This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/intern/BLI_mempool.c
2019-08-01 14:02:41 +10:00

774 lines
20 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2008 by Blender Foundation.
* All rights reserved.
*/
/** \file
* \ingroup bli
*
* Simple, fast memory allocator for allocating many elements of the same size.
*
* Supports:
*
* - Freeing chunks.
* - Iterating over allocated chunks
* (optionally when using the #BLI_MEMPOOL_ALLOW_ITER flag).
*/
#include <string.h>
#include <stdlib.h>
#include "atomic_ops.h"
#include "BLI_utildefines.h"
#include "BLI_mempool.h" /* own include */
#include "MEM_guardedalloc.h"
#include "BLI_strict_flags.h" /* keep last */
#ifdef WITH_MEM_VALGRIND
# include "valgrind/memcheck.h"
#endif
/* note: copied from BLO_blend_defs.h, don't use here because we're in BLI */
#ifdef __BIG_ENDIAN__
/* Big Endian */
# define MAKE_ID(a, b, c, d) ((int)(a) << 24 | (int)(b) << 16 | (c) << 8 | (d))
# define MAKE_ID_8(a, b, c, d, e, f, g, h) \
((int64_t)(a) << 56 | (int64_t)(b) << 48 | (int64_t)(c) << 40 | (int64_t)(d) << 32 | \
(int64_t)(e) << 24 | (int64_t)(f) << 16 | (int64_t)(g) << 8 | (h))
#else
/* Little Endian */
# define MAKE_ID(a, b, c, d) ((int)(d) << 24 | (int)(c) << 16 | (b) << 8 | (a))
# define MAKE_ID_8(a, b, c, d, e, f, g, h) \
((int64_t)(h) << 56 | (int64_t)(g) << 48 | (int64_t)(f) << 40 | (int64_t)(e) << 32 | \
(int64_t)(d) << 24 | (int64_t)(c) << 16 | (int64_t)(b) << 8 | (a))
#endif
/**
* Important that this value is an is _not_ aligned with ``sizeof(void *)``.
* So having a pointer to 2/4/8... aligned memory is enough to ensure
* the freeword will never be used.
* To be safe, use a word that's the same in both directions.
*/
#define FREEWORD \
((sizeof(void *) > sizeof(int32_t)) ? MAKE_ID_8('e', 'e', 'r', 'f', 'f', 'r', 'e', 'e') : \
MAKE_ID('e', 'f', 'f', 'e'))
/**
* The 'used' word just needs to be set to something besides FREEWORD.
*/
#define USEDWORD MAKE_ID('u', 's', 'e', 'd')
/* currently totalloc isnt used */
// #define USE_TOTALLOC
/* optimize pool size */
#define USE_CHUNK_POW2
#ifndef NDEBUG
static bool mempool_debug_memset = false;
#endif
/**
* A free element from #BLI_mempool_chunk. Data is cast to this type and stored in
* #BLI_mempool.free as a single linked list, each item #BLI_mempool.esize large.
*
* Each element represents a block which BLI_mempool_alloc may return.
*/
typedef struct BLI_freenode {
struct BLI_freenode *next;
/** Used to identify this as a freed node. */
intptr_t freeword;
} BLI_freenode;
/**
* A chunk of memory in the mempool stored in
* #BLI_mempool.chunks as a double linked list.
*/
typedef struct BLI_mempool_chunk {
struct BLI_mempool_chunk *next;
} BLI_mempool_chunk;
/**
* The mempool, stores and tracks memory \a chunks and elements within those chunks \a free.
*/
struct BLI_mempool {
/** Single linked list of allocated chunks. */
BLI_mempool_chunk *chunks;
/** Keep a pointer to the last, so we can append new chunks there
* this is needed for iteration so we can loop over chunks in the order added. */
BLI_mempool_chunk *chunk_tail;
/** Element size in bytes. */
uint esize;
/** Chunk size in bytes. */
uint csize;
/** Number of elements per chunk. */
uint pchunk;
uint flag;
/* keeps aligned to 16 bits */
/** Free element list. Interleaved into chunk datas. */
BLI_freenode *free;
/** Use to know how many chunks to keep for #BLI_mempool_clear. */
uint maxchunks;
/** Number of elements currently in use. */
uint totused;
#ifdef USE_TOTALLOC
/** Number of elements allocated in total. */
uint totalloc;
#endif
};
#define MEMPOOL_ELEM_SIZE_MIN (sizeof(void *) * 2)
#define CHUNK_DATA(chunk) (CHECK_TYPE_INLINE(chunk, BLI_mempool_chunk *), (void *)((chunk) + 1))
#define NODE_STEP_NEXT(node) ((void *)((char *)(node) + esize))
#define NODE_STEP_PREV(node) ((void *)((char *)(node)-esize))
/** Extra bytes implicitly used for every chunk alloc. */
#define CHUNK_OVERHEAD (uint)(MEM_SIZE_OVERHEAD + sizeof(BLI_mempool_chunk))
#ifdef USE_CHUNK_POW2
static uint power_of_2_max_u(uint x)
{
x -= 1;
x = x | (x >> 1);
x = x | (x >> 2);
x = x | (x >> 4);
x = x | (x >> 8);
x = x | (x >> 16);
return x + 1;
}
#endif
BLI_INLINE BLI_mempool_chunk *mempool_chunk_find(BLI_mempool_chunk *head, uint index)
{
while (index-- && head) {
head = head->next;
}
return head;
}
/**
* \return the number of chunks to allocate based on how many elements are needed.
*
* \note for small pools 1 is a good default, the elements need to be initialized,
* adding overhead on creation which is redundant if they aren't used.
*/
BLI_INLINE uint mempool_maxchunks(const uint totelem, const uint pchunk)
{
return (totelem <= pchunk) ? 1 : ((totelem / pchunk) + 1);
}
static BLI_mempool_chunk *mempool_chunk_alloc(BLI_mempool *pool)
{
return MEM_mallocN(sizeof(BLI_mempool_chunk) + (size_t)pool->csize, "BLI_Mempool Chunk");
}
/**
* Initialize a chunk and add into \a pool->chunks
*
* \param pool: The pool to add the chunk into.
* \param mpchunk: The new uninitialized chunk (can be malloc'd)
* \param last_tail: The last element of the previous chunk
* (used when building free chunks initially)
* \return The last chunk,
*/
static BLI_freenode *mempool_chunk_add(BLI_mempool *pool,
BLI_mempool_chunk *mpchunk,
BLI_freenode *last_tail)
{
const uint esize = pool->esize;
BLI_freenode *curnode = CHUNK_DATA(mpchunk);
uint j;
/* append */
if (pool->chunk_tail) {
pool->chunk_tail->next = mpchunk;
}
else {
BLI_assert(pool->chunks == NULL);
pool->chunks = mpchunk;
}
mpchunk->next = NULL;
pool->chunk_tail = mpchunk;
if (UNLIKELY(pool->free == NULL)) {
pool->free = curnode;
}
/* loop through the allocated data, building the pointer structures */
j = pool->pchunk;
if (pool->flag & BLI_MEMPOOL_ALLOW_ITER) {
while (j--) {
curnode->next = NODE_STEP_NEXT(curnode);
curnode->freeword = FREEWORD;
curnode = curnode->next;
}
}
else {
while (j--) {
curnode->next = NODE_STEP_NEXT(curnode);
curnode = curnode->next;
}
}
/* terminate the list (rewind one)
* will be overwritten if 'curnode' gets passed in again as 'last_tail' */
curnode = NODE_STEP_PREV(curnode);
curnode->next = NULL;
#ifdef USE_TOTALLOC
pool->totalloc += pool->pchunk;
#endif
/* final pointer in the previously allocated chunk is wrong */
if (last_tail) {
last_tail->next = CHUNK_DATA(mpchunk);
}
return curnode;
}
static void mempool_chunk_free(BLI_mempool_chunk *mpchunk)
{
MEM_freeN(mpchunk);
}
static void mempool_chunk_free_all(BLI_mempool_chunk *mpchunk)
{
BLI_mempool_chunk *mpchunk_next;
for (; mpchunk; mpchunk = mpchunk_next) {
mpchunk_next = mpchunk->next;
mempool_chunk_free(mpchunk);
}
}
BLI_mempool *BLI_mempool_create(uint esize, uint totelem, uint pchunk, uint flag)
{
BLI_mempool *pool;
BLI_freenode *last_tail = NULL;
uint i, maxchunks;
/* allocate the pool structure */
pool = MEM_mallocN(sizeof(BLI_mempool), "memory pool");
/* set the elem size */
if (esize < (int)MEMPOOL_ELEM_SIZE_MIN) {
esize = (int)MEMPOOL_ELEM_SIZE_MIN;
}
if (flag & BLI_MEMPOOL_ALLOW_ITER) {
esize = MAX2(esize, (uint)sizeof(BLI_freenode));
}
maxchunks = mempool_maxchunks(totelem, pchunk);
pool->chunks = NULL;
pool->chunk_tail = NULL;
pool->esize = esize;
/* Optimize chunk size to powers of 2, accounting for slop-space. */
#ifdef USE_CHUNK_POW2
{
BLI_assert(power_of_2_max_u(pchunk * esize) > CHUNK_OVERHEAD);
pchunk = (power_of_2_max_u(pchunk * esize) - CHUNK_OVERHEAD) / esize;
}
#endif
pool->csize = esize * pchunk;
/* Ensure this is a power of 2, minus the rounding by element size. */
#if defined(USE_CHUNK_POW2) && !defined(NDEBUG)
{
uint final_size = (uint)MEM_SIZE_OVERHEAD + (uint)sizeof(BLI_mempool_chunk) + pool->csize;
BLI_assert(((uint)power_of_2_max_u(final_size) - final_size) < pool->esize);
}
#endif
pool->pchunk = pchunk;
pool->flag = flag;
pool->free = NULL; /* mempool_chunk_add assigns */
pool->maxchunks = maxchunks;
#ifdef USE_TOTALLOC
pool->totalloc = 0;
#endif
pool->totused = 0;
if (totelem) {
/* Allocate the actual chunks. */
for (i = 0; i < maxchunks; i++) {
BLI_mempool_chunk *mpchunk = mempool_chunk_alloc(pool);
last_tail = mempool_chunk_add(pool, mpchunk, last_tail);
}
}
#ifdef WITH_MEM_VALGRIND
VALGRIND_CREATE_MEMPOOL(pool, 0, false);
#endif
return pool;
}
void *BLI_mempool_alloc(BLI_mempool *pool)
{
BLI_freenode *free_pop;
if (UNLIKELY(pool->free == NULL)) {
/* Need to allocate a new chunk. */
BLI_mempool_chunk *mpchunk = mempool_chunk_alloc(pool);
mempool_chunk_add(pool, mpchunk, NULL);
}
free_pop = pool->free;
BLI_assert(pool->chunk_tail->next == NULL);
if (pool->flag & BLI_MEMPOOL_ALLOW_ITER) {
free_pop->freeword = USEDWORD;
}
pool->free = free_pop->next;
pool->totused++;
#ifdef WITH_MEM_VALGRIND
VALGRIND_MEMPOOL_ALLOC(pool, free_pop, pool->esize);
#endif
return (void *)free_pop;
}
void *BLI_mempool_calloc(BLI_mempool *pool)
{
void *retval = BLI_mempool_alloc(pool);
memset(retval, 0, (size_t)pool->esize);
return retval;
}
/**
* Free an element from the mempool.
*
* \note doesn't protect against double frees, take care!
*/
void BLI_mempool_free(BLI_mempool *pool, void *addr)
{
BLI_freenode *newhead = addr;
#ifndef NDEBUG
{
BLI_mempool_chunk *chunk;
bool found = false;
for (chunk = pool->chunks; chunk; chunk = chunk->next) {
if (ARRAY_HAS_ITEM((char *)addr, (char *)CHUNK_DATA(chunk), pool->csize)) {
found = true;
break;
}
}
if (!found) {
BLI_assert(!"Attempt to free data which is not in pool.\n");
}
}
/* Enable for debugging. */
if (UNLIKELY(mempool_debug_memset)) {
memset(addr, 255, pool->esize);
}
#endif
if (pool->flag & BLI_MEMPOOL_ALLOW_ITER) {
#ifndef NDEBUG
/* This will detect double free's. */
BLI_assert(newhead->freeword != FREEWORD);
#endif
newhead->freeword = FREEWORD;
}
newhead->next = pool->free;
pool->free = newhead;
pool->totused--;
#ifdef WITH_MEM_VALGRIND
VALGRIND_MEMPOOL_FREE(pool, addr);
#endif
/* Nothing is in use; free all the chunks except the first. */
if (UNLIKELY(pool->totused == 0) && (pool->chunks->next)) {
const uint esize = pool->esize;
BLI_freenode *curnode;
uint j;
BLI_mempool_chunk *first;
first = pool->chunks;
mempool_chunk_free_all(first->next);
first->next = NULL;
pool->chunk_tail = first;
#ifdef USE_TOTALLOC
pool->totalloc = pool->pchunk;
#endif
/* Temp alloc so valgrind doesn't complain when setting free'd blocks 'next'. */
#ifdef WITH_MEM_VALGRIND
VALGRIND_MEMPOOL_ALLOC(pool, CHUNK_DATA(first), pool->csize);
#endif
curnode = CHUNK_DATA(first);
pool->free = curnode;
j = pool->pchunk;
while (j--) {
curnode->next = NODE_STEP_NEXT(curnode);
curnode = curnode->next;
}
curnode = NODE_STEP_PREV(curnode);
curnode->next = NULL; /* terminate the list */
#ifdef WITH_MEM_VALGRIND
VALGRIND_MEMPOOL_FREE(pool, CHUNK_DATA(first));
#endif
}
}
int BLI_mempool_len(BLI_mempool *pool)
{
return (int)pool->totused;
}
void *BLI_mempool_findelem(BLI_mempool *pool, uint index)
{
BLI_assert(pool->flag & BLI_MEMPOOL_ALLOW_ITER);
if (index < pool->totused) {
/* We could have some faster mem chunk stepping code inline. */
BLI_mempool_iter iter;
void *elem;
BLI_mempool_iternew(pool, &iter);
for (elem = BLI_mempool_iterstep(&iter); index-- != 0; elem = BLI_mempool_iterstep(&iter)) {
/* pass */
}
return elem;
}
return NULL;
}
/**
* Fill in \a data with pointers to each element of the mempool,
* to create lookup table.
*
* \param pool: Pool to create a table from.
* \param data: array of pointers at least the size of 'pool->totused'
*/
void BLI_mempool_as_table(BLI_mempool *pool, void **data)
{
BLI_mempool_iter iter;
void *elem;
void **p = data;
BLI_assert(pool->flag & BLI_MEMPOOL_ALLOW_ITER);
BLI_mempool_iternew(pool, &iter);
while ((elem = BLI_mempool_iterstep(&iter))) {
*p++ = elem;
}
BLI_assert((uint)(p - data) == pool->totused);
}
/**
* A version of #BLI_mempool_as_table that allocates and returns the data.
*/
void **BLI_mempool_as_tableN(BLI_mempool *pool, const char *allocstr)
{
void **data = MEM_mallocN((size_t)pool->totused * sizeof(void *), allocstr);
BLI_mempool_as_table(pool, data);
return data;
}
/**
* Fill in \a data with the contents of the mempool.
*/
void BLI_mempool_as_array(BLI_mempool *pool, void *data)
{
const uint esize = pool->esize;
BLI_mempool_iter iter;
char *elem, *p = data;
BLI_assert(pool->flag & BLI_MEMPOOL_ALLOW_ITER);
BLI_mempool_iternew(pool, &iter);
while ((elem = BLI_mempool_iterstep(&iter))) {
memcpy(p, elem, (size_t)esize);
p = NODE_STEP_NEXT(p);
}
BLI_assert((uint)(p - (char *)data) == pool->totused * esize);
}
/**
* A version of #BLI_mempool_as_array that allocates and returns the data.
*/
void *BLI_mempool_as_arrayN(BLI_mempool *pool, const char *allocstr)
{
char *data = MEM_mallocN((size_t)(pool->totused * pool->esize), allocstr);
BLI_mempool_as_array(pool, data);
return data;
}
/**
* Initialize a new mempool iterator, #BLI_MEMPOOL_ALLOW_ITER flag must be set.
*/
void BLI_mempool_iternew(BLI_mempool *pool, BLI_mempool_iter *iter)
{
BLI_assert(pool->flag & BLI_MEMPOOL_ALLOW_ITER);
iter->pool = pool;
iter->curchunk = pool->chunks;
iter->curindex = 0;
iter->curchunk_threaded_shared = NULL;
}
/**
* Initialize an array of mempool iterators, #BLI_MEMPOOL_ALLOW_ITER flag must be set.
*
* This is used in threaded code, to generate as much iterators as needed
* (each task should have its own),
* such that each iterator goes over its own single chunk,
* and only getting the next chunk to iterate over has to be
* protected against concurrency (which can be done in a lockless way).
*
* To be used when creating a task for each single item in the pool is totally overkill.
*
* See BLI_task_parallel_mempool implementation for detailed usage example.
*/
BLI_mempool_iter *BLI_mempool_iter_threadsafe_create(BLI_mempool *pool, const size_t num_iter)
{
BLI_assert(pool->flag & BLI_MEMPOOL_ALLOW_ITER);
BLI_mempool_iter *iter_arr = MEM_mallocN(sizeof(*iter_arr) * num_iter, __func__);
BLI_mempool_chunk **curchunk_threaded_shared = MEM_mallocN(sizeof(void *), __func__);
BLI_mempool_iternew(pool, iter_arr);
*curchunk_threaded_shared = iter_arr->curchunk;
iter_arr->curchunk_threaded_shared = curchunk_threaded_shared;
for (size_t i = 1; i < num_iter; i++) {
iter_arr[i] = iter_arr[0];
*curchunk_threaded_shared = iter_arr[i].curchunk = ((*curchunk_threaded_shared) ?
(*curchunk_threaded_shared)->next :
NULL);
}
return iter_arr;
}
void BLI_mempool_iter_threadsafe_free(BLI_mempool_iter *iter_arr)
{
BLI_assert(iter_arr->curchunk_threaded_shared != NULL);
MEM_freeN(iter_arr->curchunk_threaded_shared);
MEM_freeN(iter_arr);
}
#if 0
/* unoptimized, more readable */
static void *bli_mempool_iternext(BLI_mempool_iter *iter)
{
void *ret = NULL;
if (iter->curchunk == NULL || !iter->pool->totused) {
return ret;
}
ret = ((char *)CHUNK_DATA(iter->curchunk)) + (iter->pool->esize * iter->curindex);
iter->curindex++;
if (iter->curindex == iter->pool->pchunk) {
iter->curindex = 0;
if (iter->curchunk_threaded_shared) {
while (1) {
iter->curchunk = *iter->curchunk_threaded_shared;
if (iter->curchunk == NULL) {
return ret;
}
if (atomic_cas_ptr((void **)iter->curchunk_threaded_shared,
iter->curchunk,
iter->curchunk->next) == iter->curchunk) {
break;
}
}
}
iter->curchunk = iter->curchunk->next;
}
return ret;
}
void *BLI_mempool_iterstep(BLI_mempool_iter *iter)
{
BLI_freenode *ret;
do {
ret = bli_mempool_iternext(iter);
} while (ret && ret->freeword == FREEWORD);
return ret;
}
#else
/* optimized version of code above */
/**
* Step over the iterator, returning the mempool item or NULL.
*/
void *BLI_mempool_iterstep(BLI_mempool_iter *iter)
{
if (UNLIKELY(iter->curchunk == NULL)) {
return NULL;
}
const uint esize = iter->pool->esize;
BLI_freenode *curnode = POINTER_OFFSET(CHUNK_DATA(iter->curchunk), (esize * iter->curindex));
BLI_freenode *ret;
do {
ret = curnode;
if (++iter->curindex != iter->pool->pchunk) {
curnode = POINTER_OFFSET(curnode, esize);
}
else {
iter->curindex = 0;
if (iter->curchunk_threaded_shared) {
for (iter->curchunk = *iter->curchunk_threaded_shared;
(iter->curchunk != NULL) && (atomic_cas_ptr((void **)iter->curchunk_threaded_shared,
iter->curchunk,
iter->curchunk->next) != iter->curchunk);
iter->curchunk = *iter->curchunk_threaded_shared) {
/* pass. */
}
if (UNLIKELY(iter->curchunk == NULL)) {
return (ret->freeword == FREEWORD) ? NULL : ret;
}
}
iter->curchunk = iter->curchunk->next;
if (UNLIKELY(iter->curchunk == NULL)) {
return (ret->freeword == FREEWORD) ? NULL : ret;
}
curnode = CHUNK_DATA(iter->curchunk);
}
} while (ret->freeword == FREEWORD);
return ret;
}
#endif
/**
* Empty the pool, as if it were just created.
*
* \param pool: The pool to clear.
* \param totelem_reserve: Optionally reserve how many items should be kept from clearing.
*/
void BLI_mempool_clear_ex(BLI_mempool *pool, const int totelem_reserve)
{
BLI_mempool_chunk *mpchunk;
BLI_mempool_chunk *mpchunk_next;
uint maxchunks;
BLI_mempool_chunk *chunks_temp;
BLI_freenode *last_tail = NULL;
#ifdef WITH_MEM_VALGRIND
VALGRIND_DESTROY_MEMPOOL(pool);
VALGRIND_CREATE_MEMPOOL(pool, 0, false);
#endif
if (totelem_reserve == -1) {
maxchunks = pool->maxchunks;
}
else {
maxchunks = mempool_maxchunks((uint)totelem_reserve, pool->pchunk);
}
/* Free all after 'pool->maxchunks'. */
mpchunk = mempool_chunk_find(pool->chunks, maxchunks - 1);
if (mpchunk && mpchunk->next) {
/* terminate */
mpchunk_next = mpchunk->next;
mpchunk->next = NULL;
mpchunk = mpchunk_next;
do {
mpchunk_next = mpchunk->next;
mempool_chunk_free(mpchunk);
} while ((mpchunk = mpchunk_next));
}
/* re-initialize */
pool->free = NULL;
pool->totused = 0;
#ifdef USE_TOTALLOC
pool->totalloc = 0;
#endif
chunks_temp = pool->chunks;
pool->chunks = NULL;
pool->chunk_tail = NULL;
while ((mpchunk = chunks_temp)) {
chunks_temp = mpchunk->next;
last_tail = mempool_chunk_add(pool, mpchunk, last_tail);
}
}
/**
* Wrap #BLI_mempool_clear_ex with no reserve set.
*/
void BLI_mempool_clear(BLI_mempool *pool)
{
BLI_mempool_clear_ex(pool, -1);
}
/**
* Free the mempool its self (and all elements).
*/
void BLI_mempool_destroy(BLI_mempool *pool)
{
mempool_chunk_free_all(pool->chunks);
#ifdef WITH_MEM_VALGRIND
VALGRIND_DESTROY_MEMPOOL(pool);
#endif
MEM_freeN(pool);
}
#ifndef NDEBUG
void BLI_mempool_set_memory_debug(void)
{
mempool_debug_memset = true;
}
#endif