This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/intern/math_solvers.c

282 lines
7.8 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2015 by Blender Foundation.
* All rights reserved.
* */
/** \file
* \ingroup bli
*/
#include "MEM_guardedalloc.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "BLI_strict_flags.h"
#include "eigen_capi.h"
/********************************** Eigen Solvers *********************************/
/**
* \brief Compute the eigen values and/or vectors of given 3D symmetric (aka adjoint) matrix.
*
* \param m3: the 3D symmetric matrix.
* \return r_eigen_values the computed eigen values (NULL if not needed).
* \return r_eigen_vectors the computed eigen vectors (NULL if not needed).
*/
bool BLI_eigen_solve_selfadjoint_m3(const float m3[3][3],
float r_eigen_values[3],
float r_eigen_vectors[3][3])
{
#ifndef NDEBUG
/* We must assert given matrix is self-adjoint (i.e. symmetric) */
if ((m3[0][1] != m3[1][0]) || (m3[0][2] != m3[2][0]) || (m3[1][2] != m3[2][1])) {
BLI_assert(0);
}
#endif
return EIG_self_adjoint_eigen_solve(
3, (const float *)m3, r_eigen_values, (float *)r_eigen_vectors);
}
/**
* \brief Compute the SVD (Singular Values Decomposition) of given 3D matrix (m3 = USV*).
*
* \param m3: the matrix to decompose.
* \return r_U the computed left singular vector of \a m3 (NULL if not needed).
* \return r_S the computed singular values of \a m3 (NULL if not needed).
* \return r_V the computed right singular vector of \a m3 (NULL if not needed).
*/
void BLI_svd_m3(const float m3[3][3], float r_U[3][3], float r_S[3], float r_V[3][3])
{
EIG_svd_square_matrix(3, (const float *)m3, (float *)r_U, (float *)r_S, (float *)r_V);
}
/***************************** Simple Solvers ************************************/
/**
* \brief Solve a tridiagonal system of equations:
*
* a[i] * r_x[i-1] + b[i] * r_x[i] + c[i] * r_x[i+1] = d[i]
*
* Ignores a[0] and c[count-1]. Uses the Thomas algorithm, e.g. see wiki.
*
* \param r_x: output vector, may be shared with any of the input ones
* \return true if success
*/
bool BLI_tridiagonal_solve(
const float *a, const float *b, const float *c, const float *d, float *r_x, const int count)
{
if (count < 1) {
return false;
}
size_t bytes = sizeof(double) * (unsigned)count;
double *c1 = (double *)MEM_mallocN(bytes * 2, "tridiagonal_c1d1");
double *d1 = c1 + count;
if (!c1) {
return false;
}
int i;
double c_prev, d_prev, x_prev;
/* forward pass */
c1[0] = c_prev = ((double)c[0]) / b[0];
d1[0] = d_prev = ((double)d[0]) / b[0];
for (i = 1; i < count; i++) {
double denum = b[i] - a[i] * c_prev;
c1[i] = c_prev = c[i] / denum;
d1[i] = d_prev = (d[i] - a[i] * d_prev) / denum;
}
/* back pass */
x_prev = d_prev;
r_x[--i] = ((float)x_prev);
while (--i >= 0) {
x_prev = d1[i] - c1[i] * x_prev;
r_x[i] = ((float)x_prev);
}
MEM_freeN(c1);
return isfinite(x_prev);
}
/**
* \brief Solve a possibly cyclic tridiagonal system using the Sherman-Morrison formula.
*
* \param r_x: output vector, may be shared with any of the input ones
* \return true if success
*/
bool BLI_tridiagonal_solve_cyclic(
const float *a, const float *b, const float *c, const float *d, float *r_x, const int count)
{
if (count < 1) {
return false;
}
float a0 = a[0], cN = c[count - 1];
/* if not really cyclic, fall back to the simple solver */
if (a0 == 0.0f && cN == 0.0f) {
return BLI_tridiagonal_solve(a, b, c, d, r_x, count);
}
size_t bytes = sizeof(float) * (unsigned)count;
float *tmp = (float *)MEM_mallocN(bytes * 2, "tridiagonal_ex");
float *b2 = tmp + count;
if (!tmp) {
return false;
}
/* prepare the noncyclic system; relies on tridiagonal_solve ignoring values */
memcpy(b2, b, bytes);
b2[0] -= a0;
b2[count - 1] -= cN;
memset(tmp, 0, bytes);
tmp[0] = a0;
tmp[count - 1] = cN;
/* solve for partial solution and adjustment vector */
bool success = BLI_tridiagonal_solve(a, b2, c, tmp, tmp, count) &&
BLI_tridiagonal_solve(a, b2, c, d, r_x, count);
/* apply adjustment */
if (success) {
float coeff = (r_x[0] + r_x[count - 1]) / (1.0f + tmp[0] + tmp[count - 1]);
for (int i = 0; i < count; i++) {
r_x[i] -= coeff * tmp[i];
}
}
MEM_freeN(tmp);
return success;
}
/**
* \brief Solve a generic f(x) = 0 equation using Newton's method.
*
* \param func_delta: Callback computing the value of f(x).
* \param func_jacobian: Callback computing the Jacobian matrix of the function at x.
* \param func_correction: Callback for forcing the search into an arbitrary custom domain.
* May be NULL.
* \param userdata: Data for the callbacks.
* \param epsilon: Desired precision.
* \param max_iterations: Limit on the iterations.
* \param trace: Enables logging to console.
* \param x_init: Initial solution vector.
* \param result: Final result.
* \return true if success
*/
bool BLI_newton3d_solve(Newton3D_DeltaFunc func_delta,
Newton3D_JacobianFunc func_jacobian,
Newton3D_CorrectionFunc func_correction,
void *userdata,
float epsilon,
int max_iterations,
bool trace,
const float x_init[3],
float result[3])
{
float fdelta[3], fdeltav, next_fdeltav;
float jacobian[3][3], step[3], x[3], x_next[3];
epsilon *= epsilon;
copy_v3_v3(x, x_init);
func_delta(userdata, x, fdelta);
fdeltav = len_squared_v3(fdelta);
if (trace) {
printf("START (%g, %g, %g) %g\n", x[0], x[1], x[2], fdeltav);
}
for (int i = 0; i < max_iterations && fdeltav > epsilon; i++) {
/* Newton's method step. */
func_jacobian(userdata, x, jacobian);
if (!invert_m3(jacobian)) {
return false;
}
mul_v3_m3v3(step, jacobian, fdelta);
sub_v3_v3v3(x_next, x, step);
/* Custom out-of-bounds value correction. */
if (func_correction) {
if (trace) {
printf("%3d * (%g, %g, %g)\n", i, x_next[0], x_next[1], x_next[2]);
}
if (!func_correction(userdata, x, step, x_next)) {
return false;
}
}
func_delta(userdata, x_next, fdelta);
next_fdeltav = len_squared_v3(fdelta);
if (trace) {
printf("%3d ? (%g, %g, %g) %g\n", i, x_next[0], x_next[1], x_next[2], next_fdeltav);
}
/* Line search correction. */
while (next_fdeltav > fdeltav) {
float g0 = sqrtf(fdeltav), g1 = sqrtf(next_fdeltav);
float g01 = -g0 / len_v3(step);
float det = 2.0f * (g1 - g0 - g01);
float l = (det == 0.0f) ? 0.1f : -g01 / det;
CLAMP_MIN(l, 0.1f);
mul_v3_fl(step, l);
sub_v3_v3v3(x_next, x, step);
func_delta(userdata, x_next, fdelta);
next_fdeltav = len_squared_v3(fdelta);
if (trace) {
printf("%3d . (%g, %g, %g) %g\n", i, x_next[0], x_next[1], x_next[2], next_fdeltav);
}
}
copy_v3_v3(x, x_next);
fdeltav = next_fdeltav;
}
bool success = (fdeltav <= epsilon);
if (trace) {
printf("%s (%g, %g, %g) %g\n", success ? "OK " : "FAIL", x[0], x[1], x[2], fdeltav);
}
copy_v3_v3(result, x);
return success;
}