These are the modifications: -With DRW modification we reduce the number of passes we need to populate. -Rename passes for consistent naming. -Reduce complexity in code compilation -Cleanup how renderpass accumulation passes are setup, using pass instances. -Make sculpt mode compatible with shadows -Make hair passes compatible with SSS -Error shader and lookdev materials now use standalone materials. -Support default shader (world and material) using a default nodetree internally. -Change BLEND_CLIP to be emulated by gpu nodetree. Making less shader variations. -Use BLI_memblock for cache memory allocation. -Renderpasses are handled by switching a UBO ref bind. One major hack in this patch is the use of modified pointer as ghash keys. This rely on the assumption that the keys will never overlap because the number of options per key will never be bigger than the pointed struct. The use of one single nodetree to support default material is also a bit hacky since it won't support concurent usage of this nodetree. (see EEVEE_shader_default_surface_nodetree) Another change is that objects with shader errors now appear solid magenta instead of shaded magenta. This is only because of code reuse purpose but could be changed if really needed. Reviewed By: jbakker Differential Revision: https://developer.blender.org/D7642
284 lines
8.5 KiB
GLSL
284 lines
8.5 KiB
GLSL
|
|
/* Based on Practical Realtime Strategies for Accurate Indirect Occlusion
|
|
* http://blog.selfshadow.com/publications/s2016-shading-course/activision/s2016_pbs_activision_occlusion.pdf
|
|
* http://blog.selfshadow.com/publications/s2016-shading-course/activision/s2016_pbs_activision_occlusion.pptx
|
|
*/
|
|
|
|
#if defined(MESH_SHADER)
|
|
# if !defined(USE_ALPHA_HASH)
|
|
# if !defined(DEPTH_SHADER)
|
|
# if !defined(USE_ALPHA_BLEND)
|
|
# define ENABLE_DEFERED_AO
|
|
# endif
|
|
# endif
|
|
# endif
|
|
#endif
|
|
|
|
#ifndef ENABLE_DEFERED_AO
|
|
# if defined(STEP_RESOLVE)
|
|
# define ENABLE_DEFERED_AO
|
|
# endif
|
|
#endif
|
|
|
|
#define MAX_PHI_STEP 32
|
|
#define MAX_SEARCH_ITER 32
|
|
#define MAX_LOD 6.0
|
|
|
|
#ifndef UTIL_TEX
|
|
# define UTIL_TEX
|
|
uniform sampler2DArray utilTex;
|
|
# define texelfetch_noise_tex(coord) texelFetch(utilTex, ivec3(ivec2(coord) % LUT_SIZE, 2.0), 0)
|
|
#endif /* UTIL_TEX */
|
|
|
|
uniform sampler2D horizonBuffer;
|
|
|
|
/* aoSettings flags */
|
|
#define USE_AO 1
|
|
#define USE_BENT_NORMAL 2
|
|
#define USE_DENOISE 4
|
|
|
|
vec4 pack_horizons(vec4 v)
|
|
{
|
|
return v * 0.5 + 0.5;
|
|
}
|
|
vec4 unpack_horizons(vec4 v)
|
|
{
|
|
return v * 2.0 - 1.0;
|
|
}
|
|
|
|
/* Returns maximum screen distance an AO ray can travel for a given view depth */
|
|
vec2 get_max_dir(float view_depth)
|
|
{
|
|
float homcco = ProjectionMatrix[2][3] * view_depth + ProjectionMatrix[3][3];
|
|
float max_dist = aoDistance / homcco;
|
|
return vec2(ProjectionMatrix[0][0], ProjectionMatrix[1][1]) * max_dist;
|
|
}
|
|
|
|
vec2 get_ao_dir(float jitter)
|
|
{
|
|
/* Only half a turn because we integrate in slices. */
|
|
jitter *= M_PI;
|
|
return vec2(cos(jitter), sin(jitter));
|
|
}
|
|
|
|
void get_max_horizon_grouped(vec4 co1, vec4 co2, vec3 x, float lod, inout float h)
|
|
{
|
|
int mip = int(lod) + hizMipOffset;
|
|
co1 *= mipRatio[mip].xyxy;
|
|
co2 *= mipRatio[mip].xyxy;
|
|
|
|
float depth1 = textureLod(maxzBuffer, co1.xy, floor(lod)).r;
|
|
float depth2 = textureLod(maxzBuffer, co1.zw, floor(lod)).r;
|
|
float depth3 = textureLod(maxzBuffer, co2.xy, floor(lod)).r;
|
|
float depth4 = textureLod(maxzBuffer, co2.zw, floor(lod)).r;
|
|
|
|
vec4 len, s_h;
|
|
|
|
vec3 s1 = get_view_space_from_depth(co1.xy, depth1); /* s View coordinate */
|
|
vec3 omega_s1 = s1 - x;
|
|
len.x = length(omega_s1);
|
|
s_h.x = omega_s1.z / len.x;
|
|
|
|
vec3 s2 = get_view_space_from_depth(co1.zw, depth2); /* s View coordinate */
|
|
vec3 omega_s2 = s2 - x;
|
|
len.y = length(omega_s2);
|
|
s_h.y = omega_s2.z / len.y;
|
|
|
|
vec3 s3 = get_view_space_from_depth(co2.xy, depth3); /* s View coordinate */
|
|
vec3 omega_s3 = s3 - x;
|
|
len.z = length(omega_s3);
|
|
s_h.z = omega_s3.z / len.z;
|
|
|
|
vec3 s4 = get_view_space_from_depth(co2.zw, depth4); /* s View coordinate */
|
|
vec3 omega_s4 = s4 - x;
|
|
len.w = length(omega_s4);
|
|
s_h.w = omega_s4.z / len.w;
|
|
|
|
/* Blend weight after half the aoDistance to fade artifacts */
|
|
vec4 blend = saturate((1.0 - len / aoDistance) * 2.0);
|
|
|
|
h = mix(h, max(h, s_h.x), blend.x);
|
|
h = mix(h, max(h, s_h.y), blend.y);
|
|
h = mix(h, max(h, s_h.z), blend.z);
|
|
h = mix(h, max(h, s_h.w), blend.w);
|
|
}
|
|
|
|
vec2 search_horizon_sweep(vec2 t_phi, vec3 pos, vec2 uvs, float jitter, vec2 max_dir)
|
|
{
|
|
max_dir *= max_v2(abs(t_phi));
|
|
|
|
/* Convert to pixel space. */
|
|
t_phi /= vec2(textureSize(maxzBuffer, 0));
|
|
|
|
/* Avoid division by 0 */
|
|
t_phi += vec2(1e-5);
|
|
|
|
jitter *= 0.25;
|
|
|
|
/* Compute end points */
|
|
vec2 corner1 = min(vec2(1.0) - uvs, max_dir); /* Top right */
|
|
vec2 corner2 = max(vec2(0.0) - uvs, -max_dir); /* Bottom left */
|
|
vec2 iter1 = corner1 / t_phi;
|
|
vec2 iter2 = corner2 / t_phi;
|
|
|
|
vec2 min_iter = max(-iter1, -iter2);
|
|
vec2 max_iter = max(iter1, iter2);
|
|
|
|
vec2 times = vec2(-min_v2(min_iter), min_v2(max_iter));
|
|
|
|
vec2 h = vec2(-1.0); /* init at cos(pi) */
|
|
|
|
/* This is freaking sexy optimized. */
|
|
for (float i = 0.0, ofs = 4.0, time = -1.0; i < MAX_SEARCH_ITER && time > times.x;
|
|
i++, time -= ofs, ofs = min(exp2(MAX_LOD) * 4.0, ofs + ofs * aoQuality)) {
|
|
vec4 t = max(times.xxxx, vec4(time) - (vec4(0.25, 0.5, 0.75, 1.0) - jitter) * ofs);
|
|
vec4 cos1 = uvs.xyxy + t_phi.xyxy * t.xxyy;
|
|
vec4 cos2 = uvs.xyxy + t_phi.xyxy * t.zzww;
|
|
float lod = min(MAX_LOD, max(i - jitter * 4.0, 0.0) * aoQuality);
|
|
get_max_horizon_grouped(cos1, cos2, pos, lod, h.y);
|
|
}
|
|
|
|
for (float i = 0.0, ofs = 4.0, time = 1.0; i < MAX_SEARCH_ITER && time < times.y;
|
|
i++, time += ofs, ofs = min(exp2(MAX_LOD) * 4.0, ofs + ofs * aoQuality)) {
|
|
vec4 t = min(times.yyyy, vec4(time) + (vec4(0.25, 0.5, 0.75, 1.0) - jitter) * ofs);
|
|
vec4 cos1 = uvs.xyxy + t_phi.xyxy * t.xxyy;
|
|
vec4 cos2 = uvs.xyxy + t_phi.xyxy * t.zzww;
|
|
float lod = min(MAX_LOD, max(i - jitter * 4.0, 0.0) * aoQuality);
|
|
get_max_horizon_grouped(cos1, cos2, pos, lod, h.x);
|
|
}
|
|
|
|
return h;
|
|
}
|
|
|
|
void integrate_slice(
|
|
vec3 normal, vec2 t_phi, vec2 horizons, inout float visibility, inout vec3 bent_normal)
|
|
{
|
|
/* Projecting Normal to Plane P defined by t_phi and omega_o */
|
|
vec3 np = vec3(t_phi.y, -t_phi.x, 0.0); /* Normal vector to Integration plane */
|
|
vec3 t = vec3(-t_phi, 0.0);
|
|
vec3 n_proj = normal - np * dot(np, normal);
|
|
float n_proj_len = max(1e-16, length(n_proj));
|
|
|
|
float cos_n = clamp(n_proj.z / n_proj_len, -1.0, 1.0);
|
|
float n = sign(dot(n_proj, t)) * fast_acos(cos_n); /* Angle between view vec and normal */
|
|
|
|
/* (Slide 54) */
|
|
vec2 h = fast_acos(horizons);
|
|
h.x = -h.x;
|
|
|
|
/* Clamping thetas (slide 58) */
|
|
h.x = n + max(h.x - n, -M_PI_2);
|
|
h.y = n + min(h.y - n, M_PI_2);
|
|
|
|
/* Solving inner integral */
|
|
vec2 h_2 = 2.0 * h;
|
|
vec2 vd = -cos(h_2 - n) + cos_n + h_2 * sin(n);
|
|
float vis = saturate((vd.x + vd.y) * 0.25 * n_proj_len);
|
|
|
|
visibility += vis;
|
|
|
|
/* O. Klehm, T. Ritschel, E. Eisemann, H.-P. Seidel
|
|
* Bent Normals and Cones in Screen-space
|
|
* Sec. 3.1 : Bent normals */
|
|
float b_angle = (h.x + h.y) * 0.5;
|
|
bent_normal += vec3(sin(b_angle) * -t_phi, cos(b_angle)) * vis;
|
|
}
|
|
|
|
void gtao_deferred(
|
|
vec3 normal, vec4 noise, float frag_depth, out float visibility, out vec3 bent_normal)
|
|
{
|
|
/* Fetch early, hide latency! */
|
|
vec4 horizons = texelFetch(horizonBuffer, ivec2(gl_FragCoord.xy), 0);
|
|
|
|
vec4 dirs;
|
|
dirs.xy = get_ao_dir(noise.x * 0.5);
|
|
dirs.zw = get_ao_dir(noise.x * 0.5 + 0.5);
|
|
|
|
bent_normal = normal * 1e-8;
|
|
visibility = 1e-8;
|
|
|
|
horizons = unpack_horizons(horizons);
|
|
|
|
integrate_slice(normal, dirs.xy, horizons.xy, visibility, bent_normal);
|
|
integrate_slice(normal, dirs.zw, horizons.zw, visibility, bent_normal);
|
|
|
|
bent_normal = normalize(bent_normal / visibility);
|
|
|
|
visibility *= 0.5; /* We integrated 2 slices. */
|
|
}
|
|
|
|
void gtao(vec3 normal, vec3 position, vec4 noise, out float visibility, out vec3 bent_normal)
|
|
{
|
|
vec2 uvs = get_uvs_from_view(position);
|
|
vec2 max_dir = get_max_dir(position.z);
|
|
vec2 dir = get_ao_dir(noise.x);
|
|
|
|
bent_normal = normal * 1e-8;
|
|
visibility = 1e-8;
|
|
|
|
/* Only trace in 2 directions. May lead to a darker result but since it's mostly for
|
|
* alpha blended objects that will have overdraw, we limit the performance impact. */
|
|
vec2 horizons = search_horizon_sweep(dir, position, uvs, noise.y, max_dir);
|
|
integrate_slice(normal, dir, horizons, visibility, bent_normal);
|
|
|
|
bent_normal = normalize(bent_normal / visibility);
|
|
}
|
|
|
|
/* Multibounce approximation base on surface albedo.
|
|
* Page 78 in the .pdf version. */
|
|
float gtao_multibounce(float visibility, vec3 albedo)
|
|
{
|
|
if (aoBounceFac == 0.0) {
|
|
return visibility;
|
|
}
|
|
|
|
/* Median luminance. Because Colored multibounce looks bad. */
|
|
float lum = dot(albedo, vec3(0.3333));
|
|
|
|
float a = 2.0404 * lum - 0.3324;
|
|
float b = -4.7951 * lum + 0.6417;
|
|
float c = 2.7552 * lum + 0.6903;
|
|
|
|
float x = visibility;
|
|
return max(x, ((x * a + b) * x + c) * x);
|
|
}
|
|
|
|
/* Use the right occlusion */
|
|
float occlusion_compute(vec3 N, vec3 vpos, float user_occlusion, vec4 rand, out vec3 bent_normal)
|
|
{
|
|
#ifndef USE_REFRACTION
|
|
if ((int(aoSettings) & USE_AO) != 0) {
|
|
float visibility;
|
|
vec3 vnor = mat3(ViewMatrix) * N;
|
|
|
|
# ifdef ENABLE_DEFERED_AO
|
|
gtao_deferred(vnor, rand, gl_FragCoord.z, visibility, bent_normal);
|
|
# else
|
|
gtao(vnor, vpos, rand, visibility, bent_normal);
|
|
# endif
|
|
|
|
/* Prevent some problems down the road. */
|
|
visibility = max(1e-3, visibility);
|
|
|
|
if ((int(aoSettings) & USE_BENT_NORMAL) != 0) {
|
|
/* The bent normal will show the facet look of the mesh. Try to minimize this. */
|
|
float mix_fac = visibility * visibility * visibility;
|
|
bent_normal = normalize(mix(bent_normal, vnor, mix_fac));
|
|
|
|
bent_normal = transform_direction(ViewMatrixInverse, bent_normal);
|
|
}
|
|
else {
|
|
bent_normal = N;
|
|
}
|
|
|
|
/* Scale by user factor */
|
|
visibility = pow(visibility, aoFactor);
|
|
|
|
return min(visibility, user_occlusion);
|
|
}
|
|
#endif
|
|
|
|
bent_normal = N;
|
|
return user_occlusion;
|
|
}
|