This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/compositor/operations/COM_MathBaseOperation.cc
Campbell Barton c434782e3a File headers: SPDX License migration
Use a shorter/simpler license convention, stops the header taking so
much space.

Follow the SPDX license specification: https://spdx.org/licenses

- C/C++/objc/objc++
- Python
- Shell Scripts
- CMake, GNUmakefile

While most of the source tree has been included

- `./extern/` was left out.
- `./intern/cycles` & `./intern/atomic` are also excluded because they
  use different header conventions.

doc/license/SPDX-license-identifiers.txt has been added to list SPDX all
used identifiers.

See P2788 for the script that automated these edits.

Reviewed By: brecht, mont29, sergey

Ref D14069
2022-02-11 09:14:36 +11:00

1060 lines
31 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright 2011 Blender Foundation. */
#include "COM_MathBaseOperation.h"
namespace blender::compositor {
MathBaseOperation::MathBaseOperation()
{
/* TODO(manzanilla): after removing tiled implementation, template this class to only add needed
* number of inputs. */
this->add_input_socket(DataType::Value);
this->add_input_socket(DataType::Value);
this->add_input_socket(DataType::Value);
this->add_output_socket(DataType::Value);
input_value1_operation_ = nullptr;
input_value2_operation_ = nullptr;
input_value3_operation_ = nullptr;
use_clamp_ = false;
flags_.can_be_constant = true;
}
void MathBaseOperation::init_execution()
{
input_value1_operation_ = this->get_input_socket_reader(0);
input_value2_operation_ = this->get_input_socket_reader(1);
input_value3_operation_ = this->get_input_socket_reader(2);
}
void MathBaseOperation::deinit_execution()
{
input_value1_operation_ = nullptr;
input_value2_operation_ = nullptr;
input_value3_operation_ = nullptr;
}
void MathBaseOperation::determine_canvas(const rcti &preferred_area, rcti &r_area)
{
NodeOperationInput *socket;
rcti temp_area = COM_AREA_NONE;
socket = this->get_input_socket(0);
const bool determined = socket->determine_canvas(COM_AREA_NONE, temp_area);
if (determined) {
this->set_canvas_input_index(0);
}
else {
this->set_canvas_input_index(1);
}
NodeOperation::determine_canvas(preferred_area, r_area);
}
void MathBaseOperation::clamp_if_needed(float *color)
{
if (use_clamp_) {
CLAMP(color[0], 0.0f, 1.0f);
}
}
void MathBaseOperation::update_memory_buffer_partial(MemoryBuffer *output,
const rcti &area,
Span<MemoryBuffer *> inputs)
{
BuffersIterator<float> it = output->iterate_with(inputs, area);
update_memory_buffer_partial(it);
}
void MathAddOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
output[0] = input_value1[0] + input_value2[0];
clamp_if_needed(output);
}
void MathSubtractOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
output[0] = input_value1[0] - input_value2[0];
clamp_if_needed(output);
}
void MathMultiplyOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
output[0] = input_value1[0] * input_value2[0];
clamp_if_needed(output);
}
void MathDivideOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
if (input_value2[0] == 0) { /* We don't want to divide by zero. */
output[0] = 0.0;
}
else {
output[0] = input_value1[0] / input_value2[0];
}
clamp_if_needed(output);
}
void MathDivideOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
const float divisor = *it.in(1);
*it.out = clamp_when_enabled((divisor == 0) ? 0 : *it.in(0) / divisor);
}
}
void MathSineOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
output[0] = sin(input_value1[0]);
clamp_if_needed(output);
}
void MathSineOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = sin(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathCosineOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
output[0] = cos(input_value1[0]);
clamp_if_needed(output);
}
void MathCosineOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = cos(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathTangentOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
output[0] = tan(input_value1[0]);
clamp_if_needed(output);
}
void MathTangentOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = tan(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathHyperbolicSineOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
output[0] = sinh(input_value1[0]);
clamp_if_needed(output);
}
void MathHyperbolicSineOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = sinh(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathHyperbolicCosineOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
output[0] = cosh(input_value1[0]);
clamp_if_needed(output);
}
void MathHyperbolicCosineOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = cosh(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathHyperbolicTangentOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
output[0] = tanh(input_value1[0]);
clamp_if_needed(output);
}
void MathHyperbolicTangentOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = tanh(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathArcSineOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
if (input_value1[0] <= 1 && input_value1[0] >= -1) {
output[0] = asin(input_value1[0]);
}
else {
output[0] = 0.0;
}
clamp_if_needed(output);
}
void MathArcSineOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
float value1 = *it.in(0);
*it.out = clamp_when_enabled((value1 <= 1 && value1 >= -1) ? asin(value1) : 0.0f);
}
}
void MathArcCosineOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
if (input_value1[0] <= 1 && input_value1[0] >= -1) {
output[0] = acos(input_value1[0]);
}
else {
output[0] = 0.0;
}
clamp_if_needed(output);
}
void MathArcCosineOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
float value1 = *it.in(0);
*it.out = clamp_when_enabled((value1 <= 1 && value1 >= -1) ? acos(value1) : 0.0f);
}
}
void MathArcTangentOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
output[0] = atan(input_value1[0]);
clamp_if_needed(output);
}
void MathArcTangentOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = atan(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathPowerOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
if (input_value1[0] >= 0) {
output[0] = pow(input_value1[0], input_value2[0]);
}
else {
float y_mod_1 = fmod(input_value2[0], 1);
/* if input value is not nearly an integer, fall back to zero, nicer than straight rounding */
if (y_mod_1 > 0.999f || y_mod_1 < 0.001f) {
output[0] = pow(input_value1[0], floorf(input_value2[0] + 0.5f));
}
else {
output[0] = 0.0;
}
}
clamp_if_needed(output);
}
void MathPowerOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
const float value1 = *it.in(0);
const float value2 = *it.in(1);
if (value1 >= 0) {
*it.out = pow(value1, value2);
}
else {
const float y_mod_1 = fmod(value2, 1);
/* If input value is not nearly an integer, fall back to zero, nicer than straight rounding.
*/
if (y_mod_1 > 0.999f || y_mod_1 < 0.001f) {
*it.out = pow(value1, floorf(value2 + 0.5f));
}
else {
*it.out = 0.0f;
}
}
clamp_when_enabled(it.out);
}
}
void MathLogarithmOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
if (input_value1[0] > 0 && input_value2[0] > 0) {
output[0] = log(input_value1[0]) / log(input_value2[0]);
}
else {
output[0] = 0.0;
}
clamp_if_needed(output);
}
void MathLogarithmOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
const float value1 = *it.in(0);
const float value2 = *it.in(1);
if (value1 > 0 && value2 > 0) {
*it.out = log(value1) / log(value2);
}
else {
*it.out = 0.0;
}
clamp_when_enabled(it.out);
}
}
void MathMinimumOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
output[0] = MIN2(input_value1[0], input_value2[0]);
clamp_if_needed(output);
}
void MathMinimumOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = MIN2(*it.in(0), *it.in(1));
clamp_when_enabled(it.out);
}
}
void MathMaximumOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
output[0] = MAX2(input_value1[0], input_value2[0]);
clamp_if_needed(output);
}
void MathMaximumOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = MAX2(*it.in(0), *it.in(1));
clamp_when_enabled(it.out);
}
}
void MathRoundOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
output[0] = round(input_value1[0]);
clamp_if_needed(output);
}
void MathRoundOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = round(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathLessThanOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
output[0] = input_value1[0] < input_value2[0] ? 1.0f : 0.0f;
clamp_if_needed(output);
}
void MathGreaterThanOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
output[0] = input_value1[0] > input_value2[0] ? 1.0f : 0.0f;
clamp_if_needed(output);
}
void MathModuloOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
if (input_value2[0] == 0) {
output[0] = 0.0;
}
else {
output[0] = fmod(input_value1[0], input_value2[0]);
}
clamp_if_needed(output);
}
void MathModuloOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
const float value2 = *it.in(1);
*it.out = (value2 == 0) ? 0 : fmod(*it.in(0), value2);
clamp_when_enabled(it.out);
}
}
void MathAbsoluteOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
output[0] = fabs(input_value1[0]);
clamp_if_needed(output);
}
void MathAbsoluteOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = fabs(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathRadiansOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
output[0] = DEG2RADF(input_value1[0]);
clamp_if_needed(output);
}
void MathRadiansOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = DEG2RADF(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathDegreesOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
output[0] = RAD2DEGF(input_value1[0]);
clamp_if_needed(output);
}
void MathDegreesOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = RAD2DEGF(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathArcTan2Operation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
output[0] = atan2(input_value1[0], input_value2[0]);
clamp_if_needed(output);
}
void MathArcTan2Operation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = atan2(*it.in(0), *it.in(1));
clamp_when_enabled(it.out);
}
}
void MathFloorOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
output[0] = floor(input_value1[0]);
clamp_if_needed(output);
}
void MathFloorOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = floor(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathCeilOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
output[0] = ceil(input_value1[0]);
clamp_if_needed(output);
}
void MathCeilOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = ceil(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathFractOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
output[0] = input_value1[0] - floor(input_value1[0]);
clamp_if_needed(output);
}
void MathFractOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
const float value = *it.in(0);
*it.out = clamp_when_enabled(value - floor(value));
}
}
void MathSqrtOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
if (input_value1[0] > 0) {
output[0] = sqrt(input_value1[0]);
}
else {
output[0] = 0.0f;
}
clamp_if_needed(output);
}
void MathSqrtOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
const float value = *it.in(0);
*it.out = clamp_when_enabled(value > 0 ? sqrt(value) : 0.0f);
}
}
void MathInverseSqrtOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
if (input_value1[0] > 0) {
output[0] = 1.0f / sqrt(input_value1[0]);
}
else {
output[0] = 0.0f;
}
clamp_if_needed(output);
}
void MathInverseSqrtOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
const float value = *it.in(0);
*it.out = clamp_when_enabled(value > 0 ? 1.0f / sqrt(value) : 0.0f);
}
}
void MathSignOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
output[0] = compatible_signf(input_value1[0]);
clamp_if_needed(output);
}
void MathSignOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = compatible_signf(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathExponentOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
output[0] = expf(input_value1[0]);
clamp_if_needed(output);
}
void MathExponentOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = expf(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathTruncOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
output[0] = (input_value1[0] >= 0.0f) ? floor(input_value1[0]) : ceil(input_value1[0]);
clamp_if_needed(output);
}
void MathTruncOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
const float value = *it.in(0);
*it.out = (value >= 0.0f) ? floor(value) : ceil(value);
clamp_when_enabled(it.out);
}
}
void MathSnapOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
if (input_value1[0] == 0 || input_value2[0] == 0) { /* We don't want to divide by zero. */
output[0] = 0.0f;
}
else {
output[0] = floorf(input_value1[0] / input_value2[0]) * input_value2[0];
}
clamp_if_needed(output);
}
void MathSnapOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
const float value1 = *it.in(0);
const float value2 = *it.in(1);
if (value1 == 0 || value2 == 0) { /* Avoid dividing by zero. */
*it.out = 0.0f;
}
else {
*it.out = floorf(value1 / value2) * value2;
}
clamp_when_enabled(it.out);
}
}
void MathWrapOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
float input_value3[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
input_value3_operation_->read_sampled(input_value3, x, y, sampler);
output[0] = wrapf(input_value1[0], input_value2[0], input_value3[0]);
clamp_if_needed(output);
}
void MathWrapOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = wrapf(*it.in(0), *it.in(1), *it.in(2));
clamp_when_enabled(it.out);
}
}
void MathPingpongOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
output[0] = pingpongf(input_value1[0], input_value2[0]);
clamp_if_needed(output);
}
void MathPingpongOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = pingpongf(*it.in(0), *it.in(1));
clamp_when_enabled(it.out);
}
}
void MathCompareOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
float input_value3[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
input_value3_operation_->read_sampled(input_value3, x, y, sampler);
output[0] = (fabsf(input_value1[0] - input_value2[0]) <= MAX2(input_value3[0], 1e-5f)) ? 1.0f :
0.0f;
clamp_if_needed(output);
}
void MathCompareOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = (fabsf(*it.in(0) - *it.in(1)) <= MAX2(*it.in(2), 1e-5f)) ? 1.0f : 0.0f;
clamp_when_enabled(it.out);
}
}
void MathMultiplyAddOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
float input_value3[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
input_value3_operation_->read_sampled(input_value3, x, y, sampler);
output[0] = input_value1[0] * input_value2[0] + input_value3[0];
clamp_if_needed(output);
}
void MathMultiplyAddOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = it.in(0)[0] * it.in(1)[0] + it.in(2)[0];
clamp_when_enabled(it.out);
}
}
void MathSmoothMinOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
float input_value3[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
input_value3_operation_->read_sampled(input_value3, x, y, sampler);
output[0] = smoothminf(input_value1[0], input_value2[0], input_value3[0]);
clamp_if_needed(output);
}
void MathSmoothMinOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = smoothminf(*it.in(0), *it.in(1), *it.in(2));
clamp_when_enabled(it.out);
}
}
void MathSmoothMaxOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float input_value1[4];
float input_value2[4];
float input_value3[4];
input_value1_operation_->read_sampled(input_value1, x, y, sampler);
input_value2_operation_->read_sampled(input_value2, x, y, sampler);
input_value3_operation_->read_sampled(input_value3, x, y, sampler);
output[0] = -smoothminf(-input_value1[0], -input_value2[0], input_value3[0]);
clamp_if_needed(output);
}
void MathSmoothMaxOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = -smoothminf(-it.in(0)[0], -it.in(1)[0], it.in(2)[0]);
clamp_when_enabled(it.out);
}
}
} // namespace blender::compositor