This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenkernel/intern/mesh_mirror.cc
Hans Goudey dd9e1eded0 Mesh: Move sharp edge flag to generic attribute
Move the `ME_SHARP` flag for mesh edges to a generic boolean
attribute. This will help allow changing mesh edges to just a pair
of integers, giving performance improvements. In the future it could
also give benefits for normal calculation, which could more easily
check if all or no edges are marked sharp, which is helpful considering
the plans in T93551.

The attribute is generally only allocated when it's necessary. When
leaving edit mode, it will only be created if an edge is marked sharp.
The data can be edited with geometry nodes just like a regular edge
domain boolean attribute.

The attribute is named `sharp_edge`, aiming to reflect the similar
`select_edge` naming and to allow a future `sharp_face` name in
a separate commit.

Ref T95966

Differential Revision: https://developer.blender.org/D16921
2023-01-10 16:12:14 -05:00

495 lines
18 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright Blender Foundation. All rights reserved. */
/** \file
* \ingroup bke
*/
#include "BLI_math.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "BKE_deform.h"
#include "BKE_lib_id.h"
#include "BKE_lib_query.h"
#include "BKE_mesh.h"
#include "BKE_mesh_mirror.h"
#include "BKE_modifier.h"
#include "bmesh.h"
#include "bmesh_tools.h"
#include "MEM_guardedalloc.h"
#include "MOD_modifiertypes.h"
Mesh *BKE_mesh_mirror_bisect_on_mirror_plane_for_modifier(MirrorModifierData *mmd,
const Mesh *mesh,
int axis,
const float plane_co[3],
float plane_no[3])
{
bool do_bisect_flip_axis = ((axis == 0 && mmd->flag & MOD_MIR_BISECT_FLIP_AXIS_X) ||
(axis == 1 && mmd->flag & MOD_MIR_BISECT_FLIP_AXIS_Y) ||
(axis == 2 && mmd->flag & MOD_MIR_BISECT_FLIP_AXIS_Z));
const float bisect_distance = mmd->bisect_threshold;
Mesh *result;
BMesh *bm;
BMIter viter;
BMVert *v, *v_next;
BMeshCreateParams bmesh_create_params{false};
BMeshFromMeshParams bmesh_from_mesh_params{};
bmesh_from_mesh_params.calc_face_normal = true;
bmesh_from_mesh_params.calc_vert_normal = true;
bmesh_from_mesh_params.cd_mask_extra.vmask = CD_MASK_ORIGINDEX;
bmesh_from_mesh_params.cd_mask_extra.emask = CD_MASK_ORIGINDEX;
bmesh_from_mesh_params.cd_mask_extra.pmask = CD_MASK_ORIGINDEX;
bm = BKE_mesh_to_bmesh_ex(mesh, &bmesh_create_params, &bmesh_from_mesh_params);
/* Define bisecting plane (aka mirror plane). */
float plane[4];
if (!do_bisect_flip_axis) {
/* That reversed condition is a little weird, but for some reason that's how you keep
* the part of the mesh which is on the non-mirrored side when flip option is disabled.
* I think this is the expected behavior. */
negate_v3(plane_no);
}
plane_from_point_normal_v3(plane, plane_co, plane_no);
BM_mesh_bisect_plane(bm, plane, true, false, 0, 0, bisect_distance);
/* Plane definitions for vert killing. */
float plane_offset[4];
copy_v3_v3(plane_offset, plane);
plane_offset[3] = plane[3] - bisect_distance;
/* Delete verts across the mirror plane. */
BM_ITER_MESH_MUTABLE (v, v_next, &viter, bm, BM_VERTS_OF_MESH) {
if (plane_point_side_v3(plane_offset, v->co) > 0.0f) {
BM_vert_kill(bm, v);
}
}
result = BKE_mesh_from_bmesh_for_eval_nomain(bm, nullptr, mesh);
BM_mesh_free(bm);
return result;
}
void BKE_mesh_mirror_apply_mirror_on_axis(struct Main *bmain,
Mesh *mesh,
const int axis,
const float dist)
{
BMeshCreateParams bmesh_create_params{};
bmesh_create_params.use_toolflags = true;
BMeshFromMeshParams bmesh_from_mesh_params{};
bmesh_from_mesh_params.calc_face_normal = true;
bmesh_from_mesh_params.calc_vert_normal = true;
bmesh_from_mesh_params.cd_mask_extra.vmask = CD_MASK_SHAPEKEY;
BMesh *bm = BKE_mesh_to_bmesh_ex(mesh, &bmesh_create_params, &bmesh_from_mesh_params);
BMO_op_callf(bm,
(BMO_FLAG_DEFAULTS & ~BMO_FLAG_RESPECT_HIDE),
"symmetrize input=%avef direction=%i dist=%f use_shapekey=%b",
axis,
dist,
true);
BMeshToMeshParams bmesh_to_mesh_params{};
bmesh_to_mesh_params.calc_object_remap = true;
BM_mesh_bm_to_me(bmain, bm, mesh, &bmesh_to_mesh_params);
BM_mesh_free(bm);
}
Mesh *BKE_mesh_mirror_apply_mirror_on_axis_for_modifier(MirrorModifierData *mmd,
Object *ob,
const Mesh *mesh,
const int axis,
const bool use_correct_order_on_merge)
{
const float tolerance_sq = mmd->tolerance * mmd->tolerance;
const bool do_vtargetmap = (mmd->flag & MOD_MIR_NO_MERGE) == 0;
int tot_vtargetmap = 0; /* total merge vertices */
const bool do_bisect = ((axis == 0 && mmd->flag & MOD_MIR_BISECT_AXIS_X) ||
(axis == 1 && mmd->flag & MOD_MIR_BISECT_AXIS_Y) ||
(axis == 2 && mmd->flag & MOD_MIR_BISECT_AXIS_Z));
Mesh *result;
MEdge *me;
MLoop *ml;
MPoly *mp;
float mtx[4][4];
float plane_co[3], plane_no[3];
int i;
int a, totshape;
int *vtargetmap = nullptr, *vtmap_a = nullptr, *vtmap_b = nullptr;
/* mtx is the mirror transformation */
unit_m4(mtx);
mtx[axis][axis] = -1.0f;
Object *mirror_ob = mmd->mirror_ob;
if (mirror_ob != nullptr) {
float tmp[4][4];
float itmp[4][4];
/* tmp is a transform from coords relative to the object's own origin,
* to coords relative to the mirror object origin */
invert_m4_m4(tmp, mirror_ob->object_to_world);
mul_m4_m4m4(tmp, tmp, ob->object_to_world);
/* itmp is the reverse transform back to origin-relative coordinates */
invert_m4_m4(itmp, tmp);
/* combine matrices to get a single matrix that translates coordinates into
* mirror-object-relative space, does the mirror, and translates back to
* origin-relative space */
mul_m4_series(mtx, itmp, mtx, tmp);
if (do_bisect) {
copy_v3_v3(plane_co, itmp[3]);
copy_v3_v3(plane_no, itmp[axis]);
/* Account for non-uniform scale in `ob`, see: T87592. */
float ob_scale[3] = {
len_squared_v3(ob->object_to_world[0]),
len_squared_v3(ob->object_to_world[1]),
len_squared_v3(ob->object_to_world[2]),
};
/* Scale to avoid precision loss with extreme values. */
const float ob_scale_max = max_fff(UNPACK3(ob_scale));
if (LIKELY(ob_scale_max != 0.0f)) {
mul_v3_fl(ob_scale, 1.0f / ob_scale_max);
mul_v3_v3(plane_no, ob_scale);
}
}
}
else if (do_bisect) {
copy_v3_v3(plane_co, mtx[3]);
/* Need to negate here, since that axis is inverted (for mirror transform). */
negate_v3_v3(plane_no, mtx[axis]);
}
Mesh *mesh_bisect = nullptr;
if (do_bisect) {
mesh_bisect = BKE_mesh_mirror_bisect_on_mirror_plane_for_modifier(
mmd, mesh, axis, plane_co, plane_no);
mesh = mesh_bisect;
}
const int maxVerts = mesh->totvert;
const int maxEdges = mesh->totedge;
const int maxLoops = mesh->totloop;
const int maxPolys = mesh->totpoly;
result = BKE_mesh_new_nomain_from_template(
mesh, maxVerts * 2, maxEdges * 2, 0, maxLoops * 2, maxPolys * 2);
/* Copy custom-data to original geometry. */
CustomData_copy_data(&mesh->vdata, &result->vdata, 0, 0, maxVerts);
CustomData_copy_data(&mesh->edata, &result->edata, 0, 0, maxEdges);
CustomData_copy_data(&mesh->ldata, &result->ldata, 0, 0, maxLoops);
CustomData_copy_data(&mesh->pdata, &result->pdata, 0, 0, maxPolys);
/* Subdivision-surface for eg won't have mesh data in the custom-data arrays.
* Now add position/#MEdge/#MPoly layers. */
if (BKE_mesh_vert_positions(mesh) != NULL) {
memcpy(BKE_mesh_vert_positions_for_write(result),
BKE_mesh_vert_positions(mesh),
sizeof(float[3]) * mesh->totvert);
}
if (!CustomData_has_layer(&mesh->edata, CD_MEDGE)) {
memcpy(BKE_mesh_edges_for_write(result), BKE_mesh_edges(mesh), sizeof(MEdge) * mesh->totedge);
}
if (!CustomData_has_layer(&mesh->pdata, CD_MPOLY)) {
memcpy(BKE_mesh_loops_for_write(result), BKE_mesh_loops(mesh), sizeof(MLoop) * mesh->totloop);
memcpy(BKE_mesh_polys_for_write(result), BKE_mesh_polys(mesh), sizeof(MPoly) * mesh->totpoly);
}
/* Copy custom-data to new geometry,
* copy from itself because this data may have been created in the checks above. */
CustomData_copy_data(&result->vdata, &result->vdata, 0, maxVerts, maxVerts);
CustomData_copy_data(&result->edata, &result->edata, 0, maxEdges, maxEdges);
/* loops are copied later */
CustomData_copy_data(&result->pdata, &result->pdata, 0, maxPolys, maxPolys);
if (do_vtargetmap) {
/* second half is filled with -1 */
vtargetmap = static_cast<int *>(
MEM_malloc_arrayN(maxVerts, sizeof(int[2]), "MOD_mirror tarmap"));
vtmap_a = vtargetmap;
vtmap_b = vtargetmap + maxVerts;
}
/* mirror vertex coordinates */
float(*positions)[3] = BKE_mesh_vert_positions_for_write(result);
for (i = 0; i < maxVerts; i++) {
const int vert_index_prev = i;
const int vert_index = maxVerts + i;
mul_m4_v3(mtx, positions[vert_index]);
if (do_vtargetmap) {
/* Compare location of the original and mirrored vertex,
* to see if they should be mapped for merging.
*
* Always merge from the copied into the original vertices so it's possible to
* generate a 1:1 mapping by scanning vertices from the beginning of the array
* as is done in #BKE_editmesh_vert_coords_when_deformed. Without this,
* the coordinates returned will sometimes point to the copied vertex locations, see:
* T91444.
*
* However, such a change also affects non-versionable things like some modifiers binding, so
* we cannot enforce that behavior on existing modifiers, in which case we keep using the
* old, incorrect behavior of merging the source vertex into its copy.
*/
if (use_correct_order_on_merge) {
if (UNLIKELY(len_squared_v3v3(positions[vert_index_prev], positions[vert_index]) <
tolerance_sq)) {
*vtmap_b = i;
tot_vtargetmap++;
/* average location */
mid_v3_v3v3(positions[vert_index], positions[vert_index_prev], positions[vert_index]);
copy_v3_v3(positions[vert_index_prev], positions[vert_index]);
}
else {
*vtmap_b = -1;
}
/* Fill here to avoid 2x loops. */
*vtmap_a = -1;
}
else {
if (UNLIKELY(len_squared_v3v3(positions[vert_index_prev], positions[vert_index]) <
tolerance_sq)) {
*vtmap_a = maxVerts + i;
tot_vtargetmap++;
/* average location */
mid_v3_v3v3(positions[vert_index], positions[vert_index_prev], positions[vert_index]);
copy_v3_v3(positions[vert_index_prev], positions[vert_index]);
}
else {
*vtmap_a = -1;
}
/* Fill here to avoid 2x loops. */
*vtmap_b = -1;
}
vtmap_a++;
vtmap_b++;
}
}
/* handle shape keys */
totshape = CustomData_number_of_layers(&result->vdata, CD_SHAPEKEY);
for (a = 0; a < totshape; a++) {
float(*cos)[3] = static_cast<float(*)[3]>(
CustomData_get_layer_n(&result->vdata, CD_SHAPEKEY, a));
for (i = maxVerts; i < result->totvert; i++) {
mul_m4_v3(mtx, cos[i]);
}
}
/* adjust mirrored edge vertex indices */
me = BKE_mesh_edges_for_write(result) + maxEdges;
for (i = 0; i < maxEdges; i++, me++) {
me->v1 += maxVerts;
me->v2 += maxVerts;
}
/* adjust mirrored poly loopstart indices, and reverse loop order (normals) */
mp = BKE_mesh_polys_for_write(result) + maxPolys;
ml = BKE_mesh_loops_for_write(result);
for (i = 0; i < maxPolys; i++, mp++) {
MLoop *ml2;
int j, e;
/* reverse the loop, but we keep the first vertex in the face the same,
* to ensure that quads are split the same way as on the other side */
CustomData_copy_data(
&result->ldata, &result->ldata, mp->loopstart, mp->loopstart + maxLoops, 1);
for (j = 1; j < mp->totloop; j++) {
CustomData_copy_data(&result->ldata,
&result->ldata,
mp->loopstart + j,
mp->loopstart + maxLoops + mp->totloop - j,
1);
}
ml2 = ml + mp->loopstart + maxLoops;
e = ml2[0].e;
for (j = 0; j < mp->totloop - 1; j++) {
ml2[j].e = ml2[j + 1].e;
}
ml2[mp->totloop - 1].e = e;
mp->loopstart += maxLoops;
}
/* adjust mirrored loop vertex and edge indices */
ml = BKE_mesh_loops_for_write(result) + maxLoops;
for (i = 0; i < maxLoops; i++, ml++) {
ml->v += maxVerts;
ml->e += maxEdges;
}
/* handle uvs,
* let tessface recalc handle updating the MTFace data */
if (mmd->flag & (MOD_MIR_MIRROR_U | MOD_MIR_MIRROR_V) ||
(is_zero_v2(mmd->uv_offset_copy) == false)) {
const bool do_mirr_u = (mmd->flag & MOD_MIR_MIRROR_U) != 0;
const bool do_mirr_v = (mmd->flag & MOD_MIR_MIRROR_V) != 0;
/* If set, flip around center of each tile. */
const bool do_mirr_udim = (mmd->flag & MOD_MIR_MIRROR_UDIM) != 0;
const int totuv = CustomData_number_of_layers(&result->ldata, CD_PROP_FLOAT2);
for (a = 0; a < totuv; a++) {
float(*dmloopuv)[2] = static_cast<float(*)[2]>(
CustomData_get_layer_n(&result->ldata, CD_PROP_FLOAT2, a));
int j = maxLoops;
dmloopuv += j; /* second set of loops only */
for (; j-- > 0; dmloopuv++) {
if (do_mirr_u) {
float u = (*dmloopuv)[0];
if (do_mirr_udim) {
(*dmloopuv)[0] = ceilf(u) - fmodf(u, 1.0f) + mmd->uv_offset[0];
}
else {
(*dmloopuv)[0] = 1.0f - u + mmd->uv_offset[0];
}
}
if (do_mirr_v) {
float v = (*dmloopuv)[1];
if (do_mirr_udim) {
(*dmloopuv)[1] = ceilf(v) - fmodf(v, 1.0f) + mmd->uv_offset[1];
}
else {
(*dmloopuv)[1] = 1.0f - v + mmd->uv_offset[1];
}
}
(*dmloopuv)[0] += mmd->uv_offset_copy[0];
(*dmloopuv)[1] += mmd->uv_offset_copy[1];
}
}
}
/* handle custom split normals */
if (ob->type == OB_MESH && (((Mesh *)ob->data)->flag & ME_AUTOSMOOTH) &&
CustomData_has_layer(&result->ldata, CD_CUSTOMLOOPNORMAL)) {
const int totloop = result->totloop;
const int totpoly = result->totpoly;
float(*loop_normals)[3] = static_cast<float(*)[3]>(
MEM_calloc_arrayN(size_t(totloop), sizeof(*loop_normals), __func__));
CustomData *ldata = &result->ldata;
short(*clnors)[2] = static_cast<short(*)[2]>(CustomData_get_layer(ldata, CD_CUSTOMLOOPNORMAL));
MLoopNorSpaceArray lnors_spacearr = {nullptr};
/* The transform matrix of a normal must be
* the transpose of inverse of transform matrix of the geometry... */
float mtx_nor[4][4];
invert_m4_m4(mtx_nor, mtx);
transpose_m4(mtx_nor);
/* calculate custom normals into loop_normals, then mirror first half into second half */
const bool *sharp_edges = static_cast<const bool *>(
CustomData_get_layer_named(&mesh->edata, CD_PROP_BOOL, "sharp_edge"));
BKE_mesh_normals_loop_split(BKE_mesh_vert_positions(result),
BKE_mesh_vertex_normals_ensure(result),
result->totvert,
BKE_mesh_edges(result),
result->totedge,
BKE_mesh_loops(result),
loop_normals,
totloop,
BKE_mesh_polys(result),
BKE_mesh_poly_normals_ensure(result),
totpoly,
true,
mesh->smoothresh,
sharp_edges,
nullptr,
&lnors_spacearr,
clnors);
/* mirroring has to account for loops being reversed in polys in second half */
MPoly *result_polys = BKE_mesh_polys_for_write(result);
mp = result_polys;
for (i = 0; i < maxPolys; i++, mp++) {
MPoly *mpmirror = result_polys + maxPolys + i;
int j;
for (j = mp->loopstart; j < mp->loopstart + mp->totloop; j++) {
int mirrorj = mpmirror->loopstart;
if (j > mp->loopstart) {
mirrorj += mpmirror->totloop - (j - mp->loopstart);
}
copy_v3_v3(loop_normals[mirrorj], loop_normals[j]);
mul_m4_v3(mtx_nor, loop_normals[mirrorj]);
BKE_lnor_space_custom_normal_to_data(
lnors_spacearr.lspacearr[mirrorj], loop_normals[mirrorj], clnors[mirrorj]);
}
}
MEM_freeN(loop_normals);
BKE_lnor_spacearr_free(&lnors_spacearr);
}
/* handle vgroup stuff */
if (BKE_object_supports_vertex_groups(ob)) {
if ((mmd->flag & MOD_MIR_VGROUP) && CustomData_has_layer(&result->vdata, CD_MDEFORMVERT)) {
MDeformVert *dvert = BKE_mesh_deform_verts_for_write(result) + maxVerts;
int flip_map_len = 0;
int *flip_map = BKE_object_defgroup_flip_map(ob, false, &flip_map_len);
if (flip_map) {
for (i = 0; i < maxVerts; dvert++, i++) {
/* merged vertices get both groups, others get flipped */
if (use_correct_order_on_merge && do_vtargetmap && (vtargetmap[i + maxVerts] != -1)) {
BKE_defvert_flip_merged(dvert - maxVerts, flip_map, flip_map_len);
}
else if (!use_correct_order_on_merge && do_vtargetmap && (vtargetmap[i] != -1)) {
BKE_defvert_flip_merged(dvert, flip_map, flip_map_len);
}
else {
BKE_defvert_flip(dvert, flip_map, flip_map_len);
}
}
MEM_freeN(flip_map);
}
}
}
if (do_vtargetmap) {
/* slow - so only call if one or more merge verts are found,
* users may leave this on and not realize there is nothing to merge - campbell */
if (tot_vtargetmap) {
result = BKE_mesh_merge_verts(
result, vtargetmap, tot_vtargetmap, MESH_MERGE_VERTS_DUMP_IF_MAPPED);
}
MEM_freeN(vtargetmap);
}
if (mesh_bisect != nullptr) {
BKE_id_free(nullptr, mesh_bisect);
}
return result;
}