_num,
float (*r_cos)[3],
float r_size[3])
{
using namespace blender;
float min_co[3], max_co[3];
float diff[3];
bool do_diff = false;
INIT_MINMAX(min_co, max_co);
const Span<float3> positions = mesh->vert_positions();
for (int i = 0; i < mesh->totvert; i++) {
copy_v3_v3(r_cos[i], positions[i]);
if (r_size != nullptr && ob_center == nullptr) {
minmax_v3v3_v3(min_co, max_co, r_cos[i]);
}
}
/* Get size (i.e. deformation of the spheroid generating normals),
* either from target object, or own geometry. */
if (r_size != nullptr) {
if (ob_center != nullptr) {
/* Using 'scale' as 'size' here. The input object is typically an empty
* who's scale is used to define an ellipsoid instead of a simple sphere. */
/* Not we are not interested in signs here - they are even troublesome actually,
* due to security clamping! */
abs_v3_v3(r_size, ob_center->scale);
}
else {
/* Set size. */
sub_v3_v3v3(r_size, max_co, min_co);
}
/* Error checks - we do not want one or more of our sizes to be null! */
if (is_zero_v3(r_size)) {
r_size[0] = r_size[1] = r_size[2] = 1.0f;
}
else {
CLAMP_MIN(r_size[0], FLT_EPSILON);
CLAMP_MIN(r_size[1], FLT_EPSILON);
CLAMP_MIN(r_size[2], FLT_EPSILON);
}
}
if (ob_center != nullptr) {
float inv_obmat[4][4];
/* Translate our coordinates so that center of ob_center is at (0, 0, 0). */
/* Get ob_center (world) coordinates in ob local coordinates.
* No need to take into account ob_center's space here, see T44027. */
invert_m4_m4(inv_obmat, ob->object_to_world);
mul_v3_m4v3(diff, inv_obmat, ob_center->object_to_world[3]);
negate_v3(diff);
do_diff = true;
}
else if (offset != nullptr && !is_zero_v3(offset)) {
negate_v3_v3(diff, offset);
do_diff = true;
}
/* Else, no need to change coordinates! */
if (do_diff) {
int i = verts_num;
while (i--) {
add_v3_v3(r_cos[i], diff);
}
}
}
/* Note this modifies nos_new in-place. */
static void mix_normals(const float mix_factor,
const MDeformVert *dvert,
const int defgrp_index,
const bool use_invert_vgroup,
const float mix_limit,
const short mix_mode,
const int verts_num,
const MLoop *mloop,
float (*nos_old)[3],
float (*nos_new)[3],
const int loops_num)
{
/* Mix with org normals... */
float *facs = nullptr, *wfac;
float(*no_new)[3], (*no_old)[3];
int i;
if (dvert) {
facs = static_cast<float *>(MEM_malloc_arrayN(size_t(loops_num), sizeof(*facs), __func__));
BKE_defvert_extract_vgroup_to_loopweights(
dvert, defgrp_index, verts_num, mloop, loops_num, use_invert_vgroup, facs);
}
for (i = loops_num, no_new = nos_new, no_old = nos_old, wfac = facs; i--;
no_new++, no_old++, wfac++) {
const float fac = facs ? *wfac * mix_factor : mix_factor;
switch (mix_mode) {
case MOD_NORMALEDIT_MIX_ADD:
add_v3_v3(*no_new, *no_old);
normalize_v3(*no_new);
break;
case MOD_NORMALEDIT_MIX_SUB:
sub_v3_v3(*no_new, *no_old);
normalize_v3(*no_new);
break;
case MOD_NORMALEDIT_MIX_MUL:
mul_v3_v3(*no_new, *no_old);
normalize_v3(*no_new);
break;
case MOD_NORMALEDIT_MIX_COPY:
break;
}
interp_v3_v3v3_slerp_safe(
*no_new,
*no_old,
*no_new,
(mix_limit < float(M_PI)) ? min_ff(fac, mix_limit / angle_v3v3(*no_new, *no_old)) : fac);
}
MEM_SAFE_FREE(facs);
}
/* Check poly normals and new loop normals are compatible, otherwise flip polygons
* (and invert matching poly normals). */
static bool polygons_check_flip(MLoop *mloop,
float (*nos)[3],
CustomData *ldata,
const MPoly *mpoly,
float (*poly_normals)[3],
const int polys_num)
{
const MPoly *mp;
MDisps *mdisp = static_cast<MDisps *>(CustomData_get_layer(ldata, CD_MDISPS));
int i;
bool flipped = false;
for (i = 0, mp = mpoly; i < polys_num; i++, mp++) {
float norsum[3] = {0.0f};
float(*no)[3];
int j;
for (j = 0, no = &nos[mp->loopstart]; j < mp->totloop; j++, no++) {
add_v3_v3(norsum, *no);
}
if (!normalize_v3(norsum)) {
continue;
}
/* If average of new loop normals is opposed to polygon normal, flip polygon. */
if (dot_v3v3(poly_normals[i], norsum) < 0.0f) {
BKE_mesh_polygon_flip_ex(mp, mloop, ldata, nos, mdisp, true);
negate_v3(poly_normals[i]);
flipped = true;
}
}
return flipped;
}
static void normalEditModifier_do_radial(NormalEditModifierData *enmd,
const ModifierEvalContext * /*ctx*/,
Object *ob,
Mesh *mesh,
short (*clnors)[2],
float (*loop_normals)[3],
const float (*poly_normals)[3],
const short mix_mode,
const float mix_factor,
const float mix_limit,
const MDeformVert *dvert,
const int defgrp_index,
const bool use_invert_vgroup,
const float (*vert_positions)[3],
const int verts_num,
MEdge *medge,
const int edges_num,
MLoop *mloop,
const int loops_num,
const MPoly *mpoly,
const int polys_num)
{
Object *ob_target = enmd->target;
const bool do_polynors_fix = (enmd->flag & MOD_NORMALEDIT_NO_POLYNORS_FIX) == 0;
int i;
float(*cos)[3] = static_cast<float(*)[3]>(
MEM_malloc_arrayN(size_t(verts_num), sizeof(*cos), __func__));
float(*nos)[3] = static_cast<float(*)[3]>(
MEM_malloc_arrayN(size_t(loops_num), sizeof(*nos), __func__));
float size[3];
BLI_bitmap *done_verts = BLI_BITMAP_NEW(size_t(verts_num), __func__);
generate_vert_coordinates(mesh, ob, ob_target, enmd->offset, verts_num, cos, size);
/**
* size gives us our spheroid coefficients `(A, B, C)`.
* Then, we want to find out for each vert its (a, b, c) triple (proportional to (A, B, C) one).
*
* Ellipsoid basic equation: `(x^2/a^2) + (y^2/b^2) + (z^2/c^2) = 1`.
* Since we want to find (a, b, c) matching this equation and proportional to (A, B, C),
* we can do:
* <pre>
* m = B / A
* n = C / A
* </pre>
*
* hence:
* <pre>
* (x^2/a^2) + (y^2/b^2) + (z^2/c^2) = 1
* -> b^2*c^2*x^2 + a^2*c^2*y^2 + a^2*b^2*z^2 = a^2*b^2*c^2
* b = ma
* c = na
* -> m^2*a^2*n^2*a^2*x^2 + a^2*n^2*a^2*y^2 + a^2*m^2*a^2*z^2 = a^2*m^2*a^2*n^2*a^2
* -> m^2*n^2*a^4*x^2 + n^2*a^4*y^2 + m^2*a^4*z^2 = m^2*n^2*a^6
* -> a^2 = (m^2*n^2*x^2 + n^2y^2 + m^2z^2) / (m^2*n^2) = x^2 + (y^2 / m^2) + (z^2 / n^2)
* -> b^2 = (m^2*n^2*x^2 + n^2y^2 + m^2z^2) / (n^2) = (m^2 * x^2) + y^2 + (m^2 * z^2 / n^2)
* -> c^2 = (m^2*n^2*x^2 + n^2y^2 + m^2z^2) / (m^2) = (n^2 * x^2) + (n^2 * y^2 / m^2) + z^2
* </pre>
*
* All we have to do now is compute normal of the spheroid at that point:
* <pre>
* n = (x / a^2, y / b^2, z / c^2)
* </pre>
* And we are done!
*/
{
const float a = size[0], b = size[1], c = size[2];
const float m2 = (b * b) / (a * a);
const float n2 = (c * c) / (a * a);
const MLoop *ml;
float(*no)[3];
/* We reuse cos to now store the ellipsoid-normal of the verts! */
for (i = loops_num, ml = mloop, no = nos; i--; ml++, no++) {
const int vidx = ml->v;
float *co = cos[vidx];
if (!BLI_BITMAP_TEST(done_verts, vidx)) {
const float x2 = co[0] * co[0];
const float y2 = co[1] * co[1];
const float z2 = co[2] * co[2];
const float a2 = x2 + (y2 / m2) + (z2 / n2);
const float b2 = (m2 * x2) + y2 + (m2 * z2 / n2);
const float c2 = (n2 * x2) + (n2 * y2 / m2) + z2;
co[0] /= a2;
co[1] /= b2;
co[2] /= c2;
normalize_v3(co);
BLI_BITMAP_ENABLE(done_verts, vidx);
}
copy_v3_v3(*no, co);
}
}
if (loop_normals) {
mix_normals(mix_factor,
dvert,
defgrp_index,
use_invert_vgroup,
mix_limit,
mix_mode,
verts_num,
mloop,
loop_normals,
nos,
loops_num);
}
if (do_polynors_fix &&
polygons_check_flip(
mloop, nos, &mesh->ldata, mpoly, BKE_mesh_poly_normals_for_write(mesh), polys_num)) {
/* We need to recompute vertex normals! */
BKE_mesh_normals_tag_dirty(mesh);
}
BKE_mesh_normals_loop_custom_set(vert_positions,
BKE_mesh_vertex_normals_ensure(mesh),
verts_num,
medge,
edges_num,
mloop,
nos,
loops_num,
mpoly,
poly_normals,
polys_num,
clnors);
MEM_freeN(cos);
MEM_freeN(nos);
MEM_freeN(done_verts);
}
static void normalEditModifier_do_directional(NormalEditModifierData *enmd,
const ModifierEvalContext * /*ctx*/,
Object *ob,
Mesh *mesh,
short (*clnors)[2],
float (*loop_normals)[3],
const float (*poly_normals)[3],
const short mix_mode,
const float mix_factor,
const float mix_limit,
const MDeformVert *dvert,
const int defgrp_index,
const bool use_invert_vgroup,
const float (*positions)[3],
const int verts_num,
MEdge *medge,
const int edges_num,
MLoop *mloop,
const int loops_num,
const MPoly *mpoly,
const int polys_num)
{
Object *ob_target = enmd->target;
const bool do_polynors_fix = (enmd->flag & MOD_NORMALEDIT_NO_POLYNORS_FIX) == 0;
const bool use_parallel_normals = (enmd->flag & MOD_NORMALEDIT_USE_DIRECTION_PARALLEL) != 0;
float(*nos)[3] = static_cast<float(*)[3]>(
MEM_malloc_arrayN(size_t(loops_num), sizeof(*nos), __func__));
float target_co[3];
int i;
/* Get target's center coordinates in ob local coordinates. */
float mat[4][4];
invert_m4_m4(mat, ob->object_to_world);
mul_m4_m4m4(mat, mat, ob_target->object_to_world);
copy_v3_v3(target_co, mat[3]);
if (use_parallel_normals) {
float no[3];
sub_v3_v3v3(no, target_co, enmd->offset);
normalize_v3(no);
for (i = loops_num; i--;) {
copy_v3_v3(nos[i], no);
}
}
else {
float(*cos)[3] = static_cast<float(*)[3]>(
MEM_malloc_arrayN(size_t(verts_num), sizeof(*cos), __func__));
generate_vert_coordinates(mesh, ob, ob_target, nullptr, verts_num, cos, nullptr);
BLI_bitmap *done_verts = BLI_BITMAP_NEW(size_t(verts_num), __func__);
const MLoop *ml;
float(*no)[3];
/* We reuse cos to now store the 'to target' normal of the verts! */
for (i = loops_num, no = nos, ml = mloop; i--; no++, ml++) {
const int vidx = ml->v;
float *co = cos[vidx];
if (!BLI_BITMAP_TEST(done_verts, vidx)) {
sub_v3_v3v3(co, target_co, co);
normalize_v3(co);
BLI_BITMAP_ENABLE(done_verts, vidx);
}
copy_v3_v3(*no, co);
}
MEM_freeN(done_verts);
MEM_freeN(cos);
}
if (loop_normals) {
mix_normals(mix_factor,
dvert,
defgrp_index,
use_invert_vgroup,
mix_limit,
mix_mode,
verts_num,
mloop,
loop_normals,
nos,
loops_num);
}
if (do_polynors_fix &&
polygons_check_flip(
mloop, nos, &mesh->ldata, mpoly, BKE_mesh_poly_normals_for_write(mesh), polys_num)) {
BKE_mesh_normals_tag_dirty(mesh);
}
BKE_mesh_normals_loop_custom_set(positions,
BKE_mesh_vertex_normals_ensure(mesh),
verts_num,
medge,
edges_num,
mloop,
nos,
loops_num,
mpoly,
poly_normals,
polys_num,
clnors);
MEM_freeN(nos);
}
static bool is_valid_target(NormalEditModifierData *enmd)
{
if (enmd->mode == MOD_NORMALEDIT_MODE_RADIAL) {
return true;
}
if ((enmd->mode == MOD_NORMALEDIT_MODE_DIRECTIONAL) && enmd->target) {
return true;
}
return false;
}
static bool is_valid_target_with_error(const Object *ob, NormalEditModifierData *enmd)
{
if (is_valid_target(enmd)) {
return true;
}
BKE_modifier_set_error(ob, (ModifierData *)enmd, "Invalid target settings");
return false;
}
static Mesh *normalEditModifier_do(NormalEditModifierData *enmd,
const ModifierEvalContext *ctx,
Object *ob,
Mesh *mesh)
{
const bool use_invert_vgroup = ((enmd->flag & MOD_NORMALEDIT_INVERT_VGROUP) != 0);
const bool use_current_clnors = !((enmd->mix_mode == MOD_NORMALEDIT_MIX_COPY) &&
(enmd->mix_factor == 1.0f) && (enmd->defgrp_name[0] == '\0') &&
(enmd->mix_limit == float(M_PI)));
/* Do not run that modifier at all if autosmooth is disabled! */
if (!is_valid_target_with_error(ctx->object, enmd) || mesh->totloop == 0) {
return mesh;
}
/* XXX TODO(Rohan Rathi):
* Once we fully switch to Mesh evaluation of modifiers,
* we can expect to get that flag from the COW copy.
* But for now, it is lost in the DM intermediate step,
* so we need to directly check orig object's data. */
#if 0
if (!(mesh->flag & ME_AUTOSMOOTH))
#else
if (!(((Mesh *)ob->data)->flag & ME_AUTOSMOOTH))
#endif
{
BKE_modifier_set_error(
ob, (ModifierData *)enmd, "Enable 'Auto Smooth' in Object Data Properties");
return mesh;
}
Mesh *result;
if (BKE_mesh_edges(mesh) == BKE_mesh_edges((Mesh *)ob->data)) {
/* We need to duplicate data here, otherwise setting custom normals
* (which may also affect sharp edges) could
* modify original mesh, see T43671. */
result = (Mesh *)BKE_id_copy_ex(nullptr, &mesh->id, nullptr, LIB_ID_COPY_LOCALIZE);
}
else {
result = mesh;
}
const int verts_num = result->totvert;
const int edges_num = result->totedge;
const int loops_num = result->totloop;
const int polys_num = result->totpoly;
const float(*positions)[3] = BKE_mesh_vert_positions(result);
MEdge *edges = BKE_mesh_edges_for_write(result);
const MPoly *polys = BKE_mesh_polys(result);
MLoop *loops = BKE_mesh_loops_for_write(result);
int defgrp_index;
const MDeformVert *dvert;
float(*loop_normals)[3] = nullptr;
CustomData *ldata = &result->ldata;
const float(*vert_normals)[3] = BKE_mesh_vertex_normals_ensure(result);
const float(*poly_normals)[3] = BKE_mesh_poly_normals_ensure(result);
short(*clnors)[2] = static_cast<short(*)[2]>(CustomData_get_layer(ldata, CD_CUSTOMLOOPNORMAL));
if (use_current_clnors) {
clnors = static_cast<short(*)[2]>(
CustomData_duplicate_referenced_layer(ldata, CD_CUSTOMLOOPNORMAL, loops_num));
loop_normals = static_cast<float(*)[3]>(
MEM_malloc_arrayN(size_t(loops_num), sizeof(*loop_normals), __func__));
BKE_mesh_normals_loop_split(positions,
vert_normals,
verts_num,
edges,
edges_num,
loops,
loop_normals,
loops_num,
polys,
poly_normals,
polys_num,
true,
result->smoothresh,
nullptr,
nullptr,
clnors);
}
if (clnors == nullptr) {
clnors = static_cast<short(*)[2]>(
CustomData_add_layer(ldata, CD_CUSTOMLOOPNORMAL, CD_SET_DEFAULT, nullptr, loops_num));
}
MOD_get_vgroup(ob, result, enmd->defgrp_name, &dvert, &defgrp_index);
if (enmd->mode == MOD_NORMALEDIT_MODE_RADIAL) {
normalEditModifier_do_radial(enmd,
ctx,
ob,
result,
clnors,
loop_normals,
poly_normals,
enmd->mix_mode,
enmd->mix_factor,
enmd->mix_limit,
dvert,
defgrp_index,
use_invert_vgroup,
positions,
verts_num,
edges,
edges_num,
loops,
loops_num,
polys,
polys_num);
}
else if (enmd->mode == MOD_NORMALEDIT_MODE_DIRECTIONAL) {
normalEditModifier_do_directional(enmd,
ctx,
ob,
result,
clnors,
loop_normals,
poly_normals,
enmd->mix_mode,
enmd->mix_factor,
enmd->mix_limit,
dvert,
defgrp_index,
use_invert_vgroup,
positions,
verts_num,
edges,
edges_num,
loops,
loops_num,
polys,
polys_num);
}
MEM_SAFE_FREE(loop_normals);
result->runtime->is_original_bmesh = false;
return result;
}
static void initData(ModifierData *md)
{
NormalEditModifierData *enmd = (NormalEditModifierData *)md;
BLI_assert(MEMCMP_STRUCT_AFTER_IS_ZERO(enmd, modifier));
MEMCPY_STRUCT_AFTER(enmd, DNA_struct_default_get(NormalEditModifierData), modifier);
}
static void requiredDataMask(ModifierData *md, CustomData_MeshMasks *r_cddata_masks)
{
NormalEditModifierData *enmd = (NormalEditModifierData *)md;
r_cddata_masks->lmask |= CD_MASK_CUSTOMLOOPNORMAL;
/* Ask for vertexgroups if we need them. */
if (enmd->defgrp_name[0] != '\0') {
r_cddata_masks->vmask |= CD_MASK_MDEFORMVERT;
}
}
static bool dependsOnNormals(ModifierData * /*md*/)
{
return true;
}
static void foreachIDLink(ModifierData *md, Object *ob, IDWalkFunc walk, void *userData)
{
NormalEditModifierData *enmd = (NormalEditModifierData *)md;
walk(userData, ob, (ID **)&enmd->target, IDWALK_CB_NOP);
}
static bool isDisabled(const struct Scene * /*scene*/, ModifierData *md, bool /*useRenderParams*/)
{
NormalEditModifierData *enmd = (NormalEditModifierData *)md;
return !is_valid_target(enmd);
}
static void updateDepsgraph(ModifierData *md, const ModifierUpdateDepsgraphContext *ctx)
{
NormalEditModifierData *enmd = (NormalEditModifierData *)md;
if (enmd->target) {
DEG_add_object_relation(ctx->node, enmd->target, DEG_OB_COMP_TRANSFORM, "NormalEdit Modifier");
DEG_add_depends_on_transform_relation(ctx->node, "NormalEdit Modifier");
}
}
static Mesh *modifyMesh(ModifierData *md, const ModifierEvalContext *ctx, Mesh *mesh)
{
return normalEditModifier_do((NormalEditModifierData *)md, ctx, ctx->object, mesh);
}
static void panel_draw(const bContext * /*C*/, Panel *panel)
{
uiLayout *col;
uiLayout *layout = panel->layout;
PointerRNA ob_ptr;
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, &ob_ptr);
int mode = RNA_enum_get(ptr, "mode");
uiItemR(layout, ptr, "mode", UI_ITEM_R_EXPAND, nullptr, ICON_NONE);
uiLayoutSetPropSep(layout, true);
uiItemR(layout, ptr, "target", 0, nullptr, ICON_NONE);
col = uiLayoutColumn(layout, false);
uiLayoutSetActive(col, mode == MOD_NORMALEDIT_MODE_DIRECTIONAL);
uiItemR(col, ptr, "use_direction_parallel", 0, nullptr, ICON_NONE);
modifier_panel_end(layout, ptr);
}
/* This panel could be open by default, but it isn't currently. */
static void mix_mode_panel_draw(const bContext * /*C*/, Panel *panel)
{
uiLayout *row;
uiLayout *layout = panel->layout;
PointerRNA ob_ptr;
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, &ob_ptr);
uiLayoutSetPropSep(layout, true);
uiItemR(layout, ptr, "mix_mode", 0, nullptr, ICON_NONE);
uiItemR(layout, ptr, "mix_factor", 0, nullptr, ICON_NONE);
modifier_vgroup_ui(layout, ptr, &ob_ptr, "vertex_group", "invert_vertex_group", nullptr);
row = uiLayoutRow(layout, true);
uiItemR(row, ptr, "mix_limit", 0, nullptr, ICON_NONE);
uiItemR(row,
ptr,
"no_polynors_fix",
0,
"",
(RNA_boolean_get(ptr, "no_polynors_fix") ? ICON_LOCKED : ICON_UNLOCKED));
}
static void offset_panel_draw(const bContext * /*C*/, Panel *panel)
{
uiLayout *layout = panel->layout;
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, nullptr);
int mode = RNA_enum_get(ptr, "mode");
PointerRNA target_ptr = RNA_pointer_get(ptr, "target");
bool needs_object_offset = (mode == MOD_NORMALEDIT_MODE_RADIAL &&
RNA_pointer_is_null(&target_ptr)) ||
(mode == MOD_NORMALEDIT_MODE_DIRECTIONAL &&
RNA_boolean_get(ptr, "use_direction_parallel"));
uiLayoutSetPropSep(layout, true);
uiLayoutSetActive(layout, needs_object_offset);
uiItemR(layout, ptr, "offset", 0, nullptr, ICON_NONE);
}
static void panelRegister(ARegionType *region_type)
{
PanelType *panel_type = modifier_panel_register(
region_type, eModifierType_NormalEdit, panel_draw);
modifier_subpanel_register(region_type, "mix", "Mix", nullptr, mix_mode_panel_draw, panel_type);
modifier_subpanel_register(
region_type, "offset", "Offset", nullptr, offset_panel_draw, panel_type);
}
ModifierTypeInfo modifierType_NormalEdit = {
/* name */ N_("NormalEdit"),
/* structName */ "NormalEditModifierData",
/* structSize */ sizeof(NormalEditModifierData),
/* srna */ &RNA_NormalEditModifier,
/* type */ eModifierTypeType_Constructive,
/* flags */ eModifierTypeFlag_AcceptsMesh | eModifierTypeFlag_SupportsMapping |
eModifierTypeFlag_SupportsEditmode | eModifierTypeFlag_EnableInEditmode,
/* icon */ ICON_MOD_NORMALEDIT,
/* copyData */ BKE_modifier_copydata_generic,
/* deformVerts */ nullptr,
/* deformMatrices */ nullptr,
/* deformVertsEM */ nullptr,
/* deformMatricesEM */ nullptr,
/* modifyMesh */ modifyMesh,
/* modifyGeometrySet */ nullptr,
/* initData */ initData,
/* requiredDataMask */ requiredDataMask,
/* freeData */ nullptr,
/* isDisabled */ isDisabled,
/* updateDepsgraph */ updateDepsgraph,
/* dependsOnTime */ nullptr,
/* dependsOnNormals */ dependsOnNormals,
/* foreachIDLink */ foreachIDLink,
/* foreachTexLink */ nullptr,
/* freeRuntimeData */ nullptr,
/* panelRegister */ panelRegister,
/* blendWrite */ nullptr,
/* blendRead */ nullptr,
};