2817 lines
73 KiB
C
2817 lines
73 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
* The Original Code is: some of this file.
|
|
*/
|
|
|
|
/** \file
|
|
* \ingroup bli
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include "BLI_math.h"
|
|
|
|
#include "BLI_strict_flags.h"
|
|
|
|
#include "eigen_capi.h"
|
|
|
|
/********************************* Init **************************************/
|
|
|
|
void zero_m2(float m[2][2])
|
|
{
|
|
memset(m, 0, sizeof(float[2][2]));
|
|
}
|
|
|
|
void zero_m3(float m[3][3])
|
|
{
|
|
memset(m, 0, sizeof(float[3][3]));
|
|
}
|
|
|
|
void zero_m4(float m[4][4])
|
|
{
|
|
memset(m, 0, sizeof(float[4][4]));
|
|
}
|
|
|
|
void unit_m2(float m[2][2])
|
|
{
|
|
m[0][0] = m[1][1] = 1.0f;
|
|
m[0][1] = 0.0f;
|
|
m[1][0] = 0.0f;
|
|
}
|
|
|
|
void unit_m3(float m[3][3])
|
|
{
|
|
m[0][0] = m[1][1] = m[2][2] = 1.0f;
|
|
m[0][1] = m[0][2] = 0.0f;
|
|
m[1][0] = m[1][2] = 0.0f;
|
|
m[2][0] = m[2][1] = 0.0f;
|
|
}
|
|
|
|
void unit_m4(float m[4][4])
|
|
{
|
|
m[0][0] = m[1][1] = m[2][2] = m[3][3] = 1.0f;
|
|
m[0][1] = m[0][2] = m[0][3] = 0.0f;
|
|
m[1][0] = m[1][2] = m[1][3] = 0.0f;
|
|
m[2][0] = m[2][1] = m[2][3] = 0.0f;
|
|
m[3][0] = m[3][1] = m[3][2] = 0.0f;
|
|
}
|
|
|
|
void copy_m2_m2(float m1[2][2], const float m2[2][2])
|
|
{
|
|
memcpy(m1, m2, sizeof(float[2][2]));
|
|
}
|
|
|
|
void copy_m3_m3(float m1[3][3], const float m2[3][3])
|
|
{
|
|
/* destination comes first: */
|
|
memcpy(m1, m2, sizeof(float[3][3]));
|
|
}
|
|
|
|
void copy_m4_m4(float m1[4][4], const float m2[4][4])
|
|
{
|
|
memcpy(m1, m2, sizeof(float[4][4]));
|
|
}
|
|
|
|
void copy_m3_m4(float m1[3][3], const float m2[4][4])
|
|
{
|
|
m1[0][0] = m2[0][0];
|
|
m1[0][1] = m2[0][1];
|
|
m1[0][2] = m2[0][2];
|
|
|
|
m1[1][0] = m2[1][0];
|
|
m1[1][1] = m2[1][1];
|
|
m1[1][2] = m2[1][2];
|
|
|
|
m1[2][0] = m2[2][0];
|
|
m1[2][1] = m2[2][1];
|
|
m1[2][2] = m2[2][2];
|
|
}
|
|
|
|
void copy_m4_m3(float m1[4][4], const float m2[3][3]) /* no clear */
|
|
{
|
|
m1[0][0] = m2[0][0];
|
|
m1[0][1] = m2[0][1];
|
|
m1[0][2] = m2[0][2];
|
|
|
|
m1[1][0] = m2[1][0];
|
|
m1[1][1] = m2[1][1];
|
|
m1[1][2] = m2[1][2];
|
|
|
|
m1[2][0] = m2[2][0];
|
|
m1[2][1] = m2[2][1];
|
|
m1[2][2] = m2[2][2];
|
|
|
|
/* Reevan's Bugfix */
|
|
m1[0][3] = 0.0f;
|
|
m1[1][3] = 0.0f;
|
|
m1[2][3] = 0.0f;
|
|
|
|
m1[3][0] = 0.0f;
|
|
m1[3][1] = 0.0f;
|
|
m1[3][2] = 0.0f;
|
|
m1[3][3] = 1.0f;
|
|
}
|
|
|
|
void copy_m3_m3d(float R[3][3], const double A[3][3])
|
|
{
|
|
/* Keep it stupid simple for better data flow in CPU. */
|
|
R[0][0] = (float)A[0][0];
|
|
R[0][1] = (float)A[0][1];
|
|
R[0][2] = (float)A[0][2];
|
|
|
|
R[1][0] = (float)A[1][0];
|
|
R[1][1] = (float)A[1][1];
|
|
R[1][2] = (float)A[1][2];
|
|
|
|
R[2][0] = (float)A[2][0];
|
|
R[2][1] = (float)A[2][1];
|
|
R[2][2] = (float)A[2][2];
|
|
}
|
|
|
|
void swap_m3m3(float m1[3][3], float m2[3][3])
|
|
{
|
|
float t;
|
|
int i, j;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
for (j = 0; j < 3; j++) {
|
|
t = m1[i][j];
|
|
m1[i][j] = m2[i][j];
|
|
m2[i][j] = t;
|
|
}
|
|
}
|
|
}
|
|
|
|
void swap_m4m4(float m1[4][4], float m2[4][4])
|
|
{
|
|
float t;
|
|
int i, j;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
for (j = 0; j < 4; j++) {
|
|
t = m1[i][j];
|
|
m1[i][j] = m2[i][j];
|
|
m2[i][j] = t;
|
|
}
|
|
}
|
|
}
|
|
|
|
/******************************** Arithmetic *********************************/
|
|
|
|
void mul_m4_m4m4(float R[4][4], const float A[4][4], const float B[4][4])
|
|
{
|
|
if (A == R) {
|
|
mul_m4_m4_post(R, B);
|
|
}
|
|
else if (B == R) {
|
|
mul_m4_m4_pre(R, A);
|
|
}
|
|
else {
|
|
mul_m4_m4m4_uniq(R, A, B);
|
|
}
|
|
}
|
|
|
|
void mul_m4_m4m4_uniq(float R[4][4], const float A[4][4], const float B[4][4])
|
|
{
|
|
BLI_assert(R != A && R != B);
|
|
|
|
/* matrix product: R[j][k] = A[j][i] . B[i][k] */
|
|
#ifdef __SSE2__
|
|
__m128 A0 = _mm_loadu_ps(A[0]);
|
|
__m128 A1 = _mm_loadu_ps(A[1]);
|
|
__m128 A2 = _mm_loadu_ps(A[2]);
|
|
__m128 A3 = _mm_loadu_ps(A[3]);
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
__m128 B0 = _mm_set1_ps(B[i][0]);
|
|
__m128 B1 = _mm_set1_ps(B[i][1]);
|
|
__m128 B2 = _mm_set1_ps(B[i][2]);
|
|
__m128 B3 = _mm_set1_ps(B[i][3]);
|
|
|
|
__m128 sum = _mm_add_ps(_mm_add_ps(_mm_mul_ps(B0, A0), _mm_mul_ps(B1, A1)),
|
|
_mm_add_ps(_mm_mul_ps(B2, A2), _mm_mul_ps(B3, A3)));
|
|
|
|
_mm_storeu_ps(R[i], sum);
|
|
}
|
|
#else
|
|
R[0][0] = B[0][0] * A[0][0] + B[0][1] * A[1][0] + B[0][2] * A[2][0] + B[0][3] * A[3][0];
|
|
R[0][1] = B[0][0] * A[0][1] + B[0][1] * A[1][1] + B[0][2] * A[2][1] + B[0][3] * A[3][1];
|
|
R[0][2] = B[0][0] * A[0][2] + B[0][1] * A[1][2] + B[0][2] * A[2][2] + B[0][3] * A[3][2];
|
|
R[0][3] = B[0][0] * A[0][3] + B[0][1] * A[1][3] + B[0][2] * A[2][3] + B[0][3] * A[3][3];
|
|
|
|
R[1][0] = B[1][0] * A[0][0] + B[1][1] * A[1][0] + B[1][2] * A[2][0] + B[1][3] * A[3][0];
|
|
R[1][1] = B[1][0] * A[0][1] + B[1][1] * A[1][1] + B[1][2] * A[2][1] + B[1][3] * A[3][1];
|
|
R[1][2] = B[1][0] * A[0][2] + B[1][1] * A[1][2] + B[1][2] * A[2][2] + B[1][3] * A[3][2];
|
|
R[1][3] = B[1][0] * A[0][3] + B[1][1] * A[1][3] + B[1][2] * A[2][3] + B[1][3] * A[3][3];
|
|
|
|
R[2][0] = B[2][0] * A[0][0] + B[2][1] * A[1][0] + B[2][2] * A[2][0] + B[2][3] * A[3][0];
|
|
R[2][1] = B[2][0] * A[0][1] + B[2][1] * A[1][1] + B[2][2] * A[2][1] + B[2][3] * A[3][1];
|
|
R[2][2] = B[2][0] * A[0][2] + B[2][1] * A[1][2] + B[2][2] * A[2][2] + B[2][3] * A[3][2];
|
|
R[2][3] = B[2][0] * A[0][3] + B[2][1] * A[1][3] + B[2][2] * A[2][3] + B[2][3] * A[3][3];
|
|
|
|
R[3][0] = B[3][0] * A[0][0] + B[3][1] * A[1][0] + B[3][2] * A[2][0] + B[3][3] * A[3][0];
|
|
R[3][1] = B[3][0] * A[0][1] + B[3][1] * A[1][1] + B[3][2] * A[2][1] + B[3][3] * A[3][1];
|
|
R[3][2] = B[3][0] * A[0][2] + B[3][1] * A[1][2] + B[3][2] * A[2][2] + B[3][3] * A[3][2];
|
|
R[3][3] = B[3][0] * A[0][3] + B[3][1] * A[1][3] + B[3][2] * A[2][3] + B[3][3] * A[3][3];
|
|
#endif
|
|
}
|
|
|
|
void mul_m4_m4_pre(float R[4][4], const float A[4][4])
|
|
{
|
|
BLI_assert(A != R);
|
|
float B[4][4];
|
|
copy_m4_m4(B, R);
|
|
mul_m4_m4m4_uniq(R, A, B);
|
|
}
|
|
|
|
void mul_m4_m4_post(float R[4][4], const float B[4][4])
|
|
{
|
|
BLI_assert(B != R);
|
|
float A[4][4];
|
|
copy_m4_m4(A, R);
|
|
mul_m4_m4m4_uniq(R, A, B);
|
|
}
|
|
|
|
void mul_m3_m3m3(float R[3][3], const float A[3][3], const float B[3][3])
|
|
{
|
|
if (A == R) {
|
|
mul_m3_m3_post(R, B);
|
|
}
|
|
else if (B == R) {
|
|
mul_m3_m3_pre(R, A);
|
|
}
|
|
else {
|
|
mul_m3_m3m3_uniq(R, A, B);
|
|
}
|
|
}
|
|
|
|
void mul_m3_m3_pre(float R[3][3], const float A[3][3])
|
|
{
|
|
BLI_assert(A != R);
|
|
float B[3][3];
|
|
copy_m3_m3(B, R);
|
|
mul_m3_m3m3_uniq(R, A, B);
|
|
}
|
|
|
|
void mul_m3_m3_post(float R[3][3], const float B[3][3])
|
|
{
|
|
BLI_assert(B != R);
|
|
float A[3][3];
|
|
copy_m3_m3(A, R);
|
|
mul_m3_m3m3_uniq(R, A, B);
|
|
}
|
|
|
|
void mul_m3_m3m3_uniq(float R[3][3], const float A[3][3], const float B[3][3])
|
|
{
|
|
BLI_assert(R != A && R != B);
|
|
|
|
R[0][0] = B[0][0] * A[0][0] + B[0][1] * A[1][0] + B[0][2] * A[2][0];
|
|
R[0][1] = B[0][0] * A[0][1] + B[0][1] * A[1][1] + B[0][2] * A[2][1];
|
|
R[0][2] = B[0][0] * A[0][2] + B[0][1] * A[1][2] + B[0][2] * A[2][2];
|
|
|
|
R[1][0] = B[1][0] * A[0][0] + B[1][1] * A[1][0] + B[1][2] * A[2][0];
|
|
R[1][1] = B[1][0] * A[0][1] + B[1][1] * A[1][1] + B[1][2] * A[2][1];
|
|
R[1][2] = B[1][0] * A[0][2] + B[1][1] * A[1][2] + B[1][2] * A[2][2];
|
|
|
|
R[2][0] = B[2][0] * A[0][0] + B[2][1] * A[1][0] + B[2][2] * A[2][0];
|
|
R[2][1] = B[2][0] * A[0][1] + B[2][1] * A[1][1] + B[2][2] * A[2][1];
|
|
R[2][2] = B[2][0] * A[0][2] + B[2][1] * A[1][2] + B[2][2] * A[2][2];
|
|
}
|
|
|
|
void mul_m4_m4m3(float m1[4][4], const float m3_[4][4], const float m2_[3][3])
|
|
{
|
|
float m2[3][3], m3[4][4];
|
|
|
|
/* copy so it works when m1 is the same pointer as m2 or m3 */
|
|
/* TODO: avoid copying when matrices are different */
|
|
copy_m3_m3(m2, m2_);
|
|
copy_m4_m4(m3, m3_);
|
|
|
|
m1[0][0] = m2[0][0] * m3[0][0] + m2[0][1] * m3[1][0] + m2[0][2] * m3[2][0];
|
|
m1[0][1] = m2[0][0] * m3[0][1] + m2[0][1] * m3[1][1] + m2[0][2] * m3[2][1];
|
|
m1[0][2] = m2[0][0] * m3[0][2] + m2[0][1] * m3[1][2] + m2[0][2] * m3[2][2];
|
|
m1[1][0] = m2[1][0] * m3[0][0] + m2[1][1] * m3[1][0] + m2[1][2] * m3[2][0];
|
|
m1[1][1] = m2[1][0] * m3[0][1] + m2[1][1] * m3[1][1] + m2[1][2] * m3[2][1];
|
|
m1[1][2] = m2[1][0] * m3[0][2] + m2[1][1] * m3[1][2] + m2[1][2] * m3[2][2];
|
|
m1[2][0] = m2[2][0] * m3[0][0] + m2[2][1] * m3[1][0] + m2[2][2] * m3[2][0];
|
|
m1[2][1] = m2[2][0] * m3[0][1] + m2[2][1] * m3[1][1] + m2[2][2] * m3[2][1];
|
|
m1[2][2] = m2[2][0] * m3[0][2] + m2[2][1] * m3[1][2] + m2[2][2] * m3[2][2];
|
|
}
|
|
|
|
/* m1 = m2 * m3, ignore the elements on the 4th row/column of m2 */
|
|
void mul_m3_m3m4(float m1[3][3], const float m3_[3][3], const float m2_[4][4])
|
|
{
|
|
float m2[4][4], m3[3][3];
|
|
|
|
/* copy so it works when m1 is the same pointer as m2 or m3 */
|
|
/* TODO: avoid copying when matrices are different */
|
|
copy_m4_m4(m2, m2_);
|
|
copy_m3_m3(m3, m3_);
|
|
|
|
/* m1[i][j] = m2[i][k] * m3[k][j] */
|
|
m1[0][0] = m2[0][0] * m3[0][0] + m2[0][1] * m3[1][0] + m2[0][2] * m3[2][0];
|
|
m1[0][1] = m2[0][0] * m3[0][1] + m2[0][1] * m3[1][1] + m2[0][2] * m3[2][1];
|
|
m1[0][2] = m2[0][0] * m3[0][2] + m2[0][1] * m3[1][2] + m2[0][2] * m3[2][2];
|
|
|
|
m1[1][0] = m2[1][0] * m3[0][0] + m2[1][1] * m3[1][0] + m2[1][2] * m3[2][0];
|
|
m1[1][1] = m2[1][0] * m3[0][1] + m2[1][1] * m3[1][1] + m2[1][2] * m3[2][1];
|
|
m1[1][2] = m2[1][0] * m3[0][2] + m2[1][1] * m3[1][2] + m2[1][2] * m3[2][2];
|
|
|
|
m1[2][0] = m2[2][0] * m3[0][0] + m2[2][1] * m3[1][0] + m2[2][2] * m3[2][0];
|
|
m1[2][1] = m2[2][0] * m3[0][1] + m2[2][1] * m3[1][1] + m2[2][2] * m3[2][1];
|
|
m1[2][2] = m2[2][0] * m3[0][2] + m2[2][1] * m3[1][2] + m2[2][2] * m3[2][2];
|
|
}
|
|
|
|
/* m1 = m2 * m3, ignore the elements on the 4th row/column of m3 */
|
|
void mul_m3_m4m3(float m1[3][3], const float m3_[4][4], const float m2_[3][3])
|
|
{
|
|
float m2[3][3], m3[4][4];
|
|
|
|
/* copy so it works when m1 is the same pointer as m2 or m3 */
|
|
/* TODO: avoid copying when matrices are different */
|
|
copy_m3_m3(m2, m2_);
|
|
copy_m4_m4(m3, m3_);
|
|
|
|
/* m1[i][j] = m2[i][k] * m3[k][j] */
|
|
m1[0][0] = m2[0][0] * m3[0][0] + m2[0][1] * m3[1][0] + m2[0][2] * m3[2][0];
|
|
m1[0][1] = m2[0][0] * m3[0][1] + m2[0][1] * m3[1][1] + m2[0][2] * m3[2][1];
|
|
m1[0][2] = m2[0][0] * m3[0][2] + m2[0][1] * m3[1][2] + m2[0][2] * m3[2][2];
|
|
|
|
m1[1][0] = m2[1][0] * m3[0][0] + m2[1][1] * m3[1][0] + m2[1][2] * m3[2][0];
|
|
m1[1][1] = m2[1][0] * m3[0][1] + m2[1][1] * m3[1][1] + m2[1][2] * m3[2][1];
|
|
m1[1][2] = m2[1][0] * m3[0][2] + m2[1][1] * m3[1][2] + m2[1][2] * m3[2][2];
|
|
|
|
m1[2][0] = m2[2][0] * m3[0][0] + m2[2][1] * m3[1][0] + m2[2][2] * m3[2][0];
|
|
m1[2][1] = m2[2][0] * m3[0][1] + m2[2][1] * m3[1][1] + m2[2][2] * m3[2][1];
|
|
m1[2][2] = m2[2][0] * m3[0][2] + m2[2][1] * m3[1][2] + m2[2][2] * m3[2][2];
|
|
}
|
|
|
|
void mul_m4_m3m4(float m1[4][4], const float m3_[3][3], const float m2_[4][4])
|
|
{
|
|
float m2[4][4], m3[3][3];
|
|
|
|
/* copy so it works when m1 is the same pointer as m2 or m3 */
|
|
/* TODO: avoid copying when matrices are different */
|
|
copy_m4_m4(m2, m2_);
|
|
copy_m3_m3(m3, m3_);
|
|
|
|
m1[0][0] = m2[0][0] * m3[0][0] + m2[0][1] * m3[1][0] + m2[0][2] * m3[2][0];
|
|
m1[0][1] = m2[0][0] * m3[0][1] + m2[0][1] * m3[1][1] + m2[0][2] * m3[2][1];
|
|
m1[0][2] = m2[0][0] * m3[0][2] + m2[0][1] * m3[1][2] + m2[0][2] * m3[2][2];
|
|
m1[1][0] = m2[1][0] * m3[0][0] + m2[1][1] * m3[1][0] + m2[1][2] * m3[2][0];
|
|
m1[1][1] = m2[1][0] * m3[0][1] + m2[1][1] * m3[1][1] + m2[1][2] * m3[2][1];
|
|
m1[1][2] = m2[1][0] * m3[0][2] + m2[1][1] * m3[1][2] + m2[1][2] * m3[2][2];
|
|
m1[2][0] = m2[2][0] * m3[0][0] + m2[2][1] * m3[1][0] + m2[2][2] * m3[2][0];
|
|
m1[2][1] = m2[2][0] * m3[0][1] + m2[2][1] * m3[1][1] + m2[2][2] * m3[2][1];
|
|
m1[2][2] = m2[2][0] * m3[0][2] + m2[2][1] * m3[1][2] + m2[2][2] * m3[2][2];
|
|
}
|
|
|
|
void mul_m3_m4m4(float m1[3][3], const float m3[4][4], const float m2[4][4])
|
|
{
|
|
m1[0][0] = m2[0][0] * m3[0][0] + m2[0][1] * m3[1][0] + m2[0][2] * m3[2][0];
|
|
m1[0][1] = m2[0][0] * m3[0][1] + m2[0][1] * m3[1][1] + m2[0][2] * m3[2][1];
|
|
m1[0][2] = m2[0][0] * m3[0][2] + m2[0][1] * m3[1][2] + m2[0][2] * m3[2][2];
|
|
m1[1][0] = m2[1][0] * m3[0][0] + m2[1][1] * m3[1][0] + m2[1][2] * m3[2][0];
|
|
m1[1][1] = m2[1][0] * m3[0][1] + m2[1][1] * m3[1][1] + m2[1][2] * m3[2][1];
|
|
m1[1][2] = m2[1][0] * m3[0][2] + m2[1][1] * m3[1][2] + m2[1][2] * m3[2][2];
|
|
m1[2][0] = m2[2][0] * m3[0][0] + m2[2][1] * m3[1][0] + m2[2][2] * m3[2][0];
|
|
m1[2][1] = m2[2][0] * m3[0][1] + m2[2][1] * m3[1][1] + m2[2][2] * m3[2][1];
|
|
m1[2][2] = m2[2][0] * m3[0][2] + m2[2][1] * m3[1][2] + m2[2][2] * m3[2][2];
|
|
}
|
|
|
|
/** \name Macro helpers for: mul_m3_series
|
|
* \{ */
|
|
void _va_mul_m3_series_3(float r[3][3], const float m1[3][3], const float m2[3][3])
|
|
{
|
|
mul_m3_m3m3(r, m1, m2);
|
|
}
|
|
void _va_mul_m3_series_4(float r[3][3],
|
|
const float m1[3][3],
|
|
const float m2[3][3],
|
|
const float m3[3][3])
|
|
{
|
|
mul_m3_m3m3(r, m1, m2);
|
|
mul_m3_m3m3(r, r, m3);
|
|
}
|
|
void _va_mul_m3_series_5(float r[3][3],
|
|
const float m1[3][3],
|
|
const float m2[3][3],
|
|
const float m3[3][3],
|
|
const float m4[3][3])
|
|
{
|
|
mul_m3_m3m3(r, m1, m2);
|
|
mul_m3_m3m3(r, r, m3);
|
|
mul_m3_m3m3(r, r, m4);
|
|
}
|
|
void _va_mul_m3_series_6(float r[3][3],
|
|
const float m1[3][3],
|
|
const float m2[3][3],
|
|
const float m3[3][3],
|
|
const float m4[3][3],
|
|
const float m5[3][3])
|
|
{
|
|
mul_m3_m3m3(r, m1, m2);
|
|
mul_m3_m3m3(r, r, m3);
|
|
mul_m3_m3m3(r, r, m4);
|
|
mul_m3_m3m3(r, r, m5);
|
|
}
|
|
void _va_mul_m3_series_7(float r[3][3],
|
|
const float m1[3][3],
|
|
const float m2[3][3],
|
|
const float m3[3][3],
|
|
const float m4[3][3],
|
|
const float m5[3][3],
|
|
const float m6[3][3])
|
|
{
|
|
mul_m3_m3m3(r, m1, m2);
|
|
mul_m3_m3m3(r, r, m3);
|
|
mul_m3_m3m3(r, r, m4);
|
|
mul_m3_m3m3(r, r, m5);
|
|
mul_m3_m3m3(r, r, m6);
|
|
}
|
|
void _va_mul_m3_series_8(float r[3][3],
|
|
const float m1[3][3],
|
|
const float m2[3][3],
|
|
const float m3[3][3],
|
|
const float m4[3][3],
|
|
const float m5[3][3],
|
|
const float m6[3][3],
|
|
const float m7[3][3])
|
|
{
|
|
mul_m3_m3m3(r, m1, m2);
|
|
mul_m3_m3m3(r, r, m3);
|
|
mul_m3_m3m3(r, r, m4);
|
|
mul_m3_m3m3(r, r, m5);
|
|
mul_m3_m3m3(r, r, m6);
|
|
mul_m3_m3m3(r, r, m7);
|
|
}
|
|
void _va_mul_m3_series_9(float r[3][3],
|
|
const float m1[3][3],
|
|
const float m2[3][3],
|
|
const float m3[3][3],
|
|
const float m4[3][3],
|
|
const float m5[3][3],
|
|
const float m6[3][3],
|
|
const float m7[3][3],
|
|
const float m8[3][3])
|
|
{
|
|
mul_m3_m3m3(r, m1, m2);
|
|
mul_m3_m3m3(r, r, m3);
|
|
mul_m3_m3m3(r, r, m4);
|
|
mul_m3_m3m3(r, r, m5);
|
|
mul_m3_m3m3(r, r, m6);
|
|
mul_m3_m3m3(r, r, m7);
|
|
mul_m3_m3m3(r, r, m8);
|
|
}
|
|
/** \} */
|
|
|
|
/** \name Macro helpers for: mul_m4_series
|
|
* \{ */
|
|
void _va_mul_m4_series_3(float r[4][4], const float m1[4][4], const float m2[4][4])
|
|
{
|
|
mul_m4_m4m4(r, m1, m2);
|
|
}
|
|
void _va_mul_m4_series_4(float r[4][4],
|
|
const float m1[4][4],
|
|
const float m2[4][4],
|
|
const float m3[4][4])
|
|
{
|
|
mul_m4_m4m4(r, m1, m2);
|
|
mul_m4_m4m4(r, r, m3);
|
|
}
|
|
void _va_mul_m4_series_5(float r[4][4],
|
|
const float m1[4][4],
|
|
const float m2[4][4],
|
|
const float m3[4][4],
|
|
const float m4[4][4])
|
|
{
|
|
mul_m4_m4m4(r, m1, m2);
|
|
mul_m4_m4m4(r, r, m3);
|
|
mul_m4_m4m4(r, r, m4);
|
|
}
|
|
void _va_mul_m4_series_6(float r[4][4],
|
|
const float m1[4][4],
|
|
const float m2[4][4],
|
|
const float m3[4][4],
|
|
const float m4[4][4],
|
|
const float m5[4][4])
|
|
{
|
|
mul_m4_m4m4(r, m1, m2);
|
|
mul_m4_m4m4(r, r, m3);
|
|
mul_m4_m4m4(r, r, m4);
|
|
mul_m4_m4m4(r, r, m5);
|
|
}
|
|
void _va_mul_m4_series_7(float r[4][4],
|
|
const float m1[4][4],
|
|
const float m2[4][4],
|
|
const float m3[4][4],
|
|
const float m4[4][4],
|
|
const float m5[4][4],
|
|
const float m6[4][4])
|
|
{
|
|
mul_m4_m4m4(r, m1, m2);
|
|
mul_m4_m4m4(r, r, m3);
|
|
mul_m4_m4m4(r, r, m4);
|
|
mul_m4_m4m4(r, r, m5);
|
|
mul_m4_m4m4(r, r, m6);
|
|
}
|
|
void _va_mul_m4_series_8(float r[4][4],
|
|
const float m1[4][4],
|
|
const float m2[4][4],
|
|
const float m3[4][4],
|
|
const float m4[4][4],
|
|
const float m5[4][4],
|
|
const float m6[4][4],
|
|
const float m7[4][4])
|
|
{
|
|
mul_m4_m4m4(r, m1, m2);
|
|
mul_m4_m4m4(r, r, m3);
|
|
mul_m4_m4m4(r, r, m4);
|
|
mul_m4_m4m4(r, r, m5);
|
|
mul_m4_m4m4(r, r, m6);
|
|
mul_m4_m4m4(r, r, m7);
|
|
}
|
|
void _va_mul_m4_series_9(float r[4][4],
|
|
const float m1[4][4],
|
|
const float m2[4][4],
|
|
const float m3[4][4],
|
|
const float m4[4][4],
|
|
const float m5[4][4],
|
|
const float m6[4][4],
|
|
const float m7[4][4],
|
|
const float m8[4][4])
|
|
{
|
|
mul_m4_m4m4(r, m1, m2);
|
|
mul_m4_m4m4(r, r, m3);
|
|
mul_m4_m4m4(r, r, m4);
|
|
mul_m4_m4m4(r, r, m5);
|
|
mul_m4_m4m4(r, r, m6);
|
|
mul_m4_m4m4(r, r, m7);
|
|
mul_m4_m4m4(r, r, m8);
|
|
}
|
|
/** \} */
|
|
|
|
void mul_v2_m3v2(float r[2], const float m[3][3], const float v[2])
|
|
{
|
|
float temp[3], warped[3];
|
|
|
|
copy_v2_v2(temp, v);
|
|
temp[2] = 1.0f;
|
|
|
|
mul_v3_m3v3(warped, m, temp);
|
|
|
|
r[0] = warped[0] / warped[2];
|
|
r[1] = warped[1] / warped[2];
|
|
}
|
|
|
|
void mul_m3_v2(const float m[3][3], float r[2])
|
|
{
|
|
mul_v2_m3v2(r, m, r);
|
|
}
|
|
|
|
void mul_m4_v3(const float mat[4][4], float vec[3])
|
|
{
|
|
const float x = vec[0];
|
|
const float y = vec[1];
|
|
|
|
vec[0] = x * mat[0][0] + y * mat[1][0] + mat[2][0] * vec[2] + mat[3][0];
|
|
vec[1] = x * mat[0][1] + y * mat[1][1] + mat[2][1] * vec[2] + mat[3][1];
|
|
vec[2] = x * mat[0][2] + y * mat[1][2] + mat[2][2] * vec[2] + mat[3][2];
|
|
}
|
|
|
|
void mul_v3_m4v3(float r[3], const float mat[4][4], const float vec[3])
|
|
{
|
|
const float x = vec[0];
|
|
const float y = vec[1];
|
|
|
|
r[0] = x * mat[0][0] + y * mat[1][0] + mat[2][0] * vec[2] + mat[3][0];
|
|
r[1] = x * mat[0][1] + y * mat[1][1] + mat[2][1] * vec[2] + mat[3][1];
|
|
r[2] = x * mat[0][2] + y * mat[1][2] + mat[2][2] * vec[2] + mat[3][2];
|
|
}
|
|
|
|
void mul_v2_m4v3(float r[2], const float mat[4][4], const float vec[3])
|
|
{
|
|
const float x = vec[0];
|
|
|
|
r[0] = x * mat[0][0] + vec[1] * mat[1][0] + mat[2][0] * vec[2] + mat[3][0];
|
|
r[1] = x * mat[0][1] + vec[1] * mat[1][1] + mat[2][1] * vec[2] + mat[3][1];
|
|
}
|
|
|
|
void mul_v2_m2v2(float r[2], const float mat[2][2], const float vec[2])
|
|
{
|
|
const float x = vec[0];
|
|
|
|
r[0] = mat[0][0] * x + mat[1][0] * vec[1];
|
|
r[1] = mat[0][1] * x + mat[1][1] * vec[1];
|
|
}
|
|
|
|
void mul_m2v2(const float mat[2][2], float vec[2])
|
|
{
|
|
mul_v2_m2v2(vec, mat, vec);
|
|
}
|
|
|
|
/** Same as #mul_m4_v3() but doesn't apply translation component. */
|
|
void mul_mat3_m4_v3(const float mat[4][4], float vec[3])
|
|
{
|
|
const float x = vec[0];
|
|
const float y = vec[1];
|
|
|
|
vec[0] = x * mat[0][0] + y * mat[1][0] + mat[2][0] * vec[2];
|
|
vec[1] = x * mat[0][1] + y * mat[1][1] + mat[2][1] * vec[2];
|
|
vec[2] = x * mat[0][2] + y * mat[1][2] + mat[2][2] * vec[2];
|
|
}
|
|
|
|
void mul_v3_mat3_m4v3(float r[3], const float mat[4][4], const float vec[3])
|
|
{
|
|
const float x = vec[0];
|
|
const float y = vec[1];
|
|
|
|
r[0] = x * mat[0][0] + y * mat[1][0] + mat[2][0] * vec[2];
|
|
r[1] = x * mat[0][1] + y * mat[1][1] + mat[2][1] * vec[2];
|
|
r[2] = x * mat[0][2] + y * mat[1][2] + mat[2][2] * vec[2];
|
|
}
|
|
|
|
void mul_project_m4_v3(const float mat[4][4], float vec[3])
|
|
{
|
|
/* absolute value to not flip the frustum upside down behind the camera */
|
|
const float w = fabsf(mul_project_m4_v3_zfac(mat, vec));
|
|
mul_m4_v3(mat, vec);
|
|
|
|
vec[0] /= w;
|
|
vec[1] /= w;
|
|
vec[2] /= w;
|
|
}
|
|
|
|
void mul_v3_project_m4_v3(float r[3], const float mat[4][4], const float vec[3])
|
|
{
|
|
const float w = fabsf(mul_project_m4_v3_zfac(mat, vec));
|
|
mul_v3_m4v3(r, mat, vec);
|
|
|
|
r[0] /= w;
|
|
r[1] /= w;
|
|
r[2] /= w;
|
|
}
|
|
|
|
void mul_v2_project_m4_v3(float r[2], const float mat[4][4], const float vec[3])
|
|
{
|
|
const float w = fabsf(mul_project_m4_v3_zfac(mat, vec));
|
|
mul_v2_m4v3(r, mat, vec);
|
|
|
|
r[0] /= w;
|
|
r[1] /= w;
|
|
}
|
|
|
|
void mul_v4_m4v4(float r[4], const float mat[4][4], const float v[4])
|
|
{
|
|
const float x = v[0];
|
|
const float y = v[1];
|
|
const float z = v[2];
|
|
|
|
r[0] = x * mat[0][0] + y * mat[1][0] + z * mat[2][0] + mat[3][0] * v[3];
|
|
r[1] = x * mat[0][1] + y * mat[1][1] + z * mat[2][1] + mat[3][1] * v[3];
|
|
r[2] = x * mat[0][2] + y * mat[1][2] + z * mat[2][2] + mat[3][2] * v[3];
|
|
r[3] = x * mat[0][3] + y * mat[1][3] + z * mat[2][3] + mat[3][3] * v[3];
|
|
}
|
|
|
|
void mul_m4_v4(const float mat[4][4], float r[4])
|
|
{
|
|
mul_v4_m4v4(r, mat, r);
|
|
}
|
|
|
|
void mul_v4d_m4v4d(double r[4], const float mat[4][4], const double v[4])
|
|
{
|
|
const double x = v[0];
|
|
const double y = v[1];
|
|
const double z = v[2];
|
|
|
|
r[0] = x * (double)mat[0][0] + y * (double)mat[1][0] + z * (double)mat[2][0] +
|
|
(double)mat[3][0] * v[3];
|
|
r[1] = x * (double)mat[0][1] + y * (double)mat[1][1] + z * (double)mat[2][1] +
|
|
(double)mat[3][1] * v[3];
|
|
r[2] = x * (double)mat[0][2] + y * (double)mat[1][2] + z * (double)mat[2][2] +
|
|
(double)mat[3][2] * v[3];
|
|
r[3] = x * (double)mat[0][3] + y * (double)mat[1][3] + z * (double)mat[2][3] +
|
|
(double)mat[3][3] * v[3];
|
|
}
|
|
|
|
void mul_m4_v4d(const float mat[4][4], double r[4])
|
|
{
|
|
mul_v4d_m4v4d(r, mat, r);
|
|
}
|
|
|
|
void mul_v4_m4v3(float r[4], const float M[4][4], const float v[3])
|
|
{
|
|
/* v has implicit w = 1.0f */
|
|
r[0] = v[0] * M[0][0] + v[1] * M[1][0] + M[2][0] * v[2] + M[3][0];
|
|
r[1] = v[0] * M[0][1] + v[1] * M[1][1] + M[2][1] * v[2] + M[3][1];
|
|
r[2] = v[0] * M[0][2] + v[1] * M[1][2] + M[2][2] * v[2] + M[3][2];
|
|
r[3] = v[0] * M[0][3] + v[1] * M[1][3] + M[2][3] * v[2] + M[3][3];
|
|
}
|
|
|
|
void mul_v3_m3v3(float r[3], const float M[3][3], const float a[3])
|
|
{
|
|
float t[3];
|
|
copy_v3_v3(t, a);
|
|
|
|
r[0] = M[0][0] * t[0] + M[1][0] * t[1] + M[2][0] * t[2];
|
|
r[1] = M[0][1] * t[0] + M[1][1] * t[1] + M[2][1] * t[2];
|
|
r[2] = M[0][2] * t[0] + M[1][2] * t[1] + M[2][2] * t[2];
|
|
}
|
|
|
|
void mul_v3_m3v3_db(double r[3], const double M[3][3], const double a[3])
|
|
{
|
|
double t[3];
|
|
copy_v3_v3_db(t, a);
|
|
|
|
r[0] = M[0][0] * t[0] + M[1][0] * t[1] + M[2][0] * t[2];
|
|
r[1] = M[0][1] * t[0] + M[1][1] * t[1] + M[2][1] * t[2];
|
|
r[2] = M[0][2] * t[0] + M[1][2] * t[1] + M[2][2] * t[2];
|
|
}
|
|
|
|
void mul_v2_m3v3(float r[2], const float M[3][3], const float a[3])
|
|
{
|
|
float t[3];
|
|
copy_v3_v3(t, a);
|
|
|
|
r[0] = M[0][0] * t[0] + M[1][0] * t[1] + M[2][0] * t[2];
|
|
r[1] = M[0][1] * t[0] + M[1][1] * t[1] + M[2][1] * t[2];
|
|
}
|
|
|
|
void mul_m3_v3(const float M[3][3], float r[3])
|
|
{
|
|
mul_v3_m3v3(r, M, (const float[3]){UNPACK3(r)});
|
|
}
|
|
|
|
void mul_m3_v3_db(const double M[3][3], double r[3])
|
|
{
|
|
mul_v3_m3v3_db(r, M, (const double[3]){UNPACK3(r)});
|
|
}
|
|
|
|
void mul_transposed_m3_v3(const float mat[3][3], float vec[3])
|
|
{
|
|
const float x = vec[0];
|
|
const float y = vec[1];
|
|
|
|
vec[0] = x * mat[0][0] + y * mat[0][1] + mat[0][2] * vec[2];
|
|
vec[1] = x * mat[1][0] + y * mat[1][1] + mat[1][2] * vec[2];
|
|
vec[2] = x * mat[2][0] + y * mat[2][1] + mat[2][2] * vec[2];
|
|
}
|
|
|
|
void mul_transposed_mat3_m4_v3(const float mat[4][4], float vec[3])
|
|
{
|
|
const float x = vec[0];
|
|
const float y = vec[1];
|
|
|
|
vec[0] = x * mat[0][0] + y * mat[0][1] + mat[0][2] * vec[2];
|
|
vec[1] = x * mat[1][0] + y * mat[1][1] + mat[1][2] * vec[2];
|
|
vec[2] = x * mat[2][0] + y * mat[2][1] + mat[2][2] * vec[2];
|
|
}
|
|
|
|
void mul_m3_fl(float m[3][3], float f)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
for (j = 0; j < 3; j++) {
|
|
m[i][j] *= f;
|
|
}
|
|
}
|
|
}
|
|
|
|
void mul_m4_fl(float m[4][4], float f)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
for (j = 0; j < 4; j++) {
|
|
m[i][j] *= f;
|
|
}
|
|
}
|
|
}
|
|
|
|
void mul_mat3_m4_fl(float m[4][4], float f)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
for (j = 0; j < 3; j++) {
|
|
m[i][j] *= f;
|
|
}
|
|
}
|
|
}
|
|
|
|
void negate_m3(float m[3][3])
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
for (j = 0; j < 3; j++) {
|
|
m[i][j] *= -1.0f;
|
|
}
|
|
}
|
|
}
|
|
|
|
void negate_mat3_m4(float m[4][4])
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
for (j = 0; j < 3; j++) {
|
|
m[i][j] *= -1.0f;
|
|
}
|
|
}
|
|
}
|
|
|
|
void negate_m4(float m[4][4])
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
for (j = 0; j < 4; j++) {
|
|
m[i][j] *= -1.0f;
|
|
}
|
|
}
|
|
}
|
|
|
|
void mul_m3_v3_double(const float mat[3][3], double vec[3])
|
|
{
|
|
const double x = vec[0];
|
|
const double y = vec[1];
|
|
|
|
vec[0] = x * (double)mat[0][0] + y * (double)mat[1][0] + (double)mat[2][0] * vec[2];
|
|
vec[1] = x * (double)mat[0][1] + y * (double)mat[1][1] + (double)mat[2][1] * vec[2];
|
|
vec[2] = x * (double)mat[0][2] + y * (double)mat[1][2] + (double)mat[2][2] * vec[2];
|
|
}
|
|
|
|
void add_m3_m3m3(float m1[3][3], const float m2[3][3], const float m3[3][3])
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
for (j = 0; j < 3; j++) {
|
|
m1[i][j] = m2[i][j] + m3[i][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
void add_m4_m4m4(float m1[4][4], const float m2[4][4], const float m3[4][4])
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
for (j = 0; j < 4; j++) {
|
|
m1[i][j] = m2[i][j] + m3[i][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
void madd_m3_m3m3fl(float m1[3][3], const float m2[3][3], const float m3[3][3], const float f)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
for (j = 0; j < 3; j++) {
|
|
m1[i][j] = m2[i][j] + m3[i][j] * f;
|
|
}
|
|
}
|
|
}
|
|
|
|
void madd_m4_m4m4fl(float m1[4][4], const float m2[4][4], const float m3[4][4], const float f)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
for (j = 0; j < 4; j++) {
|
|
m1[i][j] = m2[i][j] + m3[i][j] * f;
|
|
}
|
|
}
|
|
}
|
|
|
|
void sub_m3_m3m3(float m1[3][3], const float m2[3][3], const float m3[3][3])
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
for (j = 0; j < 3; j++) {
|
|
m1[i][j] = m2[i][j] - m3[i][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
void sub_m4_m4m4(float m1[4][4], const float m2[4][4], const float m3[4][4])
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
for (j = 0; j < 4; j++) {
|
|
m1[i][j] = m2[i][j] - m3[i][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
float determinant_m3_array(const float m[3][3])
|
|
{
|
|
return (m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1]) -
|
|
m[1][0] * (m[0][1] * m[2][2] - m[0][2] * m[2][1]) +
|
|
m[2][0] * (m[0][1] * m[1][2] - m[0][2] * m[1][1]));
|
|
}
|
|
|
|
float determinant_m4_mat3_array(const float m[4][4])
|
|
{
|
|
return (m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1]) -
|
|
m[1][0] * (m[0][1] * m[2][2] - m[0][2] * m[2][1]) +
|
|
m[2][0] * (m[0][1] * m[1][2] - m[0][2] * m[1][1]));
|
|
}
|
|
|
|
bool invert_m3_ex(float m[3][3], const float epsilon)
|
|
{
|
|
float tmp[3][3];
|
|
const bool success = invert_m3_m3_ex(tmp, m, epsilon);
|
|
|
|
copy_m3_m3(m, tmp);
|
|
return success;
|
|
}
|
|
|
|
bool invert_m3_m3_ex(float m1[3][3], const float m2[3][3], const float epsilon)
|
|
{
|
|
float det;
|
|
int a, b;
|
|
bool success;
|
|
|
|
BLI_assert(epsilon >= 0.0f);
|
|
|
|
/* calc adjoint */
|
|
adjoint_m3_m3(m1, m2);
|
|
|
|
/* then determinant old matrix! */
|
|
det = determinant_m3_array(m2);
|
|
|
|
success = (fabsf(det) > epsilon);
|
|
|
|
if (LIKELY(det != 0.0f)) {
|
|
det = 1.0f / det;
|
|
for (a = 0; a < 3; a++) {
|
|
for (b = 0; b < 3; b++) {
|
|
m1[a][b] *= det;
|
|
}
|
|
}
|
|
}
|
|
return success;
|
|
}
|
|
|
|
bool invert_m3(float m[3][3])
|
|
{
|
|
float tmp[3][3];
|
|
const bool success = invert_m3_m3(tmp, m);
|
|
|
|
copy_m3_m3(m, tmp);
|
|
return success;
|
|
}
|
|
|
|
bool invert_m3_m3(float m1[3][3], const float m2[3][3])
|
|
{
|
|
float det;
|
|
int a, b;
|
|
bool success;
|
|
|
|
/* calc adjoint */
|
|
adjoint_m3_m3(m1, m2);
|
|
|
|
/* then determinant old matrix! */
|
|
det = determinant_m3_array(m2);
|
|
|
|
success = (det != 0.0f);
|
|
|
|
if (LIKELY(det != 0.0f)) {
|
|
det = 1.0f / det;
|
|
for (a = 0; a < 3; a++) {
|
|
for (b = 0; b < 3; b++) {
|
|
m1[a][b] *= det;
|
|
}
|
|
}
|
|
}
|
|
|
|
return success;
|
|
}
|
|
|
|
bool invert_m4(float m[4][4])
|
|
{
|
|
float tmp[4][4];
|
|
const bool success = invert_m4_m4(tmp, m);
|
|
|
|
copy_m4_m4(m, tmp);
|
|
return success;
|
|
}
|
|
|
|
/**
|
|
* Computes the inverse of mat and puts it in inverse.
|
|
* Uses Gaussian Elimination with partial (maximal column) pivoting.
|
|
* \return true on success (i.e. can always find a pivot) and false on failure.
|
|
* Mark Segal - 1992.
|
|
*
|
|
* \note this is less performant than #EIG_invert_m4_m4 (Eigen), but e.g.
|
|
* for non-invertible scale matrices, findinging a partial solution can
|
|
* be useful to have a valid local transform center, see T57767.
|
|
*/
|
|
bool invert_m4_m4_fallback(float inverse[4][4], const float mat[4][4])
|
|
{
|
|
if (EIG_invert_m4_m4(inverse, mat)) {
|
|
return true;
|
|
}
|
|
|
|
int i, j, k;
|
|
double temp;
|
|
float tempmat[4][4];
|
|
float max;
|
|
int maxj;
|
|
|
|
BLI_assert(inverse != mat);
|
|
|
|
/* Set inverse to identity */
|
|
for (i = 0; i < 4; i++) {
|
|
for (j = 0; j < 4; j++) {
|
|
inverse[i][j] = 0;
|
|
}
|
|
}
|
|
for (i = 0; i < 4; i++) {
|
|
inverse[i][i] = 1;
|
|
}
|
|
|
|
/* Copy original matrix so we don't mess it up */
|
|
for (i = 0; i < 4; i++) {
|
|
for (j = 0; j < 4; j++) {
|
|
tempmat[i][j] = mat[i][j];
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
/* Look for row with max pivot */
|
|
max = fabsf(tempmat[i][i]);
|
|
maxj = i;
|
|
for (j = i + 1; j < 4; j++) {
|
|
if (fabsf(tempmat[j][i]) > max) {
|
|
max = fabsf(tempmat[j][i]);
|
|
maxj = j;
|
|
}
|
|
}
|
|
/* Swap rows if necessary */
|
|
if (maxj != i) {
|
|
for (k = 0; k < 4; k++) {
|
|
SWAP(float, tempmat[i][k], tempmat[maxj][k]);
|
|
SWAP(float, inverse[i][k], inverse[maxj][k]);
|
|
}
|
|
}
|
|
|
|
if (UNLIKELY(tempmat[i][i] == 0.0f)) {
|
|
return false; /* No non-zero pivot */
|
|
}
|
|
temp = (double)tempmat[i][i];
|
|
for (k = 0; k < 4; k++) {
|
|
tempmat[i][k] = (float)((double)tempmat[i][k] / temp);
|
|
inverse[i][k] = (float)((double)inverse[i][k] / temp);
|
|
}
|
|
for (j = 0; j < 4; j++) {
|
|
if (j != i) {
|
|
temp = tempmat[j][i];
|
|
for (k = 0; k < 4; k++) {
|
|
tempmat[j][k] -= (float)((double)tempmat[i][k] * temp);
|
|
inverse[j][k] -= (float)((double)inverse[i][k] * temp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool invert_m4_m4(float inverse[4][4], const float mat[4][4])
|
|
{
|
|
/* Use optimized matrix inverse from Eigen, since performance
|
|
* impact of this function is significant in complex rigs. */
|
|
return EIG_invert_m4_m4(inverse, mat);
|
|
}
|
|
|
|
/****************************** Linear Algebra *******************************/
|
|
|
|
void transpose_m3(float mat[3][3])
|
|
{
|
|
float t;
|
|
|
|
t = mat[0][1];
|
|
mat[0][1] = mat[1][0];
|
|
mat[1][0] = t;
|
|
t = mat[0][2];
|
|
mat[0][2] = mat[2][0];
|
|
mat[2][0] = t;
|
|
t = mat[1][2];
|
|
mat[1][2] = mat[2][1];
|
|
mat[2][1] = t;
|
|
}
|
|
|
|
void transpose_m3_m3(float rmat[3][3], const float mat[3][3])
|
|
{
|
|
BLI_assert(rmat != mat);
|
|
|
|
rmat[0][0] = mat[0][0];
|
|
rmat[0][1] = mat[1][0];
|
|
rmat[0][2] = mat[2][0];
|
|
rmat[1][0] = mat[0][1];
|
|
rmat[1][1] = mat[1][1];
|
|
rmat[1][2] = mat[2][1];
|
|
rmat[2][0] = mat[0][2];
|
|
rmat[2][1] = mat[1][2];
|
|
rmat[2][2] = mat[2][2];
|
|
}
|
|
|
|
/* seems obscure but in-fact a common operation */
|
|
void transpose_m3_m4(float rmat[3][3], const float mat[4][4])
|
|
{
|
|
BLI_assert(&rmat[0][0] != &mat[0][0]);
|
|
|
|
rmat[0][0] = mat[0][0];
|
|
rmat[0][1] = mat[1][0];
|
|
rmat[0][2] = mat[2][0];
|
|
rmat[1][0] = mat[0][1];
|
|
rmat[1][1] = mat[1][1];
|
|
rmat[1][2] = mat[2][1];
|
|
rmat[2][0] = mat[0][2];
|
|
rmat[2][1] = mat[1][2];
|
|
rmat[2][2] = mat[2][2];
|
|
}
|
|
|
|
void transpose_m4(float mat[4][4])
|
|
{
|
|
float t;
|
|
|
|
t = mat[0][1];
|
|
mat[0][1] = mat[1][0];
|
|
mat[1][0] = t;
|
|
t = mat[0][2];
|
|
mat[0][2] = mat[2][0];
|
|
mat[2][0] = t;
|
|
t = mat[0][3];
|
|
mat[0][3] = mat[3][0];
|
|
mat[3][0] = t;
|
|
|
|
t = mat[1][2];
|
|
mat[1][2] = mat[2][1];
|
|
mat[2][1] = t;
|
|
t = mat[1][3];
|
|
mat[1][3] = mat[3][1];
|
|
mat[3][1] = t;
|
|
|
|
t = mat[2][3];
|
|
mat[2][3] = mat[3][2];
|
|
mat[3][2] = t;
|
|
}
|
|
|
|
void transpose_m4_m4(float rmat[4][4], const float mat[4][4])
|
|
{
|
|
BLI_assert(rmat != mat);
|
|
|
|
rmat[0][0] = mat[0][0];
|
|
rmat[0][1] = mat[1][0];
|
|
rmat[0][2] = mat[2][0];
|
|
rmat[0][3] = mat[3][0];
|
|
rmat[1][0] = mat[0][1];
|
|
rmat[1][1] = mat[1][1];
|
|
rmat[1][2] = mat[2][1];
|
|
rmat[1][3] = mat[3][1];
|
|
rmat[2][0] = mat[0][2];
|
|
rmat[2][1] = mat[1][2];
|
|
rmat[2][2] = mat[2][2];
|
|
rmat[2][3] = mat[3][2];
|
|
rmat[3][0] = mat[0][3];
|
|
rmat[3][1] = mat[1][3];
|
|
rmat[3][2] = mat[2][3];
|
|
rmat[3][3] = mat[3][3];
|
|
}
|
|
|
|
/* TODO: return bool */
|
|
int compare_m4m4(const float mat1[4][4], const float mat2[4][4], float limit)
|
|
{
|
|
if (compare_v4v4(mat1[0], mat2[0], limit)) {
|
|
if (compare_v4v4(mat1[1], mat2[1], limit)) {
|
|
if (compare_v4v4(mat1[2], mat2[2], limit)) {
|
|
if (compare_v4v4(mat1[3], mat2[3], limit)) {
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Make an orthonormal matrix around the selected axis of the given matrix.
|
|
*
|
|
* \param axis: Axis to build the orthonormal basis around.
|
|
*/
|
|
void orthogonalize_m3(float mat[3][3], int axis)
|
|
{
|
|
float size[3];
|
|
mat3_to_size(size, mat);
|
|
normalize_v3(mat[axis]);
|
|
switch (axis) {
|
|
case 0:
|
|
if (dot_v3v3(mat[0], mat[1]) < 1) {
|
|
cross_v3_v3v3(mat[2], mat[0], mat[1]);
|
|
normalize_v3(mat[2]);
|
|
cross_v3_v3v3(mat[1], mat[2], mat[0]);
|
|
}
|
|
else if (dot_v3v3(mat[0], mat[2]) < 1) {
|
|
cross_v3_v3v3(mat[1], mat[2], mat[0]);
|
|
normalize_v3(mat[1]);
|
|
cross_v3_v3v3(mat[2], mat[0], mat[1]);
|
|
}
|
|
else {
|
|
float vec[3];
|
|
|
|
vec[0] = mat[0][1];
|
|
vec[1] = mat[0][2];
|
|
vec[2] = mat[0][0];
|
|
|
|
cross_v3_v3v3(mat[2], mat[0], vec);
|
|
normalize_v3(mat[2]);
|
|
cross_v3_v3v3(mat[1], mat[2], mat[0]);
|
|
}
|
|
break;
|
|
case 1:
|
|
if (dot_v3v3(mat[1], mat[0]) < 1) {
|
|
cross_v3_v3v3(mat[2], mat[0], mat[1]);
|
|
normalize_v3(mat[2]);
|
|
cross_v3_v3v3(mat[0], mat[1], mat[2]);
|
|
}
|
|
else if (dot_v3v3(mat[0], mat[2]) < 1) {
|
|
cross_v3_v3v3(mat[0], mat[1], mat[2]);
|
|
normalize_v3(mat[0]);
|
|
cross_v3_v3v3(mat[2], mat[0], mat[1]);
|
|
}
|
|
else {
|
|
float vec[3];
|
|
|
|
vec[0] = mat[1][1];
|
|
vec[1] = mat[1][2];
|
|
vec[2] = mat[1][0];
|
|
|
|
cross_v3_v3v3(mat[0], mat[1], vec);
|
|
normalize_v3(mat[0]);
|
|
cross_v3_v3v3(mat[2], mat[0], mat[1]);
|
|
}
|
|
break;
|
|
case 2:
|
|
if (dot_v3v3(mat[2], mat[0]) < 1) {
|
|
cross_v3_v3v3(mat[1], mat[2], mat[0]);
|
|
normalize_v3(mat[1]);
|
|
cross_v3_v3v3(mat[0], mat[1], mat[2]);
|
|
}
|
|
else if (dot_v3v3(mat[2], mat[1]) < 1) {
|
|
cross_v3_v3v3(mat[0], mat[1], mat[2]);
|
|
normalize_v3(mat[0]);
|
|
cross_v3_v3v3(mat[1], mat[2], mat[0]);
|
|
}
|
|
else {
|
|
float vec[3];
|
|
|
|
vec[0] = mat[2][1];
|
|
vec[1] = mat[2][2];
|
|
vec[2] = mat[2][0];
|
|
|
|
cross_v3_v3v3(mat[0], vec, mat[2]);
|
|
normalize_v3(mat[0]);
|
|
cross_v3_v3v3(mat[1], mat[2], mat[0]);
|
|
}
|
|
break;
|
|
default:
|
|
BLI_assert(0);
|
|
break;
|
|
}
|
|
mul_v3_fl(mat[0], size[0]);
|
|
mul_v3_fl(mat[1], size[1]);
|
|
mul_v3_fl(mat[2], size[2]);
|
|
}
|
|
|
|
/**
|
|
* Make an orthonormal matrix around the selected axis of the given matrix.
|
|
*
|
|
* \param axis: Axis to build the orthonormal basis around.
|
|
*/
|
|
void orthogonalize_m4(float mat[4][4], int axis)
|
|
{
|
|
float size[3];
|
|
mat4_to_size(size, mat);
|
|
normalize_v3(mat[axis]);
|
|
switch (axis) {
|
|
case 0:
|
|
if (dot_v3v3(mat[0], mat[1]) < 1) {
|
|
cross_v3_v3v3(mat[2], mat[0], mat[1]);
|
|
normalize_v3(mat[2]);
|
|
cross_v3_v3v3(mat[1], mat[2], mat[0]);
|
|
}
|
|
else if (dot_v3v3(mat[0], mat[2]) < 1) {
|
|
cross_v3_v3v3(mat[1], mat[2], mat[0]);
|
|
normalize_v3(mat[1]);
|
|
cross_v3_v3v3(mat[2], mat[0], mat[1]);
|
|
}
|
|
else {
|
|
float vec[3];
|
|
|
|
vec[0] = mat[0][1];
|
|
vec[1] = mat[0][2];
|
|
vec[2] = mat[0][0];
|
|
|
|
cross_v3_v3v3(mat[2], mat[0], vec);
|
|
normalize_v3(mat[2]);
|
|
cross_v3_v3v3(mat[1], mat[2], mat[0]);
|
|
}
|
|
break;
|
|
case 1:
|
|
if (dot_v3v3(mat[1], mat[0]) < 1) {
|
|
cross_v3_v3v3(mat[2], mat[0], mat[1]);
|
|
normalize_v3(mat[2]);
|
|
cross_v3_v3v3(mat[0], mat[1], mat[2]);
|
|
}
|
|
else if (dot_v3v3(mat[0], mat[2]) < 1) {
|
|
cross_v3_v3v3(mat[0], mat[1], mat[2]);
|
|
normalize_v3(mat[0]);
|
|
cross_v3_v3v3(mat[2], mat[0], mat[1]);
|
|
}
|
|
else {
|
|
float vec[3];
|
|
|
|
vec[0] = mat[1][1];
|
|
vec[1] = mat[1][2];
|
|
vec[2] = mat[1][0];
|
|
|
|
cross_v3_v3v3(mat[0], mat[1], vec);
|
|
normalize_v3(mat[0]);
|
|
cross_v3_v3v3(mat[2], mat[0], mat[1]);
|
|
}
|
|
break;
|
|
case 2:
|
|
if (dot_v3v3(mat[2], mat[0]) < 1) {
|
|
cross_v3_v3v3(mat[1], mat[2], mat[0]);
|
|
normalize_v3(mat[1]);
|
|
cross_v3_v3v3(mat[0], mat[1], mat[2]);
|
|
}
|
|
else if (dot_v3v3(mat[2], mat[1]) < 1) {
|
|
cross_v3_v3v3(mat[0], mat[1], mat[2]);
|
|
normalize_v3(mat[0]);
|
|
cross_v3_v3v3(mat[1], mat[2], mat[0]);
|
|
}
|
|
else {
|
|
float vec[3];
|
|
|
|
vec[0] = mat[2][1];
|
|
vec[1] = mat[2][2];
|
|
vec[2] = mat[2][0];
|
|
|
|
cross_v3_v3v3(mat[0], vec, mat[2]);
|
|
normalize_v3(mat[0]);
|
|
cross_v3_v3v3(mat[1], mat[2], mat[0]);
|
|
}
|
|
break;
|
|
default:
|
|
BLI_assert(0);
|
|
break;
|
|
}
|
|
mul_v3_fl(mat[0], size[0]);
|
|
mul_v3_fl(mat[1], size[1]);
|
|
mul_v3_fl(mat[2], size[2]);
|
|
}
|
|
|
|
bool is_orthogonal_m3(const float m[3][3])
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
for (j = 0; j < i; j++) {
|
|
if (fabsf(dot_v3v3(m[i], m[j])) > 1e-5f) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool is_orthogonal_m4(const float m[4][4])
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
for (j = 0; j < i; j++) {
|
|
if (fabsf(dot_v4v4(m[i], m[j])) > 1e-5f) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool is_orthonormal_m3(const float m[3][3])
|
|
{
|
|
if (is_orthogonal_m3(m)) {
|
|
int i;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
if (fabsf(dot_v3v3(m[i], m[i]) - 1) > 1e-5f) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool is_orthonormal_m4(const float m[4][4])
|
|
{
|
|
if (is_orthogonal_m4(m)) {
|
|
int i;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
if (fabsf(dot_v4v4(m[i], m[i]) - 1) > 1e-5f) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool is_uniform_scaled_m3(const float m[3][3])
|
|
{
|
|
const float eps = 1e-7f;
|
|
float t[3][3];
|
|
float l1, l2, l3, l4, l5, l6;
|
|
|
|
transpose_m3_m3(t, m);
|
|
|
|
l1 = len_squared_v3(m[0]);
|
|
l2 = len_squared_v3(m[1]);
|
|
l3 = len_squared_v3(m[2]);
|
|
|
|
l4 = len_squared_v3(t[0]);
|
|
l5 = len_squared_v3(t[1]);
|
|
l6 = len_squared_v3(t[2]);
|
|
|
|
if (fabsf(l2 - l1) <= eps && fabsf(l3 - l1) <= eps && fabsf(l4 - l1) <= eps &&
|
|
fabsf(l5 - l1) <= eps && fabsf(l6 - l1) <= eps) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool is_uniform_scaled_m4(const float m[4][4])
|
|
{
|
|
float t[3][3];
|
|
copy_m3_m4(t, m);
|
|
return is_uniform_scaled_m3(t);
|
|
}
|
|
|
|
void normalize_m3_ex(float mat[3][3], float r_scale[3])
|
|
{
|
|
int i;
|
|
for (i = 0; i < 3; i++) {
|
|
r_scale[i] = normalize_v3(mat[i]);
|
|
}
|
|
}
|
|
void normalize_m3(float mat[3][3])
|
|
{
|
|
int i;
|
|
for (i = 0; i < 3; i++) {
|
|
normalize_v3(mat[i]);
|
|
}
|
|
}
|
|
|
|
void normalize_m3_m3_ex(float rmat[3][3], const float mat[3][3], float r_scale[3])
|
|
{
|
|
int i;
|
|
for (i = 0; i < 3; i++) {
|
|
r_scale[i] = normalize_v3_v3(rmat[i], mat[i]);
|
|
}
|
|
}
|
|
void normalize_m3_m3(float rmat[3][3], const float mat[3][3])
|
|
{
|
|
int i;
|
|
for (i = 0; i < 3; i++) {
|
|
normalize_v3_v3(rmat[i], mat[i]);
|
|
}
|
|
}
|
|
|
|
void normalize_m4_ex(float mat[4][4], float r_scale[3])
|
|
{
|
|
int i;
|
|
for (i = 0; i < 3; i++) {
|
|
r_scale[i] = normalize_v3(mat[i]);
|
|
if (r_scale[i] != 0.0f) {
|
|
mat[i][3] /= r_scale[i];
|
|
}
|
|
}
|
|
}
|
|
void normalize_m4(float mat[4][4])
|
|
{
|
|
int i;
|
|
for (i = 0; i < 3; i++) {
|
|
float len = normalize_v3(mat[i]);
|
|
if (len != 0.0f) {
|
|
mat[i][3] /= len;
|
|
}
|
|
}
|
|
}
|
|
|
|
void normalize_m4_m4_ex(float rmat[4][4], const float mat[4][4], float r_scale[3])
|
|
{
|
|
int i;
|
|
for (i = 0; i < 3; i++) {
|
|
r_scale[i] = normalize_v3_v3(rmat[i], mat[i]);
|
|
rmat[i][3] = (r_scale[i] != 0.0f) ? (mat[i][3] / r_scale[i]) : mat[i][3];
|
|
}
|
|
copy_v4_v4(rmat[3], mat[3]);
|
|
}
|
|
void normalize_m4_m4(float rmat[4][4], const float mat[4][4])
|
|
{
|
|
int i;
|
|
for (i = 0; i < 3; i++) {
|
|
float len = normalize_v3_v3(rmat[i], mat[i]);
|
|
rmat[i][3] = (len != 0.0f) ? (mat[i][3] / len) : mat[i][3];
|
|
}
|
|
copy_v4_v4(rmat[3], mat[3]);
|
|
}
|
|
|
|
void adjoint_m2_m2(float m1[2][2], const float m[2][2])
|
|
{
|
|
BLI_assert(m1 != m);
|
|
m1[0][0] = m[1][1];
|
|
m1[0][1] = -m[0][1];
|
|
m1[1][0] = -m[1][0];
|
|
m1[1][1] = m[0][0];
|
|
}
|
|
|
|
void adjoint_m3_m3(float m1[3][3], const float m[3][3])
|
|
{
|
|
BLI_assert(m1 != m);
|
|
m1[0][0] = m[1][1] * m[2][2] - m[1][2] * m[2][1];
|
|
m1[0][1] = -m[0][1] * m[2][2] + m[0][2] * m[2][1];
|
|
m1[0][2] = m[0][1] * m[1][2] - m[0][2] * m[1][1];
|
|
|
|
m1[1][0] = -m[1][0] * m[2][2] + m[1][2] * m[2][0];
|
|
m1[1][1] = m[0][0] * m[2][2] - m[0][2] * m[2][0];
|
|
m1[1][2] = -m[0][0] * m[1][2] + m[0][2] * m[1][0];
|
|
|
|
m1[2][0] = m[1][0] * m[2][1] - m[1][1] * m[2][0];
|
|
m1[2][1] = -m[0][0] * m[2][1] + m[0][1] * m[2][0];
|
|
m1[2][2] = m[0][0] * m[1][1] - m[0][1] * m[1][0];
|
|
}
|
|
|
|
void adjoint_m4_m4(float out[4][4], const float in[4][4]) /* out = ADJ(in) */
|
|
{
|
|
float a1, a2, a3, a4, b1, b2, b3, b4;
|
|
float c1, c2, c3, c4, d1, d2, d3, d4;
|
|
|
|
a1 = in[0][0];
|
|
b1 = in[0][1];
|
|
c1 = in[0][2];
|
|
d1 = in[0][3];
|
|
|
|
a2 = in[1][0];
|
|
b2 = in[1][1];
|
|
c2 = in[1][2];
|
|
d2 = in[1][3];
|
|
|
|
a3 = in[2][0];
|
|
b3 = in[2][1];
|
|
c3 = in[2][2];
|
|
d3 = in[2][3];
|
|
|
|
a4 = in[3][0];
|
|
b4 = in[3][1];
|
|
c4 = in[3][2];
|
|
d4 = in[3][3];
|
|
|
|
out[0][0] = determinant_m3(b2, b3, b4, c2, c3, c4, d2, d3, d4);
|
|
out[1][0] = -determinant_m3(a2, a3, a4, c2, c3, c4, d2, d3, d4);
|
|
out[2][0] = determinant_m3(a2, a3, a4, b2, b3, b4, d2, d3, d4);
|
|
out[3][0] = -determinant_m3(a2, a3, a4, b2, b3, b4, c2, c3, c4);
|
|
|
|
out[0][1] = -determinant_m3(b1, b3, b4, c1, c3, c4, d1, d3, d4);
|
|
out[1][1] = determinant_m3(a1, a3, a4, c1, c3, c4, d1, d3, d4);
|
|
out[2][1] = -determinant_m3(a1, a3, a4, b1, b3, b4, d1, d3, d4);
|
|
out[3][1] = determinant_m3(a1, a3, a4, b1, b3, b4, c1, c3, c4);
|
|
|
|
out[0][2] = determinant_m3(b1, b2, b4, c1, c2, c4, d1, d2, d4);
|
|
out[1][2] = -determinant_m3(a1, a2, a4, c1, c2, c4, d1, d2, d4);
|
|
out[2][2] = determinant_m3(a1, a2, a4, b1, b2, b4, d1, d2, d4);
|
|
out[3][2] = -determinant_m3(a1, a2, a4, b1, b2, b4, c1, c2, c4);
|
|
|
|
out[0][3] = -determinant_m3(b1, b2, b3, c1, c2, c3, d1, d2, d3);
|
|
out[1][3] = determinant_m3(a1, a2, a3, c1, c2, c3, d1, d2, d3);
|
|
out[2][3] = -determinant_m3(a1, a2, a3, b1, b2, b3, d1, d2, d3);
|
|
out[3][3] = determinant_m3(a1, a2, a3, b1, b2, b3, c1, c2, c3);
|
|
}
|
|
|
|
float determinant_m2(float a, float b, float c, float d)
|
|
{
|
|
|
|
return a * d - b * c;
|
|
}
|
|
|
|
float determinant_m3(
|
|
float a1, float a2, float a3, float b1, float b2, float b3, float c1, float c2, float c3)
|
|
{
|
|
float ans;
|
|
|
|
ans = (a1 * determinant_m2(b2, b3, c2, c3) - b1 * determinant_m2(a2, a3, c2, c3) +
|
|
c1 * determinant_m2(a2, a3, b2, b3));
|
|
|
|
return ans;
|
|
}
|
|
|
|
float determinant_m4(const float m[4][4])
|
|
{
|
|
float ans;
|
|
float a1, a2, a3, a4, b1, b2, b3, b4, c1, c2, c3, c4, d1, d2, d3, d4;
|
|
|
|
a1 = m[0][0];
|
|
b1 = m[0][1];
|
|
c1 = m[0][2];
|
|
d1 = m[0][3];
|
|
|
|
a2 = m[1][0];
|
|
b2 = m[1][1];
|
|
c2 = m[1][2];
|
|
d2 = m[1][3];
|
|
|
|
a3 = m[2][0];
|
|
b3 = m[2][1];
|
|
c3 = m[2][2];
|
|
d3 = m[2][3];
|
|
|
|
a4 = m[3][0];
|
|
b4 = m[3][1];
|
|
c4 = m[3][2];
|
|
d4 = m[3][3];
|
|
|
|
ans = (a1 * determinant_m3(b2, b3, b4, c2, c3, c4, d2, d3, d4) -
|
|
b1 * determinant_m3(a2, a3, a4, c2, c3, c4, d2, d3, d4) +
|
|
c1 * determinant_m3(a2, a3, a4, b2, b3, b4, d2, d3, d4) -
|
|
d1 * determinant_m3(a2, a3, a4, b2, b3, b4, c2, c3, c4));
|
|
|
|
return ans;
|
|
}
|
|
|
|
/****************************** Transformations ******************************/
|
|
|
|
void size_to_mat3(float mat[3][3], const float size[3])
|
|
{
|
|
mat[0][0] = size[0];
|
|
mat[0][1] = 0.0f;
|
|
mat[0][2] = 0.0f;
|
|
mat[1][1] = size[1];
|
|
mat[1][0] = 0.0f;
|
|
mat[1][2] = 0.0f;
|
|
mat[2][2] = size[2];
|
|
mat[2][1] = 0.0f;
|
|
mat[2][0] = 0.0f;
|
|
}
|
|
|
|
void size_to_mat4(float mat[4][4], const float size[3])
|
|
{
|
|
mat[0][0] = size[0];
|
|
mat[0][1] = 0.0f;
|
|
mat[0][2] = 0.0f;
|
|
mat[0][3] = 0.0f;
|
|
mat[1][0] = 0.0f;
|
|
mat[1][1] = size[1];
|
|
mat[1][2] = 0.0f;
|
|
mat[1][3] = 0.0f;
|
|
mat[2][0] = 0.0f;
|
|
mat[2][1] = 0.0f;
|
|
mat[2][2] = size[2];
|
|
mat[2][3] = 0.0f;
|
|
mat[3][0] = 0.0f;
|
|
mat[3][1] = 0.0f;
|
|
mat[3][2] = 0.0f;
|
|
mat[3][3] = 1.0f;
|
|
}
|
|
|
|
void mat3_to_size(float size[3], const float mat[3][3])
|
|
{
|
|
size[0] = len_v3(mat[0]);
|
|
size[1] = len_v3(mat[1]);
|
|
size[2] = len_v3(mat[2]);
|
|
}
|
|
|
|
void mat4_to_size(float size[3], const float mat[4][4])
|
|
{
|
|
size[0] = len_v3(mat[0]);
|
|
size[1] = len_v3(mat[1]);
|
|
size[2] = len_v3(mat[2]);
|
|
}
|
|
|
|
/**
|
|
* This computes the overall volume scale factor of a transformation matrix.
|
|
* For an orthogonal matrix, it is the product of all three scale values.
|
|
* Returns a negative value if the transform is flipped by negative scale.
|
|
*/
|
|
float mat3_to_volume_scale(const float mat[3][3])
|
|
{
|
|
return determinant_m3_array(mat);
|
|
}
|
|
|
|
float mat4_to_volume_scale(const float mat[4][4])
|
|
{
|
|
return determinant_m4_mat3_array(mat);
|
|
}
|
|
|
|
/**
|
|
* This gets the average scale of a matrix, only use when your scaling
|
|
* data that has no idea of scale axis, examples are bone-envelope-radius
|
|
* and curve radius.
|
|
*/
|
|
float mat3_to_scale(const float mat[3][3])
|
|
{
|
|
/* unit length vector */
|
|
float unit_vec[3];
|
|
copy_v3_fl(unit_vec, (float)M_SQRT1_3);
|
|
mul_m3_v3(mat, unit_vec);
|
|
return len_v3(unit_vec);
|
|
}
|
|
|
|
float mat4_to_scale(const float mat[4][4])
|
|
{
|
|
/* unit length vector */
|
|
float unit_vec[3];
|
|
copy_v3_fl(unit_vec, (float)M_SQRT1_3);
|
|
mul_mat3_m4_v3(mat, unit_vec);
|
|
return len_v3(unit_vec);
|
|
}
|
|
|
|
/** Return 2D scale (in XY plane) of given mat4. */
|
|
float mat4_to_xy_scale(const float M[4][4])
|
|
{
|
|
/* unit length vector in xy plane */
|
|
float unit_vec[3] = {(float)M_SQRT1_2, (float)M_SQRT1_2, 0.0f};
|
|
mul_mat3_m4_v3(M, unit_vec);
|
|
return len_v3(unit_vec);
|
|
}
|
|
|
|
void mat3_to_rot_size(float rot[3][3], float size[3], const float mat3[3][3])
|
|
{
|
|
/* keep rot as a 3x3 matrix, the caller can convert into a quat or euler */
|
|
size[0] = normalize_v3_v3(rot[0], mat3[0]);
|
|
size[1] = normalize_v3_v3(rot[1], mat3[1]);
|
|
size[2] = normalize_v3_v3(rot[2], mat3[2]);
|
|
if (UNLIKELY(is_negative_m3(rot))) {
|
|
negate_m3(rot);
|
|
negate_v3(size);
|
|
}
|
|
}
|
|
|
|
void mat4_to_loc_rot_size(float loc[3], float rot[3][3], float size[3], const float wmat[4][4])
|
|
{
|
|
float mat3[3][3]; /* wmat -> 3x3 */
|
|
|
|
copy_m3_m4(mat3, wmat);
|
|
mat3_to_rot_size(rot, size, mat3);
|
|
|
|
/* location */
|
|
copy_v3_v3(loc, wmat[3]);
|
|
}
|
|
|
|
void mat4_to_loc_quat(float loc[3], float quat[4], const float wmat[4][4])
|
|
{
|
|
float mat3[3][3];
|
|
float mat3_n[3][3]; /* normalized mat3 */
|
|
|
|
copy_m3_m4(mat3, wmat);
|
|
normalize_m3_m3(mat3_n, mat3);
|
|
|
|
/* so scale doesn't interfere with rotation [#24291] */
|
|
/* note: this is a workaround for negative matrix not working for rotation conversion, FIXME */
|
|
if (is_negative_m3(mat3)) {
|
|
negate_m3(mat3_n);
|
|
}
|
|
|
|
mat3_normalized_to_quat(quat, mat3_n);
|
|
copy_v3_v3(loc, wmat[3]);
|
|
}
|
|
|
|
void mat4_decompose(float loc[3], float quat[4], float size[3], const float wmat[4][4])
|
|
{
|
|
float rot[3][3];
|
|
mat4_to_loc_rot_size(loc, rot, size, wmat);
|
|
mat3_normalized_to_quat(quat, rot);
|
|
}
|
|
|
|
/**
|
|
* Right polar decomposition:
|
|
* M = UP
|
|
*
|
|
* U is the 'rotation'-like component, the closest orthogonal matrix to M.
|
|
* P is the 'scaling'-like component, defined in U space.
|
|
*
|
|
* See https://en.wikipedia.org/wiki/Polar_decomposition for more.
|
|
*/
|
|
#ifndef MATH_STANDALONE
|
|
void mat3_polar_decompose(const float mat3[3][3], float r_U[3][3], float r_P[3][3])
|
|
{
|
|
/* From svd decomposition (M = WSV*), we have:
|
|
* U = WV*
|
|
* P = VSV*
|
|
*/
|
|
float W[3][3], S[3][3], V[3][3], Vt[3][3];
|
|
float sval[3];
|
|
|
|
BLI_svd_m3(mat3, W, sval, V);
|
|
|
|
size_to_mat3(S, sval);
|
|
|
|
transpose_m3_m3(Vt, V);
|
|
mul_m3_m3m3(r_U, W, Vt);
|
|
mul_m3_series(r_P, V, S, Vt);
|
|
}
|
|
#endif
|
|
|
|
void scale_m3_fl(float m[3][3], float scale)
|
|
{
|
|
m[0][0] = m[1][1] = m[2][2] = scale;
|
|
m[0][1] = m[0][2] = 0.0;
|
|
m[1][0] = m[1][2] = 0.0;
|
|
m[2][0] = m[2][1] = 0.0;
|
|
}
|
|
|
|
void scale_m4_fl(float m[4][4], float scale)
|
|
{
|
|
m[0][0] = m[1][1] = m[2][2] = scale;
|
|
m[3][3] = 1.0;
|
|
m[0][1] = m[0][2] = m[0][3] = 0.0;
|
|
m[1][0] = m[1][2] = m[1][3] = 0.0;
|
|
m[2][0] = m[2][1] = m[2][3] = 0.0;
|
|
m[3][0] = m[3][1] = m[3][2] = 0.0;
|
|
}
|
|
|
|
void translate_m4(float mat[4][4], float Tx, float Ty, float Tz)
|
|
{
|
|
mat[3][0] += (Tx * mat[0][0] + Ty * mat[1][0] + Tz * mat[2][0]);
|
|
mat[3][1] += (Tx * mat[0][1] + Ty * mat[1][1] + Tz * mat[2][1]);
|
|
mat[3][2] += (Tx * mat[0][2] + Ty * mat[1][2] + Tz * mat[2][2]);
|
|
}
|
|
|
|
/* TODO: enum for axis? */
|
|
/**
|
|
* Rotate a matrix in-place.
|
|
*
|
|
* \note To create a new rotation matrix see:
|
|
* #axis_angle_to_mat4_single, #axis_angle_to_mat3_single, #angle_to_mat2
|
|
* (axis & angle args are compatible).
|
|
*/
|
|
void rotate_m4(float mat[4][4], const char axis, const float angle)
|
|
{
|
|
const float angle_cos = cosf(angle);
|
|
const float angle_sin = sinf(angle);
|
|
|
|
assert(axis >= 'X' && axis <= 'Z');
|
|
|
|
switch (axis) {
|
|
case 'X':
|
|
for (int col = 0; col < 4; col++) {
|
|
float temp = angle_cos * mat[1][col] + angle_sin * mat[2][col];
|
|
mat[2][col] = -angle_sin * mat[1][col] + angle_cos * mat[2][col];
|
|
mat[1][col] = temp;
|
|
}
|
|
break;
|
|
|
|
case 'Y':
|
|
for (int col = 0; col < 4; col++) {
|
|
float temp = angle_cos * mat[0][col] - angle_sin * mat[2][col];
|
|
mat[2][col] = angle_sin * mat[0][col] + angle_cos * mat[2][col];
|
|
mat[0][col] = temp;
|
|
}
|
|
break;
|
|
|
|
case 'Z':
|
|
for (int col = 0; col < 4; col++) {
|
|
float temp = angle_cos * mat[0][col] + angle_sin * mat[1][col];
|
|
mat[1][col] = -angle_sin * mat[0][col] + angle_cos * mat[1][col];
|
|
mat[0][col] = temp;
|
|
}
|
|
break;
|
|
default:
|
|
BLI_assert(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Scale or rotate around a pivot point,
|
|
* a convenience function to avoid having to do inline.
|
|
*
|
|
* Since its common to make a scale/rotation matrix that pivots around an arbitrary point.
|
|
*
|
|
* Typical use case is to make 3x3 matrix, copy to 4x4, then pass to this function.
|
|
*/
|
|
void transform_pivot_set_m4(float mat[4][4], const float pivot[3])
|
|
{
|
|
float tmat[4][4];
|
|
|
|
unit_m4(tmat);
|
|
|
|
copy_v3_v3(tmat[3], pivot);
|
|
mul_m4_m4m4(mat, tmat, mat);
|
|
|
|
/* invert the matrix */
|
|
negate_v3(tmat[3]);
|
|
mul_m4_m4m4(mat, mat, tmat);
|
|
}
|
|
|
|
void blend_m3_m3m3(float out[3][3],
|
|
const float dst[3][3],
|
|
const float src[3][3],
|
|
const float srcweight)
|
|
{
|
|
float srot[3][3], drot[3][3];
|
|
float squat[4], dquat[4], fquat[4];
|
|
float sscale[3], dscale[3], fsize[3];
|
|
float rmat[3][3], smat[3][3];
|
|
|
|
mat3_to_rot_size(drot, dscale, dst);
|
|
mat3_to_rot_size(srot, sscale, src);
|
|
|
|
mat3_normalized_to_quat(dquat, drot);
|
|
mat3_normalized_to_quat(squat, srot);
|
|
|
|
/* do blending */
|
|
interp_qt_qtqt(fquat, dquat, squat, srcweight);
|
|
interp_v3_v3v3(fsize, dscale, sscale, srcweight);
|
|
|
|
/* compose new matrix */
|
|
quat_to_mat3(rmat, fquat);
|
|
size_to_mat3(smat, fsize);
|
|
mul_m3_m3m3(out, rmat, smat);
|
|
}
|
|
|
|
void blend_m4_m4m4(float out[4][4],
|
|
const float dst[4][4],
|
|
const float src[4][4],
|
|
const float srcweight)
|
|
{
|
|
float sloc[3], dloc[3], floc[3];
|
|
float srot[3][3], drot[3][3];
|
|
float squat[4], dquat[4], fquat[4];
|
|
float sscale[3], dscale[3], fsize[3];
|
|
|
|
mat4_to_loc_rot_size(dloc, drot, dscale, dst);
|
|
mat4_to_loc_rot_size(sloc, srot, sscale, src);
|
|
|
|
mat3_normalized_to_quat(dquat, drot);
|
|
mat3_normalized_to_quat(squat, srot);
|
|
|
|
/* do blending */
|
|
interp_v3_v3v3(floc, dloc, sloc, srcweight);
|
|
interp_qt_qtqt(fquat, dquat, squat, srcweight);
|
|
interp_v3_v3v3(fsize, dscale, sscale, srcweight);
|
|
|
|
/* compose new matrix */
|
|
loc_quat_size_to_mat4(out, floc, fquat, fsize);
|
|
}
|
|
|
|
/* for builds without Eigen */
|
|
#ifndef MATH_STANDALONE
|
|
/**
|
|
* A polar-decomposition-based interpolation between matrix A and matrix B.
|
|
*
|
|
* \note This code is about five times slower as the 'naive' interpolation done by #blend_m3_m3m3
|
|
* (it typically remains below 2 usec on an average i74700,
|
|
* while #blend_m3_m3m3 remains below 0.4 usec).
|
|
* However, it gives expected results even with non-uniformly scaled matrices,
|
|
* see T46418 for an example.
|
|
*
|
|
* Based on "Matrix Animation and Polar Decomposition", by Ken Shoemake & Tom Duff
|
|
*
|
|
* \param R: Resulting interpolated matrix.
|
|
* \param A: Input matrix which is totally effective with `t = 0.0`.
|
|
* \param B: Input matrix which is totally effective with `t = 1.0`.
|
|
* \param t: Interpolation factor.
|
|
*/
|
|
void interp_m3_m3m3(float R[3][3], const float A[3][3], const float B[3][3], const float t)
|
|
{
|
|
/* 'Rotation' component ('U' part of polar decomposition,
|
|
* the closest orthogonal matrix to M3 rot/scale
|
|
* transformation matrix), spherically interpolated. */
|
|
float U_A[3][3], U_B[3][3], U[3][3];
|
|
float quat_A[4], quat_B[4], quat[4];
|
|
/* 'Scaling' component ('P' part of polar decomposition, i.e. scaling in U-defined space),
|
|
* linearly interpolated. */
|
|
float P_A[3][3], P_B[3][3], P[3][3];
|
|
|
|
int i;
|
|
|
|
mat3_polar_decompose(A, U_A, P_A);
|
|
mat3_polar_decompose(B, U_B, P_B);
|
|
|
|
mat3_to_quat(quat_A, U_A);
|
|
mat3_to_quat(quat_B, U_B);
|
|
interp_qt_qtqt(quat, quat_A, quat_B, t);
|
|
quat_to_mat3(U, quat);
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
interp_v3_v3v3(P[i], P_A[i], P_B[i], t);
|
|
}
|
|
|
|
/* And we reconstruct rot/scale matrix from interpolated polar components */
|
|
mul_m3_m3m3(R, U, P);
|
|
}
|
|
|
|
/**
|
|
* Complete transform matrix interpolation,
|
|
* based on polar-decomposition-based interpolation from #interp_m3_m3m3.
|
|
*
|
|
* \param R: Resulting interpolated matrix.
|
|
* \param A: Input matrix which is totally effective with `t = 0.0`.
|
|
* \param B: Input matrix which is totally effective with `t = 1.0`.
|
|
* \param t: Interpolation factor.
|
|
*/
|
|
void interp_m4_m4m4(float R[4][4], const float A[4][4], const float B[4][4], const float t)
|
|
{
|
|
float A3[3][3], B3[3][3], R3[3][3];
|
|
|
|
/* Location component, linearly interpolated. */
|
|
float loc_A[3], loc_B[3], loc[3];
|
|
|
|
copy_v3_v3(loc_A, A[3]);
|
|
copy_v3_v3(loc_B, B[3]);
|
|
interp_v3_v3v3(loc, loc_A, loc_B, t);
|
|
|
|
copy_m3_m4(A3, A);
|
|
copy_m3_m4(B3, B);
|
|
|
|
interp_m3_m3m3(R3, A3, B3, t);
|
|
|
|
copy_m4_m3(R, R3);
|
|
copy_v3_v3(R[3], loc);
|
|
}
|
|
#endif /* MATH_STANDALONE */
|
|
|
|
bool is_negative_m3(const float mat[3][3])
|
|
{
|
|
float vec[3];
|
|
cross_v3_v3v3(vec, mat[0], mat[1]);
|
|
return (dot_v3v3(vec, mat[2]) < 0.0f);
|
|
}
|
|
|
|
bool is_negative_m4(const float mat[4][4])
|
|
{
|
|
float vec[3];
|
|
cross_v3_v3v3(vec, mat[0], mat[1]);
|
|
return (dot_v3v3(vec, mat[2]) < 0.0f);
|
|
}
|
|
|
|
bool is_zero_m3(const float mat[3][3])
|
|
{
|
|
return (is_zero_v3(mat[0]) && is_zero_v3(mat[1]) && is_zero_v3(mat[2]));
|
|
}
|
|
bool is_zero_m4(const float mat[4][4])
|
|
{
|
|
return (is_zero_v4(mat[0]) && is_zero_v4(mat[1]) && is_zero_v4(mat[2]) && is_zero_v4(mat[3]));
|
|
}
|
|
|
|
bool equals_m3m3(const float mat1[3][3], const float mat2[3][3])
|
|
{
|
|
return (equals_v3v3(mat1[0], mat2[0]) && equals_v3v3(mat1[1], mat2[1]) &&
|
|
equals_v3v3(mat1[2], mat2[2]));
|
|
}
|
|
|
|
bool equals_m4m4(const float mat1[4][4], const float mat2[4][4])
|
|
{
|
|
return (equals_v4v4(mat1[0], mat2[0]) && equals_v4v4(mat1[1], mat2[1]) &&
|
|
equals_v4v4(mat1[2], mat2[2]) && equals_v4v4(mat1[3], mat2[3]));
|
|
}
|
|
|
|
/**
|
|
* Make a 4x4 matrix out of 3 transform components.
|
|
* Matrices are made in the order: `scale * rot * loc`
|
|
*
|
|
* TODO: need to have a version that allows for rotation order...
|
|
*/
|
|
void loc_eul_size_to_mat4(float mat[4][4],
|
|
const float loc[3],
|
|
const float eul[3],
|
|
const float size[3])
|
|
{
|
|
float rmat[3][3], smat[3][3], tmat[3][3];
|
|
|
|
/* initialize new matrix */
|
|
unit_m4(mat);
|
|
|
|
/* make rotation + scaling part */
|
|
eul_to_mat3(rmat, eul);
|
|
size_to_mat3(smat, size);
|
|
mul_m3_m3m3(tmat, rmat, smat);
|
|
|
|
/* copy rot/scale part to output matrix*/
|
|
copy_m4_m3(mat, tmat);
|
|
|
|
/* copy location to matrix */
|
|
mat[3][0] = loc[0];
|
|
mat[3][1] = loc[1];
|
|
mat[3][2] = loc[2];
|
|
}
|
|
|
|
/**
|
|
* Make a 4x4 matrix out of 3 transform components.
|
|
* Matrices are made in the order: `scale * rot * loc`
|
|
*/
|
|
void loc_eulO_size_to_mat4(float mat[4][4],
|
|
const float loc[3],
|
|
const float eul[3],
|
|
const float size[3],
|
|
const short rotOrder)
|
|
{
|
|
float rmat[3][3], smat[3][3], tmat[3][3];
|
|
|
|
/* initialize new matrix */
|
|
unit_m4(mat);
|
|
|
|
/* make rotation + scaling part */
|
|
eulO_to_mat3(rmat, eul, rotOrder);
|
|
size_to_mat3(smat, size);
|
|
mul_m3_m3m3(tmat, rmat, smat);
|
|
|
|
/* copy rot/scale part to output matrix*/
|
|
copy_m4_m3(mat, tmat);
|
|
|
|
/* copy location to matrix */
|
|
mat[3][0] = loc[0];
|
|
mat[3][1] = loc[1];
|
|
mat[3][2] = loc[2];
|
|
}
|
|
|
|
/**
|
|
* Make a 4x4 matrix out of 3 transform components.
|
|
* Matrices are made in the order: `scale * rot * loc`
|
|
*/
|
|
void loc_quat_size_to_mat4(float mat[4][4],
|
|
const float loc[3],
|
|
const float quat[4],
|
|
const float size[3])
|
|
{
|
|
float rmat[3][3], smat[3][3], tmat[3][3];
|
|
|
|
/* initialize new matrix */
|
|
unit_m4(mat);
|
|
|
|
/* make rotation + scaling part */
|
|
quat_to_mat3(rmat, quat);
|
|
size_to_mat3(smat, size);
|
|
mul_m3_m3m3(tmat, rmat, smat);
|
|
|
|
/* copy rot/scale part to output matrix*/
|
|
copy_m4_m3(mat, tmat);
|
|
|
|
/* copy location to matrix */
|
|
mat[3][0] = loc[0];
|
|
mat[3][1] = loc[1];
|
|
mat[3][2] = loc[2];
|
|
}
|
|
|
|
void loc_axisangle_size_to_mat4(float mat[4][4],
|
|
const float loc[3],
|
|
const float axis[3],
|
|
const float angle,
|
|
const float size[3])
|
|
{
|
|
float q[4];
|
|
axis_angle_to_quat(q, axis, angle);
|
|
loc_quat_size_to_mat4(mat, loc, q, size);
|
|
}
|
|
|
|
/*********************************** Other ***********************************/
|
|
|
|
void print_m3(const char *str, const float m[3][3])
|
|
{
|
|
printf("%s\n", str);
|
|
printf("%f %f %f\n", m[0][0], m[1][0], m[2][0]);
|
|
printf("%f %f %f\n", m[0][1], m[1][1], m[2][1]);
|
|
printf("%f %f %f\n", m[0][2], m[1][2], m[2][2]);
|
|
printf("\n");
|
|
}
|
|
|
|
void print_m4(const char *str, const float m[4][4])
|
|
{
|
|
printf("%s\n", str);
|
|
printf("%f %f %f %f\n", m[0][0], m[1][0], m[2][0], m[3][0]);
|
|
printf("%f %f %f %f\n", m[0][1], m[1][1], m[2][1], m[3][1]);
|
|
printf("%f %f %f %f\n", m[0][2], m[1][2], m[2][2], m[3][2]);
|
|
printf("%f %f %f %f\n", m[0][3], m[1][3], m[2][3], m[3][3]);
|
|
printf("\n");
|
|
}
|
|
|
|
/*********************************** SVD ************************************
|
|
* from TNT matrix library
|
|
*
|
|
* Compute the Single Value Decomposition of an arbitrary matrix A
|
|
* That is compute the 3 matrices U,W,V with U column orthogonal (m,n)
|
|
* ,W a diagonal matrix and V an orthogonal square matrix s.t.
|
|
* A = U.W.Vt. From this decomposition it is trivial to compute the
|
|
* (pseudo-inverse) of A as Ainv = V.Winv.tranpose(U).
|
|
*/
|
|
|
|
void svd_m4(float U[4][4], float s[4], float V[4][4], float A_[4][4])
|
|
{
|
|
float A[4][4];
|
|
float work1[4], work2[4];
|
|
int m = 4;
|
|
int n = 4;
|
|
int maxiter = 200;
|
|
int nu = min_ii(m, n);
|
|
|
|
float *work = work1;
|
|
float *e = work2;
|
|
float eps;
|
|
|
|
int i = 0, j = 0, k = 0, p, pp, iter;
|
|
|
|
/* Reduce A to bidiagonal form, storing the diagonal elements
|
|
* in s and the super-diagonal elements in e. */
|
|
|
|
int nct = min_ii(m - 1, n);
|
|
int nrt = max_ii(0, min_ii(n - 2, m));
|
|
|
|
copy_m4_m4(A, A_);
|
|
zero_m4(U);
|
|
zero_v4(s);
|
|
|
|
for (k = 0; k < max_ii(nct, nrt); k++) {
|
|
if (k < nct) {
|
|
|
|
/* Compute the transformation for the k-th column and
|
|
* place the k-th diagonal in s[k].
|
|
* Compute 2-norm of k-th column without under/overflow. */
|
|
s[k] = 0;
|
|
for (i = k; i < m; i++) {
|
|
s[k] = hypotf(s[k], A[i][k]);
|
|
}
|
|
if (s[k] != 0.0f) {
|
|
float invsk;
|
|
if (A[k][k] < 0.0f) {
|
|
s[k] = -s[k];
|
|
}
|
|
invsk = 1.0f / s[k];
|
|
for (i = k; i < m; i++) {
|
|
A[i][k] *= invsk;
|
|
}
|
|
A[k][k] += 1.0f;
|
|
}
|
|
s[k] = -s[k];
|
|
}
|
|
for (j = k + 1; j < n; j++) {
|
|
if ((k < nct) && (s[k] != 0.0f)) {
|
|
|
|
/* Apply the transformation. */
|
|
|
|
float t = 0;
|
|
for (i = k; i < m; i++) {
|
|
t += A[i][k] * A[i][j];
|
|
}
|
|
t = -t / A[k][k];
|
|
for (i = k; i < m; i++) {
|
|
A[i][j] += t * A[i][k];
|
|
}
|
|
}
|
|
|
|
/* Place the k-th row of A into e for the */
|
|
/* subsequent calculation of the row transformation. */
|
|
|
|
e[j] = A[k][j];
|
|
}
|
|
if (k < nct) {
|
|
|
|
/* Place the transformation in U for subsequent back
|
|
* multiplication. */
|
|
|
|
for (i = k; i < m; i++) {
|
|
U[i][k] = A[i][k];
|
|
}
|
|
}
|
|
if (k < nrt) {
|
|
|
|
/* Compute the k-th row transformation and place the
|
|
* k-th super-diagonal in e[k].
|
|
* Compute 2-norm without under/overflow. */
|
|
e[k] = 0;
|
|
for (i = k + 1; i < n; i++) {
|
|
e[k] = hypotf(e[k], e[i]);
|
|
}
|
|
if (e[k] != 0.0f) {
|
|
float invek;
|
|
if (e[k + 1] < 0.0f) {
|
|
e[k] = -e[k];
|
|
}
|
|
invek = 1.0f / e[k];
|
|
for (i = k + 1; i < n; i++) {
|
|
e[i] *= invek;
|
|
}
|
|
e[k + 1] += 1.0f;
|
|
}
|
|
e[k] = -e[k];
|
|
if ((k + 1 < m) & (e[k] != 0.0f)) {
|
|
float invek1;
|
|
|
|
/* Apply the transformation. */
|
|
|
|
for (i = k + 1; i < m; i++) {
|
|
work[i] = 0.0f;
|
|
}
|
|
for (j = k + 1; j < n; j++) {
|
|
for (i = k + 1; i < m; i++) {
|
|
work[i] += e[j] * A[i][j];
|
|
}
|
|
}
|
|
invek1 = 1.0f / e[k + 1];
|
|
for (j = k + 1; j < n; j++) {
|
|
float t = -e[j] * invek1;
|
|
for (i = k + 1; i < m; i++) {
|
|
A[i][j] += t * work[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Place the transformation in V for subsequent
|
|
* back multiplication. */
|
|
|
|
for (i = k + 1; i < n; i++) {
|
|
V[i][k] = e[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set up the final bidiagonal matrix or order p. */
|
|
|
|
p = min_ii(n, m + 1);
|
|
if (nct < n) {
|
|
s[nct] = A[nct][nct];
|
|
}
|
|
if (m < p) {
|
|
s[p - 1] = 0.0f;
|
|
}
|
|
if (nrt + 1 < p) {
|
|
e[nrt] = A[nrt][p - 1];
|
|
}
|
|
e[p - 1] = 0.0f;
|
|
|
|
/* If required, generate U. */
|
|
|
|
for (j = nct; j < nu; j++) {
|
|
for (i = 0; i < m; i++) {
|
|
U[i][j] = 0.0f;
|
|
}
|
|
U[j][j] = 1.0f;
|
|
}
|
|
for (k = nct - 1; k >= 0; k--) {
|
|
if (s[k] != 0.0f) {
|
|
for (j = k + 1; j < nu; j++) {
|
|
float t = 0;
|
|
for (i = k; i < m; i++) {
|
|
t += U[i][k] * U[i][j];
|
|
}
|
|
t = -t / U[k][k];
|
|
for (i = k; i < m; i++) {
|
|
U[i][j] += t * U[i][k];
|
|
}
|
|
}
|
|
for (i = k; i < m; i++) {
|
|
U[i][k] = -U[i][k];
|
|
}
|
|
U[k][k] = 1.0f + U[k][k];
|
|
for (i = 0; i < k - 1; i++) {
|
|
U[i][k] = 0.0f;
|
|
}
|
|
}
|
|
else {
|
|
for (i = 0; i < m; i++) {
|
|
U[i][k] = 0.0f;
|
|
}
|
|
U[k][k] = 1.0f;
|
|
}
|
|
}
|
|
|
|
/* If required, generate V. */
|
|
|
|
for (k = n - 1; k >= 0; k--) {
|
|
if ((k < nrt) & (e[k] != 0.0f)) {
|
|
for (j = k + 1; j < nu; j++) {
|
|
float t = 0;
|
|
for (i = k + 1; i < n; i++) {
|
|
t += V[i][k] * V[i][j];
|
|
}
|
|
t = -t / V[k + 1][k];
|
|
for (i = k + 1; i < n; i++) {
|
|
V[i][j] += t * V[i][k];
|
|
}
|
|
}
|
|
}
|
|
for (i = 0; i < n; i++) {
|
|
V[i][k] = 0.0f;
|
|
}
|
|
V[k][k] = 1.0f;
|
|
}
|
|
|
|
/* Main iteration loop for the singular values. */
|
|
|
|
pp = p - 1;
|
|
iter = 0;
|
|
eps = powf(2.0f, -52.0f);
|
|
while (p > 0) {
|
|
int kase = 0;
|
|
|
|
/* Test for maximum iterations to avoid infinite loop */
|
|
if (maxiter == 0) {
|
|
break;
|
|
}
|
|
maxiter--;
|
|
|
|
/* This section of the program inspects for
|
|
* negligible elements in the s and e arrays. On
|
|
* completion the variables kase and k are set as follows.
|
|
*
|
|
* kase = 1: if s(p) and e[k - 1] are negligible and k<p
|
|
* kase = 2: if s(k) is negligible and k<p
|
|
* kase = 3: if e[k - 1] is negligible, k<p, and
|
|
* s(k), ..., s(p) are not negligible (qr step).
|
|
* kase = 4: if e(p - 1) is negligible (convergence). */
|
|
|
|
for (k = p - 2; k >= -1; k--) {
|
|
if (k == -1) {
|
|
break;
|
|
}
|
|
if (fabsf(e[k]) <= eps * (fabsf(s[k]) + fabsf(s[k + 1]))) {
|
|
e[k] = 0.0f;
|
|
break;
|
|
}
|
|
}
|
|
if (k == p - 2) {
|
|
kase = 4;
|
|
}
|
|
else {
|
|
int ks;
|
|
for (ks = p - 1; ks >= k; ks--) {
|
|
float t;
|
|
if (ks == k) {
|
|
break;
|
|
}
|
|
t = (ks != p ? fabsf(e[ks]) : 0.f) + (ks != k + 1 ? fabsf(e[ks - 1]) : 0.0f);
|
|
if (fabsf(s[ks]) <= eps * t) {
|
|
s[ks] = 0.0f;
|
|
break;
|
|
}
|
|
}
|
|
if (ks == k) {
|
|
kase = 3;
|
|
}
|
|
else if (ks == p - 1) {
|
|
kase = 1;
|
|
}
|
|
else {
|
|
kase = 2;
|
|
k = ks;
|
|
}
|
|
}
|
|
k++;
|
|
|
|
/* Perform the task indicated by kase. */
|
|
|
|
switch (kase) {
|
|
|
|
/* Deflate negligible s(p). */
|
|
|
|
case 1: {
|
|
float f = e[p - 2];
|
|
e[p - 2] = 0.0f;
|
|
for (j = p - 2; j >= k; j--) {
|
|
float t = hypotf(s[j], f);
|
|
float invt = 1.0f / t;
|
|
float cs = s[j] * invt;
|
|
float sn = f * invt;
|
|
s[j] = t;
|
|
if (j != k) {
|
|
f = -sn * e[j - 1];
|
|
e[j - 1] = cs * e[j - 1];
|
|
}
|
|
|
|
for (i = 0; i < n; i++) {
|
|
t = cs * V[i][j] + sn * V[i][p - 1];
|
|
V[i][p - 1] = -sn * V[i][j] + cs * V[i][p - 1];
|
|
V[i][j] = t;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Split at negligible s(k). */
|
|
|
|
case 2: {
|
|
float f = e[k - 1];
|
|
e[k - 1] = 0.0f;
|
|
for (j = k; j < p; j++) {
|
|
float t = hypotf(s[j], f);
|
|
float invt = 1.0f / t;
|
|
float cs = s[j] * invt;
|
|
float sn = f * invt;
|
|
s[j] = t;
|
|
f = -sn * e[j];
|
|
e[j] = cs * e[j];
|
|
|
|
for (i = 0; i < m; i++) {
|
|
t = cs * U[i][j] + sn * U[i][k - 1];
|
|
U[i][k - 1] = -sn * U[i][j] + cs * U[i][k - 1];
|
|
U[i][j] = t;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Perform one qr step. */
|
|
|
|
case 3: {
|
|
|
|
/* Calculate the shift. */
|
|
|
|
float scale = max_ff(
|
|
max_ff(max_ff(max_ff(fabsf(s[p - 1]), fabsf(s[p - 2])), fabsf(e[p - 2])), fabsf(s[k])),
|
|
fabsf(e[k]));
|
|
float invscale = 1.0f / scale;
|
|
float sp = s[p - 1] * invscale;
|
|
float spm1 = s[p - 2] * invscale;
|
|
float epm1 = e[p - 2] * invscale;
|
|
float sk = s[k] * invscale;
|
|
float ek = e[k] * invscale;
|
|
float b = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) * 0.5f;
|
|
float c = (sp * epm1) * (sp * epm1);
|
|
float shift = 0.0f;
|
|
float f, g;
|
|
if ((b != 0.0f) || (c != 0.0f)) {
|
|
shift = sqrtf(b * b + c);
|
|
if (b < 0.0f) {
|
|
shift = -shift;
|
|
}
|
|
shift = c / (b + shift);
|
|
}
|
|
f = (sk + sp) * (sk - sp) + shift;
|
|
g = sk * ek;
|
|
|
|
/* Chase zeros. */
|
|
|
|
for (j = k; j < p - 1; j++) {
|
|
float t = hypotf(f, g);
|
|
/* division by zero checks added to avoid NaN (brecht) */
|
|
float cs = (t == 0.0f) ? 0.0f : f / t;
|
|
float sn = (t == 0.0f) ? 0.0f : g / t;
|
|
if (j != k) {
|
|
e[j - 1] = t;
|
|
}
|
|
f = cs * s[j] + sn * e[j];
|
|
e[j] = cs * e[j] - sn * s[j];
|
|
g = sn * s[j + 1];
|
|
s[j + 1] = cs * s[j + 1];
|
|
|
|
for (i = 0; i < n; i++) {
|
|
t = cs * V[i][j] + sn * V[i][j + 1];
|
|
V[i][j + 1] = -sn * V[i][j] + cs * V[i][j + 1];
|
|
V[i][j] = t;
|
|
}
|
|
|
|
t = hypotf(f, g);
|
|
/* division by zero checks added to avoid NaN (brecht) */
|
|
cs = (t == 0.0f) ? 0.0f : f / t;
|
|
sn = (t == 0.0f) ? 0.0f : g / t;
|
|
s[j] = t;
|
|
f = cs * e[j] + sn * s[j + 1];
|
|
s[j + 1] = -sn * e[j] + cs * s[j + 1];
|
|
g = sn * e[j + 1];
|
|
e[j + 1] = cs * e[j + 1];
|
|
if (j < m - 1) {
|
|
for (i = 0; i < m; i++) {
|
|
t = cs * U[i][j] + sn * U[i][j + 1];
|
|
U[i][j + 1] = -sn * U[i][j] + cs * U[i][j + 1];
|
|
U[i][j] = t;
|
|
}
|
|
}
|
|
}
|
|
e[p - 2] = f;
|
|
iter = iter + 1;
|
|
break;
|
|
}
|
|
/* Convergence. */
|
|
|
|
case 4: {
|
|
|
|
/* Make the singular values positive. */
|
|
|
|
if (s[k] <= 0.0f) {
|
|
s[k] = (s[k] < 0.0f ? -s[k] : 0.0f);
|
|
|
|
for (i = 0; i <= pp; i++) {
|
|
V[i][k] = -V[i][k];
|
|
}
|
|
}
|
|
|
|
/* Order the singular values. */
|
|
|
|
while (k < pp) {
|
|
float t;
|
|
if (s[k] >= s[k + 1]) {
|
|
break;
|
|
}
|
|
t = s[k];
|
|
s[k] = s[k + 1];
|
|
s[k + 1] = t;
|
|
if (k < n - 1) {
|
|
for (i = 0; i < n; i++) {
|
|
t = V[i][k + 1];
|
|
V[i][k + 1] = V[i][k];
|
|
V[i][k] = t;
|
|
}
|
|
}
|
|
if (k < m - 1) {
|
|
for (i = 0; i < m; i++) {
|
|
t = U[i][k + 1];
|
|
U[i][k + 1] = U[i][k];
|
|
U[i][k] = t;
|
|
}
|
|
}
|
|
k++;
|
|
}
|
|
iter = 0;
|
|
p--;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void pseudoinverse_m4_m4(float Ainv[4][4], const float A_[4][4], float epsilon)
|
|
{
|
|
/* compute Moore-Penrose pseudo inverse of matrix, singular values
|
|
* below epsilon are ignored for stability (truncated SVD) */
|
|
float A[4][4], V[4][4], W[4], Wm[4][4], U[4][4];
|
|
int i;
|
|
|
|
transpose_m4_m4(A, A_);
|
|
svd_m4(V, W, U, A);
|
|
transpose_m4(U);
|
|
transpose_m4(V);
|
|
|
|
zero_m4(Wm);
|
|
for (i = 0; i < 4; i++) {
|
|
Wm[i][i] = (W[i] < epsilon) ? 0.0f : 1.0f / W[i];
|
|
}
|
|
|
|
transpose_m4(V);
|
|
|
|
mul_m4_series(Ainv, U, Wm, V);
|
|
}
|
|
|
|
void pseudoinverse_m3_m3(float Ainv[3][3], const float A[3][3], float epsilon)
|
|
{
|
|
/* try regular inverse when possible, otherwise fall back to slow svd */
|
|
if (!invert_m3_m3(Ainv, A)) {
|
|
float tmp[4][4], tmpinv[4][4];
|
|
|
|
copy_m4_m3(tmp, A);
|
|
pseudoinverse_m4_m4(tmpinv, tmp, epsilon);
|
|
copy_m3_m4(Ainv, tmpinv);
|
|
}
|
|
}
|
|
|
|
bool has_zero_axis_m4(const float matrix[4][4])
|
|
{
|
|
return len_squared_v3(matrix[0]) < FLT_EPSILON || len_squared_v3(matrix[1]) < FLT_EPSILON ||
|
|
len_squared_v3(matrix[2]) < FLT_EPSILON;
|
|
}
|
|
|
|
void invert_m4_m4_safe(float Ainv[4][4], const float A[4][4])
|
|
{
|
|
if (!invert_m4_m4(Ainv, A)) {
|
|
float Atemp[4][4];
|
|
|
|
copy_m4_m4(Atemp, A);
|
|
|
|
/* Matrix is degenerate (e.g. 0 scale on some axis), ideally we should
|
|
* never be in this situation, but try to invert it anyway with tweak.
|
|
*/
|
|
Atemp[0][0] += 1e-8f;
|
|
Atemp[1][1] += 1e-8f;
|
|
Atemp[2][2] += 1e-8f;
|
|
|
|
if (!invert_m4_m4(Ainv, Atemp)) {
|
|
unit_m4(Ainv);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* #SpaceTransform struct encapsulates all needed data to convert between two coordinate spaces
|
|
* (where conversion can be represented by a matrix multiplication).
|
|
*
|
|
* A SpaceTransform is initialized using:
|
|
* - #BLI_SPACE_TRANSFORM_SETUP(&data, ob1, ob2)
|
|
*
|
|
* After that the following calls can be used:
|
|
* - Converts a coordinate in ob1 space to the corresponding ob2 space:
|
|
* #BLI_space_transform_apply(&data, co);
|
|
* - Converts a coordinate in ob2 space to the corresponding ob1 space:
|
|
* #BLI_space_transform_invert(&data, co);
|
|
*
|
|
* Same concept as #BLI_space_transform_apply and #BLI_space_transform_invert,
|
|
* but no is normalized after conversion (and not translated at all!):
|
|
* - #BLI_space_transform_apply_normal(&data, no);
|
|
* - #BLI_space_transform_invert_normal(&data, no);
|
|
*/
|
|
|
|
/**
|
|
* Global-invariant transform.
|
|
*
|
|
* This defines a matrix transforming a point in local space to a point in target space
|
|
* such that its global coordinates remain unchanged.
|
|
*
|
|
* In other words, if we have a global point P with local coordinates (x, y, z)
|
|
* and global coordinates (X, Y, Z),
|
|
* this defines a transform matrix TM such that (x', y', z') = TM * (x, y, z)
|
|
* where (x', y', z') are the coordinates of P' in target space
|
|
* such that it keeps (X, Y, Z) coordinates in global space.
|
|
*/
|
|
void BLI_space_transform_from_matrices(SpaceTransform *data,
|
|
const float local[4][4],
|
|
const float target[4][4])
|
|
{
|
|
float itarget[4][4];
|
|
invert_m4_m4(itarget, target);
|
|
mul_m4_m4m4(data->local2target, itarget, local);
|
|
invert_m4_m4(data->target2local, data->local2target);
|
|
}
|
|
|
|
/**
|
|
* Local-invariant transform.
|
|
*
|
|
* This defines a matrix transforming a point in global space
|
|
* such that its local coordinates (from local space to target space) remain unchanged.
|
|
*
|
|
* In other words, if we have a local point p with local coordinates (x, y, z)
|
|
* and global coordinates (X, Y, Z),
|
|
* this defines a transform matrix TM such that (X', Y', Z') = TM * (X, Y, Z)
|
|
* where (X', Y', Z') are the coordinates of p' in global space
|
|
* such that it keeps (x, y, z) coordinates in target space.
|
|
*/
|
|
void BLI_space_transform_global_from_matrices(SpaceTransform *data,
|
|
const float local[4][4],
|
|
const float target[4][4])
|
|
{
|
|
float ilocal[4][4];
|
|
invert_m4_m4(ilocal, local);
|
|
mul_m4_m4m4(data->local2target, target, ilocal);
|
|
invert_m4_m4(data->target2local, data->local2target);
|
|
}
|
|
|
|
void BLI_space_transform_apply(const SpaceTransform *data, float co[3])
|
|
{
|
|
mul_v3_m4v3(co, ((SpaceTransform *)data)->local2target, co);
|
|
}
|
|
|
|
void BLI_space_transform_invert(const SpaceTransform *data, float co[3])
|
|
{
|
|
mul_v3_m4v3(co, ((SpaceTransform *)data)->target2local, co);
|
|
}
|
|
|
|
void BLI_space_transform_apply_normal(const SpaceTransform *data, float no[3])
|
|
{
|
|
mul_mat3_m4_v3(((SpaceTransform *)data)->local2target, no);
|
|
normalize_v3(no);
|
|
}
|
|
|
|
void BLI_space_transform_invert_normal(const SpaceTransform *data, float no[3])
|
|
{
|
|
mul_mat3_m4_v3(((SpaceTransform *)data)->target2local, no);
|
|
normalize_v3(no);
|
|
}
|