This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenkernel/intern/effect.c
Sergey Sharybin 86991fbcb0 Fixed render time regression in Blender Internal
It was caused by image threading safe commit and it was noticeable
only on really multi-core CPU (like dual-socket Xeon stations), was
not visible on core i7 machine.

The reason of slowdown was spinlock around image buffer referencing,
which lead to lots of cores waiting for single core and using image
buffer after it was referenced was not so much longer than doing
reference itself.

The most clear solution here seemed to be introducing Image Pool
which will contain list of loaded and referenced image buffers, so
all threads could skip lock if the pool is used for reading only.
Lock only needed in cases when buffer for requested image user is
missing in the pool. This lock will happen only once per image so
overall amount of locks is much less that it was before.

To operate with pool:
- BKE_image_pool_new() creates new pool
- BKE_image_pool_free() destroys pool and dereferences all image
  buffers which were loaded to it
- BKE_image_pool_acquire_ibuf() returns image buffer for given
  image and user. Pool could be NULL and in this case fallback to
  BKE_image_acquire_ibuf will happen.

  This helps to avoid lots to if(poll) checks in image sampling
  code.

- BKE_image_pool_release_ibuf releases image buffer. In fact, it
  will only do something if pool is NULL, in all other case it'll
  equal to DoNothing operation.
2013-01-21 08:49:42 +00:00

1042 lines
28 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/effect.c
* \ingroup bke
*/
#include <stddef.h>
#include <math.h>
#include <stdlib.h>
#include "MEM_guardedalloc.h"
#include "DNA_curve_types.h"
#include "DNA_effect_types.h"
#include "DNA_group_types.h"
#include "DNA_ipo_types.h"
#include "DNA_key_types.h"
#include "DNA_lattice_types.h"
#include "DNA_listBase.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_material_types.h"
#include "DNA_object_types.h"
#include "DNA_object_force.h"
#include "DNA_particle_types.h"
#include "DNA_texture_types.h"
#include "DNA_scene_types.h"
#include "BLI_math.h"
#include "BLI_blenlib.h"
#include "BLI_noise.h"
#include "BLI_jitter.h"
#include "BLI_rand.h"
#include "BLI_utildefines.h"
#include "PIL_time.h"
#include "BKE_action.h"
#include "BKE_anim.h" /* needed for where_on_path */
#include "BKE_armature.h"
#include "BKE_blender.h"
#include "BKE_collision.h"
#include "BKE_constraint.h"
#include "BKE_deform.h"
#include "BKE_depsgraph.h"
#include "BKE_displist.h"
#include "BKE_DerivedMesh.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_effect.h"
#include "BKE_global.h"
#include "BKE_group.h"
#include "BKE_ipo.h"
#include "BKE_key.h"
#include "BKE_lattice.h"
#include "BKE_mesh.h"
#include "BKE_material.h"
#include "BKE_main.h"
#include "BKE_modifier.h"
#include "BKE_object.h"
#include "BKE_particle.h"
#include "BKE_scene.h"
#include "BKE_smoke.h"
#include "RE_render_ext.h"
#include "RE_shader_ext.h"
/* fluid sim particle import */
#ifdef WITH_MOD_FLUID
#include "DNA_object_fluidsim.h"
#include "LBM_fluidsim.h"
#include <zlib.h>
#include <string.h>
#endif // WITH_MOD_FLUID
EffectorWeights *BKE_add_effector_weights(Group *group)
{
EffectorWeights *weights = MEM_callocN(sizeof(EffectorWeights), "EffectorWeights");
int i;
for (i=0; i<NUM_PFIELD_TYPES; i++)
weights->weight[i] = 1.0f;
weights->global_gravity = 1.0f;
weights->group = group;
return weights;
}
PartDeflect *object_add_collision_fields(int type)
{
PartDeflect *pd;
pd= MEM_callocN(sizeof(PartDeflect), "PartDeflect");
pd->forcefield = type;
pd->pdef_sbdamp = 0.1f;
pd->pdef_sbift = 0.2f;
pd->pdef_sboft = 0.02f;
pd->seed = ((unsigned int)(ceil(PIL_check_seconds_timer()))+1) % 128;
pd->f_strength = 1.0f;
pd->f_damp = 1.0f;
/* set sensible defaults based on type */
switch (type) {
case PFIELD_VORTEX:
pd->shape = PFIELD_SHAPE_PLANE;
break;
case PFIELD_WIND:
pd->shape = PFIELD_SHAPE_PLANE;
pd->f_flow = 1.0f; /* realistic wind behavior */
break;
case PFIELD_TEXTURE:
pd->f_size = 1.0f;
break;
case PFIELD_SMOKEFLOW:
pd->f_flow = 1.0f;
break;
}
pd->flag = PFIELD_DO_LOCATION|PFIELD_DO_ROTATION;
return pd;
}
/* temporal struct, used for reading return of mesh_get_mapped_verts_nors() */
typedef struct VeNoCo {
float co[3], no[3];
} VeNoCo;
/* ***************** PARTICLES ***************** */
/* -------------------------- Effectors ------------------ */
void free_partdeflect(PartDeflect *pd)
{
if (!pd)
return;
if (pd->tex)
pd->tex->id.us--;
if (pd->rng)
BLI_rng_free(pd->rng);
MEM_freeN(pd);
}
static void precalculate_effector(EffectorCache *eff)
{
unsigned int cfra = (unsigned int)(eff->scene->r.cfra >= 0 ? eff->scene->r.cfra : -eff->scene->r.cfra);
if (!eff->pd->rng)
eff->pd->rng = BLI_rng_new(eff->pd->seed + cfra);
else
BLI_rng_srandom(eff->pd->rng, eff->pd->seed + cfra);
if (eff->pd->forcefield == PFIELD_GUIDE && eff->ob->type==OB_CURVE) {
Curve *cu= eff->ob->data;
if (cu->flag & CU_PATH) {
if (cu->path==NULL || cu->path->data==NULL)
BKE_displist_make_curveTypes(eff->scene, eff->ob, 0);
if (cu->path && cu->path->data) {
where_on_path(eff->ob, 0.0, eff->guide_loc, eff->guide_dir, NULL, &eff->guide_radius, NULL);
mul_m4_v3(eff->ob->obmat, eff->guide_loc);
mul_mat3_m4_v3(eff->ob->obmat, eff->guide_dir);
}
}
}
else if (eff->pd->shape == PFIELD_SHAPE_SURFACE) {
eff->surmd = (SurfaceModifierData *)modifiers_findByType ( eff->ob, eModifierType_Surface );
if (eff->ob->type == OB_CURVE)
eff->flag |= PE_USE_NORMAL_DATA;
}
else if (eff->psys)
psys_update_particle_tree(eff->psys, eff->scene->r.cfra);
/* Store object velocity */
if (eff->ob) {
float old_vel[3];
BKE_object_where_is_calc_time(eff->scene, eff->ob, cfra - 1.0f);
copy_v3_v3(old_vel, eff->ob->obmat[3]);
BKE_object_where_is_calc_time(eff->scene, eff->ob, cfra);
sub_v3_v3v3(eff->velocity, eff->ob->obmat[3], old_vel);
}
}
static EffectorCache *new_effector_cache(Scene *scene, Object *ob, ParticleSystem *psys, PartDeflect *pd)
{
EffectorCache *eff = MEM_callocN(sizeof(EffectorCache), "EffectorCache");
eff->scene = scene;
eff->ob = ob;
eff->psys = psys;
eff->pd = pd;
eff->frame = -1;
precalculate_effector(eff);
return eff;
}
static void add_object_to_effectors(ListBase **effectors, Scene *scene, EffectorWeights *weights, Object *ob, Object *ob_src)
{
EffectorCache *eff = NULL;
if ( ob == ob_src || weights->weight[ob->pd->forcefield] == 0.0f )
return;
if (ob->pd->shape == PFIELD_SHAPE_POINTS && !ob->derivedFinal )
return;
if (*effectors == NULL)
*effectors = MEM_callocN(sizeof(ListBase), "effectors list");
eff = new_effector_cache(scene, ob, NULL, ob->pd);
/* make sure imat is up to date */
invert_m4_m4(ob->imat, ob->obmat);
BLI_addtail(*effectors, eff);
}
static void add_particles_to_effectors(ListBase **effectors, Scene *scene, EffectorWeights *weights, Object *ob, ParticleSystem *psys, ParticleSystem *psys_src)
{
ParticleSettings *part= psys->part;
if ( !psys_check_enabled(ob, psys) )
return;
if ( psys == psys_src && (part->flag & PART_SELF_EFFECT) == 0)
return;
if ( part->pd && part->pd->forcefield && weights->weight[part->pd->forcefield] != 0.0f) {
if (*effectors == NULL)
*effectors = MEM_callocN(sizeof(ListBase), "effectors list");
BLI_addtail(*effectors, new_effector_cache(scene, ob, psys, part->pd));
}
if (part->pd2 && part->pd2->forcefield && weights->weight[part->pd2->forcefield] != 0.0f) {
if (*effectors == NULL)
*effectors = MEM_callocN(sizeof(ListBase), "effectors list");
BLI_addtail(*effectors, new_effector_cache(scene, ob, psys, part->pd2));
}
}
/* returns ListBase handle with objects taking part in the effecting */
ListBase *pdInitEffectors(Scene *scene, Object *ob_src, ParticleSystem *psys_src, EffectorWeights *weights)
{
Base *base;
unsigned int layer= ob_src->lay;
ListBase *effectors = NULL;
if (weights->group) {
GroupObject *go;
for (go= weights->group->gobject.first; go; go= go->next) {
if ( (go->ob->lay & layer) ) {
if ( go->ob->pd && go->ob->pd->forcefield )
add_object_to_effectors(&effectors, scene, weights, go->ob, ob_src);
if ( go->ob->particlesystem.first ) {
ParticleSystem *psys= go->ob->particlesystem.first;
for ( ; psys; psys=psys->next )
add_particles_to_effectors(&effectors, scene, weights, go->ob, psys, psys_src);
}
}
}
}
else {
for (base = scene->base.first; base; base= base->next) {
if ( (base->lay & layer) ) {
if ( base->object->pd && base->object->pd->forcefield )
add_object_to_effectors(&effectors, scene, weights, base->object, ob_src);
if ( base->object->particlesystem.first ) {
ParticleSystem *psys= base->object->particlesystem.first;
for ( ; psys; psys=psys->next )
add_particles_to_effectors(&effectors, scene, weights, base->object, psys, psys_src);
}
}
}
}
return effectors;
}
void pdEndEffectors(ListBase **effectors)
{
if (*effectors) {
EffectorCache *eff = (*effectors)->first;
for (; eff; eff=eff->next) {
if (eff->guide_data)
MEM_freeN(eff->guide_data);
}
BLI_freelistN(*effectors);
MEM_freeN(*effectors);
*effectors = NULL;
}
}
void pd_point_from_particle(ParticleSimulationData *sim, ParticleData *pa, ParticleKey *state, EffectedPoint *point)
{
ParticleSettings *part = sim->psys->part;
point->loc = state->co;
point->vel = state->vel;
point->index = pa - sim->psys->particles;
point->size = pa->size;
point->charge = 0.0f;
if (part->pd && part->pd->forcefield == PFIELD_CHARGE)
point->charge += part->pd->f_strength;
if (part->pd2 && part->pd2->forcefield == PFIELD_CHARGE)
point->charge += part->pd2->f_strength;
point->vel_to_sec = 1.0f;
point->vel_to_frame = psys_get_timestep(sim);
point->flag = 0;
if (sim->psys->part->flag & PART_ROT_DYN) {
point->ave = state->ave;
point->rot = state->rot;
}
else
point->ave = point->rot = NULL;
point->psys = sim->psys;
}
void pd_point_from_loc(Scene *scene, float *loc, float *vel, int index, EffectedPoint *point)
{
point->loc = loc;
point->vel = vel;
point->index = index;
point->size = 0.0f;
point->vel_to_sec = (float)scene->r.frs_sec;
point->vel_to_frame = 1.0f;
point->flag = 0;
point->ave = point->rot = NULL;
point->psys = NULL;
}
void pd_point_from_soft(Scene *scene, float *loc, float *vel, int index, EffectedPoint *point)
{
point->loc = loc;
point->vel = vel;
point->index = index;
point->size = 0.0f;
point->vel_to_sec = (float)scene->r.frs_sec;
point->vel_to_frame = 1.0f;
point->flag = PE_WIND_AS_SPEED;
point->ave = point->rot = NULL;
point->psys = NULL;
}
/************************************************/
/* Effectors */
/************************************************/
// triangle - ray callback function
static void eff_tri_ray_hit(void *UNUSED(userData), int UNUSED(index), const BVHTreeRay *UNUSED(ray), BVHTreeRayHit *hit)
{
/* whenever we hit a bounding box, we don't check further */
hit->dist = -1;
hit->index = 1;
}
// get visibility of a wind ray
static float eff_calc_visibility(ListBase *colliders, EffectorCache *eff, EffectorData *efd, EffectedPoint *point)
{
ListBase *colls = colliders;
ColliderCache *col;
float norm[3], len = 0.0;
float visibility = 1.0, absorption = 0.0;
if (!(eff->pd->flag & PFIELD_VISIBILITY))
return visibility;
if (!colls)
colls = get_collider_cache(eff->scene, eff->ob, NULL);
if (!colls)
return visibility;
negate_v3_v3(norm, efd->vec_to_point);
len = normalize_v3(norm);
/* check all collision objects */
for (col = colls->first; col; col = col->next) {
CollisionModifierData *collmd = col->collmd;
if (col->ob == eff->ob)
continue;
if (collmd->bvhtree) {
BVHTreeRayHit hit;
hit.index = -1;
hit.dist = len + FLT_EPSILON;
/* check if the way is blocked */
if (BLI_bvhtree_ray_cast(collmd->bvhtree, point->loc, norm, 0.0f, &hit, eff_tri_ray_hit, NULL)>=0) {
absorption= col->ob->pd->absorption;
/* visibility is only between 0 and 1, calculated from 1-absorption */
visibility *= CLAMPIS(1.0f-absorption, 0.0f, 1.0f);
if (visibility <= 0.0f)
break;
}
}
}
if (!colliders)
free_collider_cache(&colls);
return visibility;
}
// noise function for wind e.g.
static float wind_func(struct RNG *rng, float strength)
{
int random = (BLI_rng_get_int(rng)+1) % 128; // max 2357
float force = BLI_rng_get_float(rng) + 1.0f;
float ret;
float sign = 0;
sign = ((float)random > 64.0f) ? 1.0f: -1.0f; // dividing by 2 is not giving equal sign distribution
ret = sign*((float)random / force)*strength/128.0f;
return ret;
}
/* maxdist: zero effect from this distance outwards (if usemax) */
/* mindist: full effect up to this distance (if usemin) */
/* power: falloff with formula 1/r^power */
static float falloff_func(float fac, int usemin, float mindist, int usemax, float maxdist, float power)
{
/* first quick checks */
if (usemax && fac > maxdist)
return 0.0f;
if (usemin && fac < mindist)
return 1.0f;
if (!usemin)
mindist = 0.0;
return pow((double)(1.0f+fac-mindist), (double)(-power));
}
static float falloff_func_dist(PartDeflect *pd, float fac)
{
return falloff_func(fac, pd->flag&PFIELD_USEMIN, pd->mindist, pd->flag&PFIELD_USEMAX, pd->maxdist, pd->f_power);
}
static float falloff_func_rad(PartDeflect *pd, float fac)
{
return falloff_func(fac, pd->flag&PFIELD_USEMINR, pd->minrad, pd->flag&PFIELD_USEMAXR, pd->maxrad, pd->f_power_r);
}
float effector_falloff(EffectorCache *eff, EffectorData *efd, EffectedPoint *UNUSED(point), EffectorWeights *weights)
{
float temp[3];
float falloff = weights ? weights->weight[0] * weights->weight[eff->pd->forcefield] : 1.0f;
float fac, r_fac;
fac = dot_v3v3(efd->nor, efd->vec_to_point2);
if (eff->pd->zdir == PFIELD_Z_POS && fac < 0.0f)
falloff=0.0f;
else if (eff->pd->zdir == PFIELD_Z_NEG && fac > 0.0f)
falloff=0.0f;
else {
switch (eff->pd->falloff) {
case PFIELD_FALL_SPHERE:
falloff*= falloff_func_dist(eff->pd, efd->distance);
break;
case PFIELD_FALL_TUBE:
falloff*= falloff_func_dist(eff->pd, ABS(fac));
if (falloff == 0.0f)
break;
madd_v3_v3v3fl(temp, efd->vec_to_point, efd->nor, -fac);
r_fac= len_v3(temp);
falloff*= falloff_func_rad(eff->pd, r_fac);
break;
case PFIELD_FALL_CONE:
falloff*= falloff_func_dist(eff->pd, ABS(fac));
if (falloff == 0.0f)
break;
r_fac= RAD2DEGF(saacos(fac/len_v3(efd->vec_to_point)));
falloff*= falloff_func_rad(eff->pd, r_fac);
break;
}
}
return falloff;
}
int closest_point_on_surface(SurfaceModifierData *surmd, const float co[3], float surface_co[3], float surface_nor[3], float surface_vel[3])
{
BVHTreeNearest nearest;
nearest.index = -1;
nearest.dist = FLT_MAX;
BLI_bvhtree_find_nearest(surmd->bvhtree->tree, co, &nearest, surmd->bvhtree->nearest_callback, surmd->bvhtree);
if (nearest.index != -1) {
copy_v3_v3(surface_co, nearest.co);
if (surface_nor) {
copy_v3_v3(surface_nor, nearest.no);
}
if (surface_vel) {
MFace *mface = CDDM_get_tessface(surmd->dm, nearest.index);
copy_v3_v3(surface_vel, surmd->v[mface->v1].co);
add_v3_v3(surface_vel, surmd->v[mface->v2].co);
add_v3_v3(surface_vel, surmd->v[mface->v3].co);
if (mface->v4)
add_v3_v3(surface_vel, surmd->v[mface->v4].co);
mul_v3_fl(surface_vel, mface->v4 ? 0.25f : 0.333f);
}
return 1;
}
return 0;
}
int get_effector_data(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, int real_velocity)
{
float cfra = eff->scene->r.cfra;
int ret = 0;
if (eff->pd && eff->pd->shape==PFIELD_SHAPE_SURFACE && eff->surmd) {
/* closest point in the object surface is an effector */
float vec[3];
/* using velocity corrected location allows for easier sliding over effector surface */
copy_v3_v3(vec, point->vel);
mul_v3_fl(vec, point->vel_to_frame);
add_v3_v3(vec, point->loc);
ret = closest_point_on_surface(eff->surmd, vec, efd->loc, efd->nor, real_velocity ? efd->vel : NULL);
efd->size = 0.0f;
}
else if (eff->pd && eff->pd->shape==PFIELD_SHAPE_POINTS) {
if (eff->ob->derivedFinal) {
DerivedMesh *dm = eff->ob->derivedFinal;
dm->getVertCo(dm, *efd->index, efd->loc);
dm->getVertNo(dm, *efd->index, efd->nor);
mul_m4_v3(eff->ob->obmat, efd->loc);
mul_mat3_m4_v3(eff->ob->obmat, efd->nor);
normalize_v3(efd->nor);
efd->size = 0.0f;
/**/
ret = 1;
}
}
else if (eff->psys) {
ParticleData *pa = eff->psys->particles + *efd->index;
ParticleKey state;
/* exclude the particle itself for self effecting particles */
if (eff->psys == point->psys && *efd->index == point->index) {
/* pass */
}
else {
ParticleSimulationData sim= {NULL};
sim.scene= eff->scene;
sim.ob= eff->ob;
sim.psys= eff->psys;
/* TODO: time from actual previous calculated frame (step might not be 1) */
state.time = cfra - 1.0f;
ret = psys_get_particle_state(&sim, *efd->index, &state, 0);
/* TODO */
//if (eff->pd->forcefiled == PFIELD_HARMONIC && ret==0) {
// if (pa->dietime < eff->psys->cfra)
// eff->flag |= PE_VELOCITY_TO_IMPULSE;
//}
copy_v3_v3(efd->loc, state.co);
/* rather than use the velocity use rotated x-axis (defaults to velocity) */
efd->nor[0] = 1.f;
efd->nor[1] = efd->nor[2] = 0.f;
mul_qt_v3(state.rot, efd->nor);
if (real_velocity)
copy_v3_v3(efd->vel, state.vel);
efd->size = pa->size;
}
}
else {
/* use center of object for distance calculus */
Object *ob = eff->ob;
Object obcopy = *ob;
/* use z-axis as normal*/
normalize_v3_v3(efd->nor, ob->obmat[2]);
if (eff->pd && eff->pd->shape == PFIELD_SHAPE_PLANE) {
float temp[3], translate[3];
sub_v3_v3v3(temp, point->loc, ob->obmat[3]);
project_v3_v3v3(translate, temp, efd->nor);
/* for vortex the shape chooses between old / new force */
if (eff->pd->forcefield == PFIELD_VORTEX)
add_v3_v3v3(efd->loc, ob->obmat[3], translate);
else /* normally efd->loc is closest point on effector xy-plane */
sub_v3_v3v3(efd->loc, point->loc, translate);
}
else {
copy_v3_v3(efd->loc, ob->obmat[3]);
}
if (real_velocity)
copy_v3_v3(efd->vel, eff->velocity);
*eff->ob = obcopy;
efd->size = 0.0f;
ret = 1;
}
if (ret) {
sub_v3_v3v3(efd->vec_to_point, point->loc, efd->loc);
efd->distance = len_v3(efd->vec_to_point);
/* rest length for harmonic effector, will have to see later if this could be extended to other effectors */
if (eff->pd && eff->pd->forcefield == PFIELD_HARMONIC && eff->pd->f_size)
mul_v3_fl(efd->vec_to_point, (efd->distance-eff->pd->f_size)/efd->distance);
if (eff->flag & PE_USE_NORMAL_DATA) {
copy_v3_v3(efd->vec_to_point2, efd->vec_to_point);
copy_v3_v3(efd->nor2, efd->nor);
}
else {
/* for some effectors we need the object center every time */
sub_v3_v3v3(efd->vec_to_point2, point->loc, eff->ob->obmat[3]);
normalize_v3_v3(efd->nor2, eff->ob->obmat[2]);
}
}
return ret;
}
static void get_effector_tot(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, int *tot, int *p, int *step)
{
if (eff->pd->shape == PFIELD_SHAPE_POINTS) {
efd->index = p;
*p = 0;
*tot = eff->ob->derivedFinal ? eff->ob->derivedFinal->numVertData : 1;
if (*tot && eff->pd->forcefield == PFIELD_HARMONIC && point->index >= 0) {
*p = point->index % *tot;
*tot = *p+1;
}
}
else if (eff->psys) {
efd->index = p;
*p = 0;
*tot = eff->psys->totpart;
if (eff->pd->forcefield == PFIELD_CHARGE) {
/* Only the charge of the effected particle is used for
* interaction, not fall-offs. If the fall-offs aren't the
* same this will be unphysical, but for animation this
* could be the wanted behavior. If you want physical
* correctness the fall-off should be spherical 2.0 anyways.
*/
efd->charge = eff->pd->f_strength;
}
else if (eff->pd->forcefield == PFIELD_HARMONIC && (eff->pd->flag & PFIELD_MULTIPLE_SPRINGS)==0) {
/* every particle is mapped to only one harmonic effector particle */
*p= point->index % eff->psys->totpart;
*tot= *p + 1;
}
if (eff->psys->part->effector_amount) {
int totpart = eff->psys->totpart;
int amount = eff->psys->part->effector_amount;
*step = (totpart > amount) ? totpart/amount : 1;
}
}
else {
*p = 0;
*tot = 1;
}
}
static void do_texture_effector(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, float *total_force)
{
TexResult result[4];
float tex_co[3], strength, force[3];
float nabla = eff->pd->tex_nabla;
int hasrgb;
short mode = eff->pd->tex_mode;
if (!eff->pd->tex)
return;
result[0].nor = result[1].nor = result[2].nor = result[3].nor = NULL;
strength= eff->pd->f_strength * efd->falloff;
copy_v3_v3(tex_co, point->loc);
if (eff->pd->flag & PFIELD_TEX_2D) {
float fac=-dot_v3v3(tex_co, efd->nor);
madd_v3_v3fl(tex_co, efd->nor, fac);
}
if (eff->pd->flag & PFIELD_TEX_OBJECT) {
mul_m4_v3(eff->ob->imat, tex_co);
}
hasrgb = multitex_ext(eff->pd->tex, tex_co, NULL, NULL, 0, result, NULL);
if (hasrgb && mode==PFIELD_TEX_RGB) {
force[0] = (0.5f - result->tr) * strength;
force[1] = (0.5f - result->tg) * strength;
force[2] = (0.5f - result->tb) * strength;
}
else {
strength/=nabla;
tex_co[0] += nabla;
multitex_ext(eff->pd->tex, tex_co, NULL, NULL, 0, result+1, NULL);
tex_co[0] -= nabla;
tex_co[1] += nabla;
multitex_ext(eff->pd->tex, tex_co, NULL, NULL, 0, result+2, NULL);
tex_co[1] -= nabla;
tex_co[2] += nabla;
multitex_ext(eff->pd->tex, tex_co, NULL, NULL, 0, result+3, NULL);
if (mode == PFIELD_TEX_GRAD || !hasrgb) { /* if we don't have rgb fall back to grad */
/* generate intensity if texture only has rgb value */
if (hasrgb & TEX_RGB) {
int i;
for (i=0; i<4; i++)
result[i].tin = (1.0f / 3.0f) * (result[i].tr + result[i].tg + result[i].tb);
}
force[0] = (result[0].tin - result[1].tin) * strength;
force[1] = (result[0].tin - result[2].tin) * strength;
force[2] = (result[0].tin - result[3].tin) * strength;
}
else { /*PFIELD_TEX_CURL*/
float dbdy, dgdz, drdz, dbdx, dgdx, drdy;
dbdy = result[2].tb - result[0].tb;
dgdz = result[3].tg - result[0].tg;
drdz = result[3].tr - result[0].tr;
dbdx = result[1].tb - result[0].tb;
dgdx = result[1].tg - result[0].tg;
drdy = result[2].tr - result[0].tr;
force[0] = (dbdy - dgdz) * strength;
force[1] = (drdz - dbdx) * strength;
force[2] = (dgdx - drdy) * strength;
}
}
if (eff->pd->flag & PFIELD_TEX_2D) {
float fac = -dot_v3v3(force, efd->nor);
madd_v3_v3fl(force, efd->nor, fac);
}
add_v3_v3(total_force, force);
}
static void do_physical_effector(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, float *total_force)
{
PartDeflect *pd = eff->pd;
RNG *rng = pd->rng;
float force[3] = {0, 0, 0};
float temp[3];
float fac;
float strength = pd->f_strength;
float damp = pd->f_damp;
float noise_factor = pd->f_noise;
if (noise_factor > 0.0f) {
strength += wind_func(rng, noise_factor);
if (ELEM(pd->forcefield, PFIELD_HARMONIC, PFIELD_DRAG))
damp += wind_func(rng, noise_factor);
}
copy_v3_v3(force, efd->vec_to_point);
switch (pd->forcefield) {
case PFIELD_WIND:
copy_v3_v3(force, efd->nor);
mul_v3_fl(force, strength * efd->falloff);
break;
case PFIELD_FORCE:
normalize_v3(force);
mul_v3_fl(force, strength * efd->falloff);
break;
case PFIELD_VORTEX:
/* old vortex force */
if (pd->shape == PFIELD_SHAPE_POINT) {
cross_v3_v3v3(force, efd->nor, efd->vec_to_point);
normalize_v3(force);
mul_v3_fl(force, strength * efd->distance * efd->falloff);
}
else {
/* new vortex force */
cross_v3_v3v3(temp, efd->nor2, efd->vec_to_point2);
mul_v3_fl(temp, strength * efd->falloff);
cross_v3_v3v3(force, efd->nor2, temp);
mul_v3_fl(force, strength * efd->falloff);
madd_v3_v3fl(temp, point->vel, -point->vel_to_sec);
add_v3_v3(force, temp);
}
break;
case PFIELD_MAGNET:
if (eff->pd->shape == PFIELD_SHAPE_POINT)
/* magnetic field of a moving charge */
cross_v3_v3v3(temp, efd->nor, efd->vec_to_point);
else
copy_v3_v3(temp, efd->nor);
normalize_v3(temp);
mul_v3_fl(temp, strength * efd->falloff);
cross_v3_v3v3(force, point->vel, temp);
mul_v3_fl(force, point->vel_to_sec);
break;
case PFIELD_HARMONIC:
mul_v3_fl(force, -strength * efd->falloff);
copy_v3_v3(temp, point->vel);
mul_v3_fl(temp, -damp * 2.0f * (float)sqrt(fabs(strength)) * point->vel_to_sec);
add_v3_v3(force, temp);
break;
case PFIELD_CHARGE:
mul_v3_fl(force, point->charge * strength * efd->falloff);
break;
case PFIELD_LENNARDJ:
fac = pow((efd->size + point->size) / efd->distance, 6.0);
fac = - fac * (1.0f - fac) / efd->distance;
/* limit the repulsive term drastically to avoid huge forces */
fac = ((fac>2.0f) ? 2.0f : fac);
mul_v3_fl(force, strength * fac);
break;
case PFIELD_BOID:
/* Boid field is handled completely in boids code. */
return;
case PFIELD_TURBULENCE:
if (pd->flag & PFIELD_GLOBAL_CO) {
copy_v3_v3(temp, point->loc);
}
else {
add_v3_v3v3(temp, efd->vec_to_point2, efd->nor2);
}
force[0] = -1.0f + 2.0f * BLI_gTurbulence(pd->f_size, temp[0], temp[1], temp[2], 2, 0, 2);
force[1] = -1.0f + 2.0f * BLI_gTurbulence(pd->f_size, temp[1], temp[2], temp[0], 2, 0, 2);
force[2] = -1.0f + 2.0f * BLI_gTurbulence(pd->f_size, temp[2], temp[0], temp[1], 2, 0, 2);
mul_v3_fl(force, strength * efd->falloff);
break;
case PFIELD_DRAG:
copy_v3_v3(force, point->vel);
fac = normalize_v3(force) * point->vel_to_sec;
strength = MIN2(strength, 2.0f);
damp = MIN2(damp, 2.0f);
mul_v3_fl(force, -efd->falloff * fac * (strength * fac + damp));
break;
case PFIELD_SMOKEFLOW:
zero_v3(force);
if (pd->f_source) {
float density;
if ((density = smoke_get_velocity_at(pd->f_source, point->loc, force)) >= 0.0f) {
float influence = strength * efd->falloff;
if (pd->flag & PFIELD_SMOKE_DENSITY)
influence *= density;
mul_v3_fl(force, influence);
/* apply flow */
madd_v3_v3fl(total_force, point->vel, -pd->f_flow * influence);
}
}
break;
}
if (pd->flag & PFIELD_DO_LOCATION) {
madd_v3_v3fl(total_force, force, 1.0f/point->vel_to_sec);
if (ELEM3(pd->forcefield, PFIELD_HARMONIC, PFIELD_DRAG, PFIELD_SMOKEFLOW)==0 && pd->f_flow != 0.0f) {
madd_v3_v3fl(total_force, point->vel, -pd->f_flow * efd->falloff);
}
}
if (point->ave)
zero_v3(point->ave);
if (pd->flag & PFIELD_DO_ROTATION && point->ave && point->rot) {
float xvec[3] = {1.0f, 0.0f, 0.0f};
float dave[3];
mul_qt_v3(point->rot, xvec);
cross_v3_v3v3(dave, xvec, force);
if (pd->f_flow != 0.0f) {
madd_v3_v3fl(dave, point->ave, -pd->f_flow * efd->falloff);
}
add_v3_v3(point->ave, dave);
}
}
/* -------- pdDoEffectors() --------
* generic force/speed system, now used for particles and softbodies
* scene = scene where it runs in, for time and stuff
* lb = listbase with objects that take part in effecting
* opco = global coord, as input
* force = force accumulator
* speed = actual current speed which can be altered
* cur_time = "external" time in frames, is constant for static particles
* loc_time = "local" time in frames, range <0-1> for the lifetime of particle
* par_layer = layer the caller is in
* flags = only used for softbody wind now
* guide = old speed of particle
*/
void pdDoEffectors(ListBase *effectors, ListBase *colliders, EffectorWeights *weights, EffectedPoint *point, float *force, float *impulse)
{
/*
* Modifies the force on a particle according to its
* relation with the effector object
* Different kind of effectors include:
* Forcefields: Gravity-like attractor
* (force power is related to the inverse of distance to the power of a falloff value)
* Vortex fields: swirling effectors
* (particles rotate around Z-axis of the object. otherwise, same relation as)
* (Forcefields, but this is not done through a force/acceleration)
* Guide: particles on a path
* (particles are guided along a curve bezier or old nurbs)
* (is independent of other effectors)
*/
EffectorCache *eff;
EffectorData efd;
int p=0, tot = 1, step = 1;
/* Cycle through collected objects, get total of (1/(gravity_strength * dist^gravity_power)) */
/* Check for min distance here? (yes would be cool to add that, ton) */
if (effectors) for (eff = effectors->first; eff; eff=eff->next) {
/* object effectors were fully checked to be OK to evaluate! */
get_effector_tot(eff, &efd, point, &tot, &p, &step);
for (; p<tot; p+=step) {
if (get_effector_data(eff, &efd, point, 0)) {
efd.falloff= effector_falloff(eff, &efd, point, weights);
if (efd.falloff > 0.0f)
efd.falloff *= eff_calc_visibility(colliders, eff, &efd, point);
if (efd.falloff <= 0.0f) {
/* don't do anything */
}
else if (eff->pd->forcefield == PFIELD_TEXTURE) {
do_texture_effector(eff, &efd, point, force);
}
else {
float temp1[3] = {0, 0, 0}, temp2[3];
copy_v3_v3(temp1, force);
do_physical_effector(eff, &efd, point, force);
/* for softbody backward compatibility */
if (point->flag & PE_WIND_AS_SPEED && impulse) {
sub_v3_v3v3(temp2, force, temp1);
sub_v3_v3v3(impulse, impulse, temp2);
}
}
}
else if (eff->flag & PE_VELOCITY_TO_IMPULSE && impulse) {
/* special case for harmonic effector */
add_v3_v3v3(impulse, impulse, efd.vel);
}
}
}
}