This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/bmesh/operators/bmo_utils.c

784 lines
20 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor(s): Joseph Eagar.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/bmesh/operators/bmo_utils.c
* \ingroup bmesh
*
* utility bmesh operators, e.g. transform,
* translate, rotate, scale, etc.
*/
#include "MEM_guardedalloc.h"
#include "DNA_meshdata_types.h"
#include "BLI_math.h"
#include "BLI_array.h"
#include "BLI_heap.h"
#include "BKE_customdata.h"
#include "bmesh.h"
#include "intern/bmesh_operators_private.h" /* own include */
void bmo_create_vert_exec(BMesh *bm, BMOperator *op)
{
float vec[3];
BMO_slot_vec_get(op->slots_in, "co", vec);
BMO_elem_flag_enable(bm, BM_vert_create(bm, vec, NULL, 0), 1);
BMO_slot_buffer_from_enabled_flag(bm, op, op->slots_out, "vert.out", BM_VERT, 1);
}
void bmo_transform_exec(BMesh *UNUSED(bm), BMOperator *op)
{
BMOIter iter;
BMVert *v;
float mat[4][4];
BMO_slot_mat4_get(op->slots_in, "matrix", mat);
BMO_ITER (v, &iter, op->slots_in, "verts", BM_VERT) {
mul_m4_v3(mat, v->co);
}
}
void bmo_translate_exec(BMesh *bm, BMOperator *op)
{
float mat[4][4], vec[3];
BMO_slot_vec_get(op->slots_in, "vec", vec);
unit_m4(mat);
copy_v3_v3(mat[3], vec);
BMO_op_callf(bm, op->flag, "transform matrix=%m4 verts=%s", mat, op, "verts");
}
void bmo_scale_exec(BMesh *bm, BMOperator *op)
{
float mat[3][3], vec[3];
BMO_slot_vec_get(op->slots_in, "vec", vec);
unit_m3(mat);
mat[0][0] = vec[0];
mat[1][1] = vec[1];
mat[2][2] = vec[2];
BMO_op_callf(bm, op->flag, "transform matrix=%m3 verts=%s", mat, op, "verts");
}
void bmo_rotate_exec(BMesh *bm, BMOperator *op)
{
float vec[3];
BMO_slot_vec_get(op->slots_in, "cent", vec);
/* there has to be a proper matrix way to do this, but
* this is how editmesh did it and I'm too tired to think
* through the math right now. */
mul_v3_fl(vec, -1.0f);
BMO_op_callf(bm, op->flag, "translate verts=%s vec=%v", op, "verts", vec);
BMO_op_callf(bm, op->flag, "transform matrix=%s verts=%s", op, "matrix", op, "verts");
mul_v3_fl(vec, -1.0f);
BMO_op_callf(bm, op->flag, "translate verts=%s vec=%v", op, "verts", vec);
}
void bmo_reverse_faces_exec(BMesh *bm, BMOperator *op)
{
BMOIter siter;
BMFace *f;
BMO_ITER (f, &siter, op->slots_in, "faces", BM_FACE) {
BM_face_normal_flip(bm, f);
}
}
void bmo_rotate_edges_exec(BMesh *bm, BMOperator *op)
{
BMOIter siter;
BMEdge *e, *e2;
const bool use_ccw = BMO_slot_bool_get(op->slots_in, "use_ccw");
const bool is_single = BMO_slot_buffer_count(op->slots_in, "edges") == 1;
short check_flag = is_single ?
BM_EDGEROT_CHECK_EXISTS :
BM_EDGEROT_CHECK_EXISTS | BM_EDGEROT_CHECK_DEGENERATE;
#define EDGE_OUT 1
#define FACE_TAINT 1
BMO_ITER (e, &siter, op->slots_in, "edges", BM_EDGE) {
/**
* this ends up being called twice, could add option to not to call check in
* #BM_edge_rotate to get some extra speed */
if (BM_edge_rotate_check(e)) {
BMFace *fa, *fb;
if (BM_edge_face_pair(e, &fa, &fb)) {
/* check we're untouched */
if (BMO_elem_flag_test(bm, fa, FACE_TAINT) == false &&
BMO_elem_flag_test(bm, fb, FACE_TAINT) == false)
{
if (!(e2 = BM_edge_rotate(bm, e, use_ccw, check_flag))) {
#if 0
BMO_error_raise(bm, op, BMERR_INVALID_SELECTION, "Could not rotate edge");
return;
#endif
continue;
}
BMO_elem_flag_enable(bm, e2, EDGE_OUT);
/* don't touch again */
BMO_elem_flag_enable(bm, fa, FACE_TAINT);
BMO_elem_flag_enable(bm, fb, FACE_TAINT);
}
}
}
}
BMO_slot_buffer_from_enabled_flag(bm, op, op->slots_out, "edges.out", BM_EDGE, EDGE_OUT);
#undef EDGE_OUT
#undef FACE_TAINT
}
#define SEL_FLAG 1
#define SEL_ORIG 2
static void bmo_region_extend_extend(BMesh *bm, BMOperator *op, const bool use_faces)
{
BMVert *v;
BMEdge *e;
BMIter eiter;
BMOIter siter;
if (!use_faces) {
BMO_ITER (v, &siter, op->slots_in, "geom", BM_VERT) {
BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) {
if (!BM_elem_flag_test(e, BM_ELEM_HIDDEN))
if (!BMO_elem_flag_test(bm, e, SEL_ORIG))
break;
}
if (e) {
BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) {
if (!BM_elem_flag_test(e, BM_ELEM_HIDDEN)) {
BMO_elem_flag_enable(bm, e, SEL_FLAG);
BMO_elem_flag_enable(bm, BM_edge_other_vert(e, v), SEL_FLAG);
}
}
}
}
}
else {
BMIter liter, fiter;
BMFace *f, *f2;
BMLoop *l;
BMO_ITER (f, &siter, op->slots_in, "geom", BM_FACE) {
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
BM_ITER_ELEM (f2, &fiter, l->e, BM_FACES_OF_EDGE) {
if (!BM_elem_flag_test(f2, BM_ELEM_HIDDEN)) {
if (!BMO_elem_flag_test(bm, f2, SEL_ORIG)) {
BMO_elem_flag_enable(bm, f2, SEL_FLAG);
}
}
}
}
}
}
}
static void bmo_region_extend_constrict(BMesh *bm, BMOperator *op, const bool use_faces)
{
BMVert *v;
BMEdge *e;
BMIter eiter;
BMOIter siter;
if (!use_faces) {
BMO_ITER (v, &siter, op->slots_in, "geom", BM_VERT) {
BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) {
if (!BM_elem_flag_test(e, BM_ELEM_HIDDEN))
if (!BMO_elem_flag_test(bm, e, SEL_ORIG))
break;
}
if (e) {
BMO_elem_flag_enable(bm, v, SEL_FLAG);
BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) {
if (!BM_elem_flag_test(e, BM_ELEM_HIDDEN)) {
BMO_elem_flag_enable(bm, e, SEL_FLAG);
}
}
}
}
}
else {
BMIter liter, fiter;
BMFace *f, *f2;
BMLoop *l;
BMO_ITER (f, &siter, op->slots_in, "geom", BM_FACE) {
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
BM_ITER_ELEM (f2, &fiter, l->e, BM_FACES_OF_EDGE) {
if (!BM_elem_flag_test(f2, BM_ELEM_HIDDEN)) {
if (!BMO_elem_flag_test(bm, f2, SEL_ORIG)) {
BMO_elem_flag_enable(bm, f, SEL_FLAG);
break;
}
}
}
}
}
}
}
void bmo_region_extend_exec(BMesh *bm, BMOperator *op)
{
const bool use_faces = BMO_slot_bool_get(op->slots_in, "use_faces");
const bool constrict = BMO_slot_bool_get(op->slots_in, "use_constrict");
BMO_slot_buffer_flag_enable(bm, op->slots_in, "geom", BM_ALL_NOLOOP, SEL_ORIG);
if (constrict)
bmo_region_extend_constrict(bm, op, use_faces);
else
bmo_region_extend_extend(bm, op, use_faces);
BMO_slot_buffer_from_enabled_flag(bm, op, op->slots_out, "geom.out", BM_ALL_NOLOOP, SEL_FLAG);
}
/********* righthand faces implementation ****** */
#define FACE_VIS 1
#define FACE_FLAG 2
// #define FACE_MARK 4 /* UNUSED */
#define FACE_FLIP 8
/* NOTE: these are the original recalc_face_normals comment in editmesh_mods.c,
* copied here for reference. */
/* based at a select-connected to witness loose objects */
/* count per edge the amount of faces
* find the ultimate left, front, upper face (not manhattan dist!!)
* also evaluate both triangle cases in quad, since these can be non-flat
*
* put normal to the outside, and set the first direction flags in edges
*
* then check the object, and set directions / direction-flags: but only for edges with 1 or 2 faces
* this is in fact the 'select connected'
*
* in case (selected) faces were not done: start over with 'find the ultimate ...' */
/* NOTE: this function uses recursion, which is a little unusual for a bmop
* function, but acceptable I think. */
/* NOTE: BM_ELEM_TAG is used on faces to tell if they are flipped. */
void bmo_recalc_face_normals_exec(BMesh *bm, BMOperator *op)
{
BMIter liter, liter2;
BMOIter siter;
BMFace *f, *startf;
BMFace **fstack;
STACK_DECLARE(fstack);
BMLoop *l, *l2;
float maxx, maxx_test, cent[3];
const bool use_flip = BMO_slot_bool_get(op->slots_in, "use_face_tag");
startf = NULL;
maxx = -1.0e10;
BMO_slot_buffer_flag_enable(bm, op->slots_in, "faces", BM_FACE, FACE_FLAG);
/* find a starting face */
BMO_ITER (f, &siter, op->slots_in, "faces", BM_FACE) {
/* clear dirty flag */
BM_elem_flag_disable(f, BM_ELEM_TAG);
if (BMO_elem_flag_test(bm, f, FACE_VIS))
continue;
if (!startf) startf = f;
BM_face_calc_center_bounds(f, cent);
if ((maxx_test = dot_v3v3(cent, cent)) > maxx) {
maxx = maxx_test;
startf = f;
}
}
if (!startf) return;
BM_face_calc_center_bounds(startf, cent);
/* make sure the starting face has the correct winding */
if (dot_v3v3(cent, startf->no) < 0.0f) {
BM_face_normal_flip(bm, startf);
BMO_elem_flag_toggle(bm, startf, FACE_FLIP);
if (use_flip)
BM_elem_flag_toggle(startf, BM_ELEM_TAG);
}
/* now that we've found our starting face, make all connected faces
* have the same winding. this is done recursively, using a manual
* stack (if we use simple function recursion, we'd end up overloading
* the stack on large meshes). */
fstack = MEM_mallocN(sizeof(*fstack) * BMO_slot_buffer_count(op->slots_in, "faces"), __func__);
STACK_INIT(fstack);
STACK_PUSH(fstack, startf);
BMO_elem_flag_enable(bm, startf, FACE_VIS);
while ((f = STACK_POP(fstack))) {
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
BM_ITER_ELEM (l2, &liter2, l, BM_LOOPS_OF_LOOP) {
if (!BMO_elem_flag_test(bm, l2->f, FACE_FLAG) || l2 == l)
continue;
if (!BMO_elem_flag_test(bm, l2->f, FACE_VIS)) {
BMO_elem_flag_enable(bm, l2->f, FACE_VIS);
if (l2->v == l->v) {
BM_face_normal_flip(bm, l2->f);
BMO_elem_flag_toggle(bm, l2->f, FACE_FLIP);
if (use_flip)
BM_elem_flag_toggle(l2->f, BM_ELEM_TAG);
}
else if (BM_elem_flag_test(l2->f, BM_ELEM_TAG) || BM_elem_flag_test(l->f, BM_ELEM_TAG)) {
if (use_flip) {
BM_elem_flag_disable(l->f, BM_ELEM_TAG);
BM_elem_flag_disable(l2->f, BM_ELEM_TAG);
}
}
STACK_PUSH(fstack, l2->f);
}
}
}
}
MEM_freeN(fstack);
/* check if we have faces yet to do. if so, recurse */
BMO_ITER (f, &siter, op->slots_in, "faces", BM_FACE) {
if (!BMO_elem_flag_test(bm, f, FACE_VIS)) {
bmo_recalc_face_normals_exec(bm, op);
break;
}
}
}
void bmo_smooth_vert_exec(BMesh *UNUSED(bm), BMOperator *op)
{
BMOIter siter;
BMIter iter;
BMVert *v;
BMEdge *e;
float (*cos)[3] = MEM_mallocN(sizeof(*cos) * BMO_slot_buffer_count(op->slots_in, "verts"), __func__);
float *co, *co2, clip_dist = BMO_slot_float_get(op->slots_in, "clip_dist");
int i, j, clipx, clipy, clipz;
int xaxis, yaxis, zaxis;
clipx = BMO_slot_bool_get(op->slots_in, "mirror_clip_x");
clipy = BMO_slot_bool_get(op->slots_in, "mirror_clip_y");
clipz = BMO_slot_bool_get(op->slots_in, "mirror_clip_z");
xaxis = BMO_slot_bool_get(op->slots_in, "use_axis_x");
yaxis = BMO_slot_bool_get(op->slots_in, "use_axis_y");
zaxis = BMO_slot_bool_get(op->slots_in, "use_axis_z");
i = 0;
BMO_ITER (v, &siter, op->slots_in, "verts", BM_VERT) {
co = cos[i];
zero_v3(co);
j = 0;
BM_ITER_ELEM (e, &iter, v, BM_EDGES_OF_VERT) {
co2 = BM_edge_other_vert(e, v)->co;
add_v3_v3v3(co, co, co2);
j += 1;
}
if (!j) {
copy_v3_v3(co, v->co);
i++;
continue;
}
mul_v3_fl(co, 1.0f / (float)j);
mid_v3_v3v3(co, co, v->co);
if (clipx && fabsf(v->co[0]) <= clip_dist)
co[0] = 0.0f;
if (clipy && fabsf(v->co[1]) <= clip_dist)
co[1] = 0.0f;
if (clipz && fabsf(v->co[2]) <= clip_dist)
co[2] = 0.0f;
i++;
}
i = 0;
BMO_ITER (v, &siter, op->slots_in, "verts", BM_VERT) {
if (xaxis)
v->co[0] = cos[i][0];
if (yaxis)
v->co[1] = cos[i][1];
if (zaxis)
v->co[2] = cos[i][2];
i++;
}
MEM_freeN(cos);
}
/**************************************************************************** *
* Cycle UVs for a face
**************************************************************************** */
void bmo_rotate_uvs_exec(BMesh *bm, BMOperator *op)
{
BMOIter fs_iter; /* selected faces iterator */
BMFace *fs; /* current face */
BMIter l_iter; /* iteration loop */
const bool use_ccw = BMO_slot_bool_get(op->slots_in, "use_ccw");
const int cd_loop_uv_offset = CustomData_get_offset(&bm->ldata, CD_MLOOPUV);
if (cd_loop_uv_offset != -1) {
BMO_ITER (fs, &fs_iter, op->slots_in, "faces", BM_FACE) {
if (use_ccw == false) { /* same loops direction */
BMLoop *lf; /* current face loops */
MLoopUV *f_luv; /* first face loop uv */
float p_uv[2]; /* previous uvs */
float t_uv[2]; /* tmp uvs */
int n = 0;
BM_ITER_ELEM (lf, &l_iter, fs, BM_LOOPS_OF_FACE) {
/* current loop uv is the previous loop uv */
MLoopUV *luv = BM_ELEM_CD_GET_VOID_P(lf, cd_loop_uv_offset);
if (n == 0) {
f_luv = luv;
copy_v2_v2(p_uv, luv->uv);
}
else {
copy_v2_v2(t_uv, luv->uv);
copy_v2_v2(luv->uv, p_uv);
copy_v2_v2(p_uv, t_uv);
}
n++;
}
copy_v2_v2(f_luv->uv, p_uv);
}
else { /* counter loop direction */
BMLoop *lf; /* current face loops */
MLoopUV *p_luv; /* previous loop uv */
MLoopUV *luv;
float t_uv[2]; /* current uvs */
int n = 0;
BM_ITER_ELEM (lf, &l_iter, fs, BM_LOOPS_OF_FACE) {
/* previous loop uv is the current loop uv */
luv = BM_ELEM_CD_GET_VOID_P(lf, cd_loop_uv_offset);
if (n == 0) {
p_luv = luv;
copy_v2_v2(t_uv, luv->uv);
}
else {
copy_v2_v2(p_luv->uv, luv->uv);
p_luv = luv;
}
n++;
}
copy_v2_v2(luv->uv, t_uv);
}
}
}
}
/**************************************************************************** *
* Reverse UVs for a face
**************************************************************************** */
static void bm_face_reverse_uvs(BMFace *f, const int cd_loop_uv_offset)
{
BMIter iter;
BMLoop *l;
int i;
float (*uvs)[2] = BLI_array_alloca(uvs, f->len);
BM_ITER_ELEM_INDEX (l, &iter, f, BM_LOOPS_OF_FACE, i) {
MLoopUV *luv = BM_ELEM_CD_GET_VOID_P(l, cd_loop_uv_offset);
copy_v2_v2(uvs[i], luv->uv);
}
/* now that we have the uvs in the array, reverse! */
BM_ITER_ELEM_INDEX (l, &iter, f, BM_LOOPS_OF_FACE, i) {
/* current loop uv is the previous loop uv */
MLoopUV *luv = BM_ELEM_CD_GET_VOID_P(l, cd_loop_uv_offset);
copy_v2_v2(luv->uv, uvs[(f->len - i - 1)]);
}
}
void bmo_reverse_uvs_exec(BMesh *bm, BMOperator *op)
{
BMOIter iter;
BMFace *f;
const int cd_loop_uv_offset = CustomData_get_offset(&bm->ldata, CD_MLOOPUV);
if (cd_loop_uv_offset != -1) {
BMO_ITER (f, &iter, op->slots_in, "faces", BM_FACE) {
bm_face_reverse_uvs(f, cd_loop_uv_offset);
}
}
}
/**************************************************************************** *
* Cycle colors for a face
**************************************************************************** */
void bmo_rotate_colors_exec(BMesh *bm, BMOperator *op)
{
BMOIter fs_iter; /* selected faces iterator */
BMFace *fs; /* current face */
BMIter l_iter; /* iteration loop */
const bool use_ccw = BMO_slot_bool_get(op->slots_in, "use_ccw");
const int cd_loop_color_offset = CustomData_get_offset(&bm->ldata, CD_MLOOPCOL);
if (cd_loop_color_offset != -1) {
BMO_ITER (fs, &fs_iter, op->slots_in, "faces", BM_FACE) {
if (use_ccw == false) { /* same loops direction */
BMLoop *lf; /* current face loops */
MLoopCol *f_lcol; /* first face loop color */
MLoopCol p_col; /* previous color */
MLoopCol t_col; /* tmp color */
int n = 0;
BM_ITER_ELEM (lf, &l_iter, fs, BM_LOOPS_OF_FACE) {
/* current loop color is the previous loop color */
MLoopCol *lcol = BM_ELEM_CD_GET_VOID_P(lf, cd_loop_color_offset);
if (n == 0) {
f_lcol = lcol;
p_col = *lcol;
}
else {
t_col = *lcol;
*lcol = p_col;
p_col = t_col;
}
n++;
}
*f_lcol = p_col;
}
else { /* counter loop direction */
BMLoop *lf; /* current face loops */
MLoopCol *p_lcol; /* previous loop color */
MLoopCol *lcol;
MLoopCol t_col; /* current color */
int n = 0;
BM_ITER_ELEM (lf, &l_iter, fs, BM_LOOPS_OF_FACE) {
/* previous loop color is the current loop color */
lcol = BM_ELEM_CD_GET_VOID_P(lf, cd_loop_color_offset);
if (n == 0) {
p_lcol = lcol;
t_col = *lcol;
}
else {
*p_lcol = *lcol;
p_lcol = lcol;
}
n++;
}
*lcol = t_col;
}
}
}
}
/*************************************************************************** *
* Reverse colors for a face
*************************************************************************** */
static void bm_face_reverse_colors(BMFace *f, const int cd_loop_color_offset)
{
BMIter iter;
BMLoop *l;
int i;
MLoopCol *cols = BLI_array_alloca(cols, f->len);
BM_ITER_ELEM_INDEX (l, &iter, f, BM_LOOPS_OF_FACE, i) {
MLoopCol *lcol = BM_ELEM_CD_GET_VOID_P(l, cd_loop_color_offset);
cols[i] = *lcol;
}
/* now that we have the uvs in the array, reverse! */
BM_ITER_ELEM_INDEX (l, &iter, f, BM_LOOPS_OF_FACE, i) {
/* current loop uv is the previous loop color */
MLoopCol *lcol = BM_ELEM_CD_GET_VOID_P(l, cd_loop_color_offset);
*lcol = cols[(f->len - i - 1)];
}
}
void bmo_reverse_colors_exec(BMesh *bm, BMOperator *op)
{
BMOIter iter;
BMFace *f;
const int cd_loop_color_offset = CustomData_get_offset(&bm->ldata, CD_MLOOPCOL);
if (cd_loop_color_offset != -1) {
BMO_ITER (f, &iter, op->slots_in, "faces", BM_FACE) {
bm_face_reverse_colors(f, cd_loop_color_offset);
}
}
}
/*************************************************************************** *
* shortest vertex path select
*************************************************************************** */
typedef struct ElemNode {
BMVert *v; /* vertex */
BMVert *parent; /* node parent id */
float weight; /* node weight */
HeapNode *hn; /* heap node */
} ElemNode;
#define VERT_MARK 1
void bmo_shortest_path_exec(BMesh *bm, BMOperator *op)
{
BMIter v_iter; /* mesh verts iterator */
BMVert *sv, *ev; /* starting vertex, ending vertex */
BMVert *v; /* mesh vertex */
Heap *h = NULL;
ElemNode *vert_list = NULL;
int num_total = 0 /*, num_sels = 0 */, i = 0;
const int type = BMO_slot_int_get(op->slots_in, "type");
sv = BMO_slot_buffer_get_single(BMO_slot_get(op->slots_in, "vert_start"));
ev = BMO_slot_buffer_get_single(BMO_slot_get(op->slots_in, "vert_end"));
num_total = BM_mesh_elem_count(bm, BM_VERT);
/* allocate memory for the nodes */
vert_list = (ElemNode *)MEM_mallocN(sizeof(ElemNode) * num_total, "vertex nodes");
/* iterate through all the mesh vertices */
/* loop through all the vertices and fill the vertices/indices structure */
i = 0;
BM_ITER_MESH (v, &v_iter, bm, BM_VERTS_OF_MESH) {
vert_list[i].v = v;
vert_list[i].parent = NULL;
vert_list[i].weight = FLT_MAX;
BM_elem_index_set(v, i); /* set_inline */
i++;
}
bm->elem_index_dirty &= ~BM_VERT;
/*
* we now have everything we need, start Dijkstra path finding algorithm
*/
/* set the distance/weight of the start vertex to 0 */
vert_list[BM_elem_index_get(sv)].weight = 0.0f;
h = BLI_heap_new();
for (i = 0; i < num_total; i++) {
vert_list[i].hn = BLI_heap_insert(h, vert_list[i].weight, vert_list[i].v);
}
while (!BLI_heap_is_empty(h)) {
BMEdge *e;
BMIter e_i;
float v_weight;
/* take the vertex with the lowest weight out of the heap */
BMVert *v = (BMVert *)BLI_heap_popmin(h);
if (vert_list[BM_elem_index_get(v)].weight == FLT_MAX) /* this means that there is no path */
break;
v_weight = vert_list[BM_elem_index_get(v)].weight;
BM_ITER_ELEM (e, &e_i, v, BM_EDGES_OF_VERT) {
BMVert *u;
float e_weight = v_weight;
if (type == VPATH_SELECT_EDGE_LENGTH)
e_weight += len_v3v3(e->v1->co, e->v2->co);
else e_weight += 1.0f;
u = (e->v1 == v) ? e->v2 : e->v1;
if (e_weight < vert_list[BM_elem_index_get(u)].weight) { /* is this path shorter ? */
/* add it if so */
vert_list[BM_elem_index_get(u)].parent = v;
vert_list[BM_elem_index_get(u)].weight = e_weight;
/* we should do a heap update node function!!! :-/ */
BLI_heap_remove(h, vert_list[BM_elem_index_get(u)].hn);
BLI_heap_insert(h, e_weight, u);
}
}
}
/* now we trace the path (if it exists) */
v = ev;
while (vert_list[BM_elem_index_get(v)].parent != NULL) {
BMO_elem_flag_enable(bm, v, VERT_MARK);
v = vert_list[BM_elem_index_get(v)].parent;
}
BLI_heap_free(h, NULL);
MEM_freeN(vert_list);
BMO_slot_buffer_from_enabled_flag(bm, op, op->slots_out, "verts.out", BM_VERT, VERT_MARK);
}