804 lines
20 KiB
Plaintext
804 lines
20 KiB
Plaintext
/*
|
|
* Copyright 2011-2013 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "node_noise.h"
|
|
#include "stdcycles.h"
|
|
#include "vector2.h"
|
|
#include "vector4.h"
|
|
|
|
#define vector3 point
|
|
|
|
/* 1D Musgrave fBm
|
|
*
|
|
* H: fractal increment parameter
|
|
* lacunarity: gap between successive frequencies
|
|
* octaves: number of frequencies in the fBm
|
|
*
|
|
* from "Texturing and Modelling: A procedural approach"
|
|
*/
|
|
|
|
float noise_musgrave_fBm_1d(float co, float H, float lacunarity, float octaves)
|
|
{
|
|
float p = co;
|
|
float value = 0.0;
|
|
float pwr = 1.0;
|
|
float pwHL = pow(lacunarity, -H);
|
|
|
|
for (int i = 0; i < (int)octaves; i++) {
|
|
value += safe_snoise(p) * pwr;
|
|
pwr *= pwHL;
|
|
p *= lacunarity;
|
|
}
|
|
|
|
float rmd = octaves - floor(octaves);
|
|
if (rmd != 0.0) {
|
|
value += rmd * safe_snoise(p) * pwr;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/* 1D Musgrave Multifractal
|
|
*
|
|
* H: highest fractal dimension
|
|
* lacunarity: gap between successive frequencies
|
|
* octaves: number of frequencies in the fBm
|
|
*/
|
|
|
|
float noise_musgrave_multi_fractal_1d(float co, float H, float lacunarity, float octaves)
|
|
{
|
|
float p = co;
|
|
float value = 1.0;
|
|
float pwr = 1.0;
|
|
float pwHL = pow(lacunarity, -H);
|
|
|
|
for (int i = 0; i < (int)octaves; i++) {
|
|
value *= (pwr * safe_snoise(p) + 1.0);
|
|
pwr *= pwHL;
|
|
p *= lacunarity;
|
|
}
|
|
|
|
float rmd = octaves - floor(octaves);
|
|
if (rmd != 0.0) {
|
|
value *= (rmd * pwr * safe_snoise(p) + 1.0); /* correct? */
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/* 1D Musgrave Heterogeneous Terrain
|
|
*
|
|
* H: fractal dimension of the roughest area
|
|
* lacunarity: gap between successive frequencies
|
|
* octaves: number of frequencies in the fBm
|
|
* offset: raises the terrain from `sea level'
|
|
*/
|
|
|
|
float noise_musgrave_hetero_terrain_1d(
|
|
float co, float H, float lacunarity, float octaves, float offset)
|
|
{
|
|
float p = co;
|
|
float pwHL = pow(lacunarity, -H);
|
|
float pwr = pwHL;
|
|
|
|
/* first unscaled octave of function; later octaves are scaled */
|
|
float value = offset + safe_snoise(p);
|
|
p *= lacunarity;
|
|
|
|
for (int i = 1; i < (int)octaves; i++) {
|
|
float increment = (safe_snoise(p) + offset) * pwr * value;
|
|
value += increment;
|
|
pwr *= pwHL;
|
|
p *= lacunarity;
|
|
}
|
|
|
|
float rmd = octaves - floor(octaves);
|
|
if (rmd != 0.0) {
|
|
float increment = (safe_snoise(p) + offset) * pwr * value;
|
|
value += rmd * increment;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/* 1D Hybrid Additive/Multiplicative Multifractal Terrain
|
|
*
|
|
* H: fractal dimension of the roughest area
|
|
* lacunarity: gap between successive frequencies
|
|
* octaves: number of frequencies in the fBm
|
|
* offset: raises the terrain from `sea level'
|
|
*/
|
|
|
|
float noise_musgrave_hybrid_multi_fractal_1d(
|
|
float co, float H, float lacunarity, float octaves, float offset, float gain)
|
|
{
|
|
float p = co;
|
|
float pwHL = pow(lacunarity, -H);
|
|
float pwr = pwHL;
|
|
|
|
float value = safe_snoise(p) + offset;
|
|
float weight = gain * value;
|
|
p *= lacunarity;
|
|
|
|
for (int i = 1; (weight > 0.001) && (i < (int)octaves); i++) {
|
|
if (weight > 1.0) {
|
|
weight = 1.0;
|
|
}
|
|
|
|
float signal = (safe_snoise(p) + offset) * pwr;
|
|
pwr *= pwHL;
|
|
value += weight * signal;
|
|
weight *= gain * signal;
|
|
p *= lacunarity;
|
|
}
|
|
|
|
float rmd = octaves - floor(octaves);
|
|
if (rmd != 0.0) {
|
|
value += rmd * ((safe_snoise(p) + offset) * pwr);
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/* 1D Ridged Multifractal Terrain
|
|
*
|
|
* H: fractal dimension of the roughest area
|
|
* lacunarity: gap between successive frequencies
|
|
* octaves: number of frequencies in the fBm
|
|
* offset: raises the terrain from `sea level'
|
|
*/
|
|
|
|
float noise_musgrave_ridged_multi_fractal_1d(
|
|
float co, float H, float lacunarity, float octaves, float offset, float gain)
|
|
{
|
|
float p = co;
|
|
float pwHL = pow(lacunarity, -H);
|
|
float pwr = pwHL;
|
|
|
|
float signal = offset - fabs(safe_snoise(p));
|
|
signal *= signal;
|
|
float value = signal;
|
|
float weight = 1.0;
|
|
|
|
for (int i = 1; i < (int)octaves; i++) {
|
|
p *= lacunarity;
|
|
weight = clamp(signal * gain, 0.0, 1.0);
|
|
signal = offset - fabs(safe_snoise(p));
|
|
signal *= signal;
|
|
signal *= weight;
|
|
value += signal * pwr;
|
|
pwr *= pwHL;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/* 2D Musgrave fBm
|
|
*
|
|
* H: fractal increment parameter
|
|
* lacunarity: gap between successive frequencies
|
|
* octaves: number of frequencies in the fBm
|
|
*
|
|
* from "Texturing and Modelling: A procedural approach"
|
|
*/
|
|
|
|
float noise_musgrave_fBm_2d(vector2 co, float H, float lacunarity, float octaves)
|
|
{
|
|
vector2 p = co;
|
|
float value = 0.0;
|
|
float pwr = 1.0;
|
|
float pwHL = pow(lacunarity, -H);
|
|
|
|
for (int i = 0; i < (int)octaves; i++) {
|
|
value += safe_snoise(p) * pwr;
|
|
pwr *= pwHL;
|
|
p *= lacunarity;
|
|
}
|
|
|
|
float rmd = octaves - floor(octaves);
|
|
if (rmd != 0.0) {
|
|
value += rmd * safe_snoise(p) * pwr;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/* 2D Musgrave Multifractal
|
|
*
|
|
* H: highest fractal dimension
|
|
* lacunarity: gap between successive frequencies
|
|
* octaves: number of frequencies in the fBm
|
|
*/
|
|
|
|
float noise_musgrave_multi_fractal_2d(vector2 co, float H, float lacunarity, float octaves)
|
|
{
|
|
vector2 p = co;
|
|
float value = 1.0;
|
|
float pwr = 1.0;
|
|
float pwHL = pow(lacunarity, -H);
|
|
|
|
for (int i = 0; i < (int)octaves; i++) {
|
|
value *= (pwr * safe_snoise(p) + 1.0);
|
|
pwr *= pwHL;
|
|
p *= lacunarity;
|
|
}
|
|
|
|
float rmd = octaves - floor(octaves);
|
|
if (rmd != 0.0) {
|
|
value *= (rmd * pwr * safe_snoise(p) + 1.0); /* correct? */
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/* 2D Musgrave Heterogeneous Terrain
|
|
*
|
|
* H: fractal dimension of the roughest area
|
|
* lacunarity: gap between successive frequencies
|
|
* octaves: number of frequencies in the fBm
|
|
* offset: raises the terrain from `sea level'
|
|
*/
|
|
|
|
float noise_musgrave_hetero_terrain_2d(
|
|
vector2 co, float H, float lacunarity, float octaves, float offset)
|
|
{
|
|
vector2 p = co;
|
|
float pwHL = pow(lacunarity, -H);
|
|
float pwr = pwHL;
|
|
|
|
/* first unscaled octave of function; later octaves are scaled */
|
|
float value = offset + safe_snoise(p);
|
|
p *= lacunarity;
|
|
|
|
for (int i = 1; i < (int)octaves; i++) {
|
|
float increment = (safe_snoise(p) + offset) * pwr * value;
|
|
value += increment;
|
|
pwr *= pwHL;
|
|
p *= lacunarity;
|
|
}
|
|
|
|
float rmd = octaves - floor(octaves);
|
|
if (rmd != 0.0) {
|
|
float increment = (safe_snoise(p) + offset) * pwr * value;
|
|
value += rmd * increment;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/* 2D Hybrid Additive/Multiplicative Multifractal Terrain
|
|
*
|
|
* H: fractal dimension of the roughest area
|
|
* lacunarity: gap between successive frequencies
|
|
* octaves: number of frequencies in the fBm
|
|
* offset: raises the terrain from `sea level'
|
|
*/
|
|
|
|
float noise_musgrave_hybrid_multi_fractal_2d(
|
|
vector2 co, float H, float lacunarity, float octaves, float offset, float gain)
|
|
{
|
|
vector2 p = co;
|
|
float pwHL = pow(lacunarity, -H);
|
|
float pwr = pwHL;
|
|
|
|
float value = safe_snoise(p) + offset;
|
|
float weight = gain * value;
|
|
p *= lacunarity;
|
|
|
|
for (int i = 1; (weight > 0.001) && (i < (int)octaves); i++) {
|
|
if (weight > 1.0) {
|
|
weight = 1.0;
|
|
}
|
|
|
|
float signal = (safe_snoise(p) + offset) * pwr;
|
|
pwr *= pwHL;
|
|
value += weight * signal;
|
|
weight *= gain * signal;
|
|
p *= lacunarity;
|
|
}
|
|
|
|
float rmd = octaves - floor(octaves);
|
|
if (rmd != 0.0) {
|
|
value += rmd * ((safe_snoise(p) + offset) * pwr);
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/* 2D Ridged Multifractal Terrain
|
|
*
|
|
* H: fractal dimension of the roughest area
|
|
* lacunarity: gap between successive frequencies
|
|
* octaves: number of frequencies in the fBm
|
|
* offset: raises the terrain from `sea level'
|
|
*/
|
|
|
|
float noise_musgrave_ridged_multi_fractal_2d(
|
|
vector2 co, float H, float lacunarity, float octaves, float offset, float gain)
|
|
{
|
|
vector2 p = co;
|
|
float pwHL = pow(lacunarity, -H);
|
|
float pwr = pwHL;
|
|
|
|
float signal = offset - fabs(safe_snoise(p));
|
|
signal *= signal;
|
|
float value = signal;
|
|
float weight = 1.0;
|
|
|
|
for (int i = 1; i < (int)octaves; i++) {
|
|
p *= lacunarity;
|
|
weight = clamp(signal * gain, 0.0, 1.0);
|
|
signal = offset - fabs(safe_snoise(p));
|
|
signal *= signal;
|
|
signal *= weight;
|
|
value += signal * pwr;
|
|
pwr *= pwHL;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/* 3D Musgrave fBm
|
|
*
|
|
* H: fractal increment parameter
|
|
* lacunarity: gap between successive frequencies
|
|
* octaves: number of frequencies in the fBm
|
|
*
|
|
* from "Texturing and Modelling: A procedural approach"
|
|
*/
|
|
|
|
float noise_musgrave_fBm_3d(vector3 co, float H, float lacunarity, float octaves)
|
|
{
|
|
vector3 p = co;
|
|
float value = 0.0;
|
|
float pwr = 1.0;
|
|
float pwHL = pow(lacunarity, -H);
|
|
|
|
for (int i = 0; i < (int)octaves; i++) {
|
|
value += safe_snoise(p) * pwr;
|
|
pwr *= pwHL;
|
|
p *= lacunarity;
|
|
}
|
|
|
|
float rmd = octaves - floor(octaves);
|
|
if (rmd != 0.0) {
|
|
value += rmd * safe_snoise(p) * pwr;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/* 3D Musgrave Multifractal
|
|
*
|
|
* H: highest fractal dimension
|
|
* lacunarity: gap between successive frequencies
|
|
* octaves: number of frequencies in the fBm
|
|
*/
|
|
|
|
float noise_musgrave_multi_fractal_3d(vector3 co, float H, float lacunarity, float octaves)
|
|
{
|
|
vector3 p = co;
|
|
float value = 1.0;
|
|
float pwr = 1.0;
|
|
float pwHL = pow(lacunarity, -H);
|
|
|
|
for (int i = 0; i < (int)octaves; i++) {
|
|
value *= (pwr * safe_snoise(p) + 1.0);
|
|
pwr *= pwHL;
|
|
p *= lacunarity;
|
|
}
|
|
|
|
float rmd = octaves - floor(octaves);
|
|
if (rmd != 0.0) {
|
|
value *= (rmd * pwr * safe_snoise(p) + 1.0); /* correct? */
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/* 3D Musgrave Heterogeneous Terrain
|
|
*
|
|
* H: fractal dimension of the roughest area
|
|
* lacunarity: gap between successive frequencies
|
|
* octaves: number of frequencies in the fBm
|
|
* offset: raises the terrain from `sea level'
|
|
*/
|
|
|
|
float noise_musgrave_hetero_terrain_3d(
|
|
vector3 co, float H, float lacunarity, float octaves, float offset)
|
|
{
|
|
vector3 p = co;
|
|
float pwHL = pow(lacunarity, -H);
|
|
float pwr = pwHL;
|
|
|
|
/* first unscaled octave of function; later octaves are scaled */
|
|
float value = offset + safe_snoise(p);
|
|
p *= lacunarity;
|
|
|
|
for (int i = 1; i < (int)octaves; i++) {
|
|
float increment = (safe_snoise(p) + offset) * pwr * value;
|
|
value += increment;
|
|
pwr *= pwHL;
|
|
p *= lacunarity;
|
|
}
|
|
|
|
float rmd = octaves - floor(octaves);
|
|
if (rmd != 0.0) {
|
|
float increment = (safe_snoise(p) + offset) * pwr * value;
|
|
value += rmd * increment;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/* 3D Hybrid Additive/Multiplicative Multifractal Terrain
|
|
*
|
|
* H: fractal dimension of the roughest area
|
|
* lacunarity: gap between successive frequencies
|
|
* octaves: number of frequencies in the fBm
|
|
* offset: raises the terrain from `sea level'
|
|
*/
|
|
|
|
float noise_musgrave_hybrid_multi_fractal_3d(
|
|
vector3 co, float H, float lacunarity, float octaves, float offset, float gain)
|
|
{
|
|
vector3 p = co;
|
|
float pwHL = pow(lacunarity, -H);
|
|
float pwr = pwHL;
|
|
|
|
float value = safe_snoise(p) + offset;
|
|
float weight = gain * value;
|
|
p *= lacunarity;
|
|
|
|
for (int i = 1; (weight > 0.001) && (i < (int)octaves); i++) {
|
|
if (weight > 1.0) {
|
|
weight = 1.0;
|
|
}
|
|
|
|
float signal = (safe_snoise(p) + offset) * pwr;
|
|
pwr *= pwHL;
|
|
value += weight * signal;
|
|
weight *= gain * signal;
|
|
p *= lacunarity;
|
|
}
|
|
|
|
float rmd = octaves - floor(octaves);
|
|
if (rmd != 0.0) {
|
|
value += rmd * ((safe_snoise(p) + offset) * pwr);
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/* 3D Ridged Multifractal Terrain
|
|
*
|
|
* H: fractal dimension of the roughest area
|
|
* lacunarity: gap between successive frequencies
|
|
* octaves: number of frequencies in the fBm
|
|
* offset: raises the terrain from `sea level'
|
|
*/
|
|
|
|
float noise_musgrave_ridged_multi_fractal_3d(
|
|
vector3 co, float H, float lacunarity, float octaves, float offset, float gain)
|
|
{
|
|
vector3 p = co;
|
|
float pwHL = pow(lacunarity, -H);
|
|
float pwr = pwHL;
|
|
|
|
float signal = offset - fabs(safe_snoise(p));
|
|
signal *= signal;
|
|
float value = signal;
|
|
float weight = 1.0;
|
|
|
|
for (int i = 1; i < (int)octaves; i++) {
|
|
p *= lacunarity;
|
|
weight = clamp(signal * gain, 0.0, 1.0);
|
|
signal = offset - fabs(safe_snoise(p));
|
|
signal *= signal;
|
|
signal *= weight;
|
|
value += signal * pwr;
|
|
pwr *= pwHL;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/* 4D Musgrave fBm
|
|
*
|
|
* H: fractal increment parameter
|
|
* lacunarity: gap between successive frequencies
|
|
* octaves: number of frequencies in the fBm
|
|
*
|
|
* from "Texturing and Modelling: A procedural approach"
|
|
*/
|
|
|
|
float noise_musgrave_fBm_4d(vector4 co, float H, float lacunarity, float octaves)
|
|
{
|
|
vector4 p = co;
|
|
float value = 0.0;
|
|
float pwr = 1.0;
|
|
float pwHL = pow(lacunarity, -H);
|
|
|
|
for (int i = 0; i < (int)octaves; i++) {
|
|
value += safe_snoise(p) * pwr;
|
|
pwr *= pwHL;
|
|
p *= lacunarity;
|
|
}
|
|
|
|
float rmd = octaves - floor(octaves);
|
|
if (rmd != 0.0) {
|
|
value += rmd * safe_snoise(p) * pwr;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/* 4D Musgrave Multifractal
|
|
*
|
|
* H: highest fractal dimension
|
|
* lacunarity: gap between successive frequencies
|
|
* octaves: number of frequencies in the fBm
|
|
*/
|
|
|
|
float noise_musgrave_multi_fractal_4d(vector4 co, float H, float lacunarity, float octaves)
|
|
{
|
|
vector4 p = co;
|
|
float value = 1.0;
|
|
float pwr = 1.0;
|
|
float pwHL = pow(lacunarity, -H);
|
|
|
|
for (int i = 0; i < (int)octaves; i++) {
|
|
value *= (pwr * safe_snoise(p) + 1.0);
|
|
pwr *= pwHL;
|
|
p *= lacunarity;
|
|
}
|
|
|
|
float rmd = octaves - floor(octaves);
|
|
if (rmd != 0.0) {
|
|
value *= (rmd * pwr * safe_snoise(p) + 1.0); /* correct? */
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/* 4D Musgrave Heterogeneous Terrain
|
|
*
|
|
* H: fractal dimension of the roughest area
|
|
* lacunarity: gap between successive frequencies
|
|
* octaves: number of frequencies in the fBm
|
|
* offset: raises the terrain from `sea level'
|
|
*/
|
|
|
|
float noise_musgrave_hetero_terrain_4d(
|
|
vector4 co, float H, float lacunarity, float octaves, float offset)
|
|
{
|
|
vector4 p = co;
|
|
float pwHL = pow(lacunarity, -H);
|
|
float pwr = pwHL;
|
|
|
|
/* first unscaled octave of function; later octaves are scaled */
|
|
float value = offset + safe_snoise(p);
|
|
p *= lacunarity;
|
|
|
|
for (int i = 1; i < (int)octaves; i++) {
|
|
float increment = (safe_snoise(p) + offset) * pwr * value;
|
|
value += increment;
|
|
pwr *= pwHL;
|
|
p *= lacunarity;
|
|
}
|
|
|
|
float rmd = octaves - floor(octaves);
|
|
if (rmd != 0.0) {
|
|
float increment = (safe_snoise(p) + offset) * pwr * value;
|
|
value += rmd * increment;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/* 4D Hybrid Additive/Multiplicative Multifractal Terrain
|
|
*
|
|
* H: fractal dimension of the roughest area
|
|
* lacunarity: gap between successive frequencies
|
|
* octaves: number of frequencies in the fBm
|
|
* offset: raises the terrain from `sea level'
|
|
*/
|
|
|
|
float noise_musgrave_hybrid_multi_fractal_4d(
|
|
vector4 co, float H, float lacunarity, float octaves, float offset, float gain)
|
|
{
|
|
vector4 p = co;
|
|
float pwHL = pow(lacunarity, -H);
|
|
float pwr = pwHL;
|
|
|
|
float value = safe_snoise(p) + offset;
|
|
float weight = gain * value;
|
|
p *= lacunarity;
|
|
|
|
for (int i = 1; (weight > 0.001) && (i < (int)octaves); i++) {
|
|
if (weight > 1.0) {
|
|
weight = 1.0;
|
|
}
|
|
|
|
float signal = (safe_snoise(p) + offset) * pwr;
|
|
pwr *= pwHL;
|
|
value += weight * signal;
|
|
weight *= gain * signal;
|
|
p *= lacunarity;
|
|
}
|
|
|
|
float rmd = octaves - floor(octaves);
|
|
if (rmd != 0.0) {
|
|
value += rmd * ((safe_snoise(p) + offset) * pwr);
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/* 4D Ridged Multifractal Terrain
|
|
*
|
|
* H: fractal dimension of the roughest area
|
|
* lacunarity: gap between successive frequencies
|
|
* octaves: number of frequencies in the fBm
|
|
* offset: raises the terrain from `sea level'
|
|
*/
|
|
|
|
float noise_musgrave_ridged_multi_fractal_4d(
|
|
vector4 co, float H, float lacunarity, float octaves, float offset, float gain)
|
|
{
|
|
vector4 p = co;
|
|
float pwHL = pow(lacunarity, -H);
|
|
float pwr = pwHL;
|
|
|
|
float signal = offset - fabs(safe_snoise(p));
|
|
signal *= signal;
|
|
float value = signal;
|
|
float weight = 1.0;
|
|
|
|
for (int i = 1; i < (int)octaves; i++) {
|
|
p *= lacunarity;
|
|
weight = clamp(signal * gain, 0.0, 1.0);
|
|
signal = offset - fabs(safe_snoise(p));
|
|
signal *= signal;
|
|
signal *= weight;
|
|
value += signal * pwr;
|
|
pwr *= pwHL;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
shader node_musgrave_texture(
|
|
int use_mapping = 0,
|
|
matrix mapping = matrix(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
|
|
string type = "fBM",
|
|
string dimensions = "3D",
|
|
point Vector = P,
|
|
float W = 0.0,
|
|
float Dimension = 2.0,
|
|
float Scale = 5.0,
|
|
float Detail = 2.0,
|
|
float Lacunarity = 2.0,
|
|
float Offset = 0.0,
|
|
float Gain = 1.0,
|
|
output float Fac = 0.0)
|
|
{
|
|
float dimension = max(Dimension, 1e-5);
|
|
float octaves = clamp(Detail, 0.0, 16.0);
|
|
float lacunarity = max(Lacunarity, 1e-5);
|
|
|
|
vector3 s = Vector;
|
|
|
|
if (use_mapping)
|
|
s = transform(mapping, s);
|
|
|
|
if (dimensions == "1D") {
|
|
float p = W * Scale;
|
|
if (type == "multifractal") {
|
|
Fac = noise_musgrave_multi_fractal_1d(p, dimension, lacunarity, octaves);
|
|
}
|
|
else if (type == "fBM") {
|
|
Fac = noise_musgrave_fBm_1d(p, dimension, lacunarity, octaves);
|
|
}
|
|
else if (type == "hybrid_multifractal") {
|
|
Fac = noise_musgrave_hybrid_multi_fractal_1d(
|
|
p, dimension, lacunarity, octaves, Offset, Gain);
|
|
}
|
|
else if (type == "ridged_multifractal") {
|
|
Fac = noise_musgrave_ridged_multi_fractal_1d(
|
|
p, dimension, lacunarity, octaves, Offset, Gain);
|
|
}
|
|
else if (type == "hetero_terrain") {
|
|
Fac = noise_musgrave_hetero_terrain_1d(p, dimension, lacunarity, octaves, Offset);
|
|
}
|
|
else {
|
|
Fac = 0.0;
|
|
}
|
|
}
|
|
else if (dimensions == "2D") {
|
|
vector2 p = vector2(s[0], s[1]) * Scale;
|
|
if (type == "multifractal") {
|
|
Fac = noise_musgrave_multi_fractal_2d(p, dimension, lacunarity, octaves);
|
|
}
|
|
else if (type == "fBM") {
|
|
Fac = noise_musgrave_fBm_2d(p, dimension, lacunarity, octaves);
|
|
}
|
|
else if (type == "hybrid_multifractal") {
|
|
Fac = noise_musgrave_hybrid_multi_fractal_2d(
|
|
p, dimension, lacunarity, octaves, Offset, Gain);
|
|
}
|
|
else if (type == "ridged_multifractal") {
|
|
Fac = noise_musgrave_ridged_multi_fractal_2d(
|
|
p, dimension, lacunarity, octaves, Offset, Gain);
|
|
}
|
|
else if (type == "hetero_terrain") {
|
|
Fac = noise_musgrave_hetero_terrain_2d(p, dimension, lacunarity, octaves, Offset);
|
|
}
|
|
else {
|
|
Fac = 0.0;
|
|
}
|
|
}
|
|
else if (dimensions == "3D") {
|
|
vector3 p = s * Scale;
|
|
if (type == "multifractal") {
|
|
Fac = noise_musgrave_multi_fractal_3d(p, dimension, lacunarity, octaves);
|
|
}
|
|
else if (type == "fBM") {
|
|
Fac = noise_musgrave_fBm_3d(p, dimension, lacunarity, octaves);
|
|
}
|
|
else if (type == "hybrid_multifractal") {
|
|
Fac = noise_musgrave_hybrid_multi_fractal_3d(
|
|
p, dimension, lacunarity, octaves, Offset, Gain);
|
|
}
|
|
else if (type == "ridged_multifractal") {
|
|
Fac = noise_musgrave_ridged_multi_fractal_3d(
|
|
p, dimension, lacunarity, octaves, Offset, Gain);
|
|
}
|
|
else if (type == "hetero_terrain") {
|
|
Fac = noise_musgrave_hetero_terrain_3d(p, dimension, lacunarity, octaves, Offset);
|
|
}
|
|
else {
|
|
Fac = 0.0;
|
|
}
|
|
}
|
|
else if (dimensions == "4D") {
|
|
vector4 p = vector4(s[0], s[1], s[2], W) * Scale;
|
|
if (type == "multifractal") {
|
|
Fac = noise_musgrave_multi_fractal_4d(p, dimension, lacunarity, octaves);
|
|
}
|
|
else if (type == "fBM") {
|
|
Fac = noise_musgrave_fBm_4d(p, dimension, lacunarity, octaves);
|
|
}
|
|
else if (type == "hybrid_multifractal") {
|
|
Fac = noise_musgrave_hybrid_multi_fractal_4d(
|
|
p, dimension, lacunarity, octaves, Offset, Gain);
|
|
}
|
|
else if (type == "ridged_multifractal") {
|
|
Fac = noise_musgrave_ridged_multi_fractal_4d(
|
|
p, dimension, lacunarity, octaves, Offset, Gain);
|
|
}
|
|
else if (type == "hetero_terrain") {
|
|
Fac = noise_musgrave_hetero_terrain_4d(p, dimension, lacunarity, octaves, Offset);
|
|
}
|
|
else {
|
|
Fac = 0.0;
|
|
}
|
|
}
|
|
else {
|
|
Fac = 0.0;
|
|
}
|
|
}
|