This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/bmesh/operators/bmo_similar.c
Campbell Barton e09a1bc7cf minor changes to select similar,
- replace ngon_fake_area() with generic call to BM_face_calc_area().
- add defvert_find_shared() utility function.
2012-10-30 11:40:36 +00:00

615 lines
17 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor(s): Joseph Eagar, Campbell Barton
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/bmesh/operators/bmo_select_similar.c
* \ingroup bmesh
*
* bmesh operators to select based on
* comparisons with the existing selection.
*/
#include "MEM_guardedalloc.h"
#include "DNA_object_types.h"
#include "DNA_meshdata_types.h"
#include "BLI_math.h"
#include "BKE_customdata.h"
#include "BKE_deform.h"
#include "bmesh.h"
#include "intern/bmesh_operators_private.h" /* own include */
/* in fact these could all be the same */
/*
* extra face data (computed data)
*/
typedef struct SimSel_FaceExt {
BMFace *f; /* the face */
float c[3]; /* center */
union {
float area; /* area */
float perim; /* perimeter */
float d; /* 4th component of plane (the first three being the normal) */
struct Image *t; /* image pointer */
};
} SimSel_FaceExt;
static int bm_sel_similar_cmp_fl(const float delta, const float thresh, const int compare)
{
switch (compare) {
case SIM_CMP_EQ:
return (fabsf(delta) <= thresh);
case SIM_CMP_GT:
return ((delta + thresh) >= 0.0f);
case SIM_CMP_LT:
return ((delta - thresh) <= 0.0f);
default:
BLI_assert(0);
return 0;
}
}
static int bm_sel_similar_cmp_i(const int delta, const int compare)
{
switch (compare) {
case SIM_CMP_EQ:
return (delta == 0);
case SIM_CMP_GT:
return (delta > 0);
case SIM_CMP_LT:
return (delta < 0);
default:
BLI_assert(0);
return 0;
}
}
/*
* Select similar faces, the choices are in the enum in source/blender/bmesh/bmesh_operators.h
* We select either similar faces based on material, image, area, perimeter, normal, or the coplanar faces
*/
void bmo_similar_faces_exec(BMesh *bm, BMOperator *op)
{
#define FACE_MARK 1
BMIter fm_iter;
BMFace *fs, *fm;
BMOIter fs_iter;
int num_sels = 0, num_total = 0, i = 0, idx = 0;
float angle = 0.0f;
SimSel_FaceExt *f_ext = NULL;
int *indices = NULL;
float t_no[3]; /* temporary normal */
const int type = BMO_slot_int_get(op, "type");
const float thresh = BMO_slot_float_get(op, "thresh");
const float thresh_radians = thresh * (float)M_PI;
const int compare = BMO_slot_int_get(op, "compare");
/* initial_elem - other_elem */
float delta_fl;
int delta_i;
num_total = BM_mesh_elem_count(bm, BM_FACE);
/*
* The first thing to do is to iterate through all the the selected items and mark them since
* they will be in the selection anyway.
* This will increase performance, (especially when the number of originally selected faces is high)
* so the overall complexity will be less than $O(mn)$ where is the total number of selected faces,
* and n is the total number of faces
*/
BMO_ITER (fs, &fs_iter, bm, op, "faces", BM_FACE) {
if (!BMO_elem_flag_test(bm, fs, FACE_MARK)) { /* is this really needed ? */
BMO_elem_flag_enable(bm, fs, FACE_MARK);
num_sels++;
}
}
/* allocate memory for the selected faces indices and for all temporary faces */
indices = (int *)MEM_callocN(sizeof(int) * num_sels, "face indices util.c");
f_ext = (SimSel_FaceExt *)MEM_callocN(sizeof(SimSel_FaceExt) * num_total, "f_ext util.c");
/* loop through all the faces and fill the faces/indices structure */
BM_ITER_MESH (fm, &fm_iter, bm, BM_FACES_OF_MESH) {
f_ext[i].f = fm;
if (BMO_elem_flag_test(bm, fm, FACE_MARK)) {
indices[idx] = i;
idx++;
}
i++;
}
/*
* Save us some computation burden: In case of perimeter/area/coplanar selection we compute
* only once.
*/
if (type == SIMFACE_PERIMETER || type == SIMFACE_AREA || type == SIMFACE_COPLANAR || type == SIMFACE_IMAGE) {
for (i = 0; i < num_total; i++) {
switch (type) {
case SIMFACE_PERIMETER:
/* set the perimeter */
f_ext[i].perim = BM_face_calc_perimeter(f_ext[i].f);
break;
case SIMFACE_COPLANAR:
/* compute the center of the polygon */
BM_face_calc_center_mean(f_ext[i].f, f_ext[i].c);
/* normalize the polygon normal */
copy_v3_v3(t_no, f_ext[i].f->no);
normalize_v3(t_no);
/* compute the plane distance */
f_ext[i].d = dot_v3v3(t_no, f_ext[i].c);
break;
case SIMFACE_AREA:
f_ext[i].area = BM_face_calc_area(f_ext[i].f);
break;
case SIMFACE_IMAGE:
f_ext[i].t = NULL;
if (CustomData_has_layer(&(bm->pdata), CD_MTEXPOLY)) {
MTexPoly *mtpoly = CustomData_bmesh_get(&bm->pdata, f_ext[i].f->head.data, CD_MTEXPOLY);
f_ext[i].t = mtpoly->tpage;
}
break;
}
}
}
/* now select the rest (if any) */
for (i = 0; i < num_total; i++) {
fm = f_ext[i].f;
if (!BMO_elem_flag_test(bm, fm, FACE_MARK) && !BM_elem_flag_test(fm, BM_ELEM_HIDDEN)) {
int cont = TRUE;
for (idx = 0; idx < num_sels && cont == TRUE; idx++) {
fs = f_ext[indices[idx]].f;
switch (type) {
case SIMFACE_MATERIAL:
if (fm->mat_nr == fs->mat_nr) {
BMO_elem_flag_enable(bm, fm, FACE_MARK);
cont = FALSE;
}
break;
case SIMFACE_IMAGE:
if (f_ext[i].t == f_ext[indices[idx]].t) {
BMO_elem_flag_enable(bm, fm, FACE_MARK);
cont = FALSE;
}
break;
case SIMFACE_NORMAL:
angle = angle_normalized_v3v3(fs->no, fm->no); /* if the angle between the normals -> 0 */
if (angle <= thresh_radians) {
BMO_elem_flag_enable(bm, fm, FACE_MARK);
cont = FALSE;
}
break;
case SIMFACE_COPLANAR:
angle = angle_normalized_v3v3(fs->no, fm->no); /* angle -> 0 */
if (angle <= thresh_radians) { /* and dot product difference -> 0 */
delta_fl = f_ext[i].d - f_ext[indices[idx]].d;
if (bm_sel_similar_cmp_fl(delta_fl, thresh, compare)) {
BMO_elem_flag_enable(bm, fm, FACE_MARK);
cont = FALSE;
}
}
break;
case SIMFACE_AREA:
delta_fl = f_ext[i].area - f_ext[indices[idx]].area;
if (bm_sel_similar_cmp_fl(delta_fl, thresh, compare)) {
BMO_elem_flag_enable(bm, fm, FACE_MARK);
cont = FALSE;
}
break;
case SIMFACE_SIDES:
delta_i = fm->len - fs->len;
if (bm_sel_similar_cmp_i(delta_i, compare)) {
BMO_elem_flag_enable(bm, fm, FACE_MARK);
cont = FALSE;
}
break;
case SIMFACE_PERIMETER:
delta_fl = f_ext[i].perim - f_ext[indices[idx]].perim;
if (bm_sel_similar_cmp_fl(delta_fl, thresh, compare)) {
BMO_elem_flag_enable(bm, fm, FACE_MARK);
cont = FALSE;
}
break;
default:
BLI_assert(0);
}
}
}
}
MEM_freeN(f_ext);
MEM_freeN(indices);
/* transfer all marked faces to the output slot */
BMO_slot_buffer_from_enabled_flag(bm, op, "faceout", BM_FACE, FACE_MARK);
#undef FACE_MARK
}
/**************************************************************************** *
* Similar Edges
**************************************************************************** */
/*
* extra edge information
*/
typedef struct SimSel_EdgeExt {
BMEdge *e;
union {
float dir[3];
float angle; /* angle between the face */
};
union {
float length; /* edge length */
int faces; /* faces count */
};
} SimSel_EdgeExt;
/*
* select similar edges: the choices are in the enum in source/blender/bmesh/bmesh_operators.h
* choices are length, direction, face, ...
*/
void bmo_similar_edges_exec(BMesh *bm, BMOperator *op)
{
#define EDGE_MARK 1
BMOIter es_iter; /* selected edges iterator */
BMIter e_iter; /* mesh edges iterator */
BMEdge *es; /* selected edge */
BMEdge *e; /* mesh edge */
int idx = 0, i = 0 /* , f = 0 */;
int *indices = NULL;
SimSel_EdgeExt *e_ext = NULL;
// float *angles = NULL;
float angle;
int num_sels = 0, num_total = 0;
const int type = BMO_slot_int_get(op, "type");
const float thresh = BMO_slot_float_get(op, "thresh");
const int compare = BMO_slot_int_get(op, "compare");
/* initial_elem - other_elem */
float delta_fl;
int delta_i;
/* sanity checks that the data we need is available */
switch (type) {
case SIMEDGE_CREASE:
if (!CustomData_has_layer(&bm->edata, CD_CREASE)) {
return;
}
break;
case SIMEDGE_BEVEL:
if (!CustomData_has_layer(&bm->edata, CD_BWEIGHT)) {
return;
}
break;
}
num_total = BM_mesh_elem_count(bm, BM_EDGE);
/* iterate through all selected edges and mark them */
BMO_ITER (es, &es_iter, bm, op, "edges", BM_EDGE) {
BMO_elem_flag_enable(bm, es, EDGE_MARK);
num_sels++;
}
/* allocate memory for the selected edges indices and for all temporary edges */
indices = (int *)MEM_callocN(sizeof(int) * num_sels, __func__);
e_ext = (SimSel_EdgeExt *)MEM_callocN(sizeof(SimSel_EdgeExt) * num_total, __func__);
/* loop through all the edges and fill the edges/indices structure */
BM_ITER_MESH (e, &e_iter, bm, BM_EDGES_OF_MESH) {
e_ext[i].e = e;
if (BMO_elem_flag_test(bm, e, EDGE_MARK)) {
indices[idx] = i;
idx++;
}
i++;
}
/* save us some computation time by doing heavy computation once */
if (type == SIMEDGE_LENGTH || type == SIMEDGE_FACE || type == SIMEDGE_DIR || type == SIMEDGE_FACE_ANGLE) {
for (i = 0; i < num_total; i++) {
switch (type) {
case SIMEDGE_LENGTH: /* compute the length of the edge */
e_ext[i].length = len_v3v3(e_ext[i].e->v1->co, e_ext[i].e->v2->co);
break;
case SIMEDGE_DIR: /* compute the direction */
sub_v3_v3v3(e_ext[i].dir, e_ext[i].e->v1->co, e_ext[i].e->v2->co);
normalize_v3(e_ext[i].dir);
break;
case SIMEDGE_FACE: /* count the faces around the edge */
e_ext[i].faces = BM_edge_face_count(e_ext[i].e);
break;
case SIMEDGE_FACE_ANGLE:
e_ext[i].faces = BM_edge_face_count(e_ext[i].e);
if (e_ext[i].faces == 2)
e_ext[i].angle = BM_edge_calc_face_angle(e_ext[i].e);
break;
}
}
}
/* select the edges if any */
for (i = 0; i < num_total; i++) {
e = e_ext[i].e;
if (!BMO_elem_flag_test(bm, e, EDGE_MARK) && !BM_elem_flag_test(e, BM_ELEM_HIDDEN)) {
int cont = TRUE;
for (idx = 0; idx < num_sels && cont == TRUE; idx++) {
es = e_ext[indices[idx]].e;
switch (type) {
case SIMEDGE_LENGTH:
delta_fl = e_ext[i].length - e_ext[indices[idx]].length;
if (bm_sel_similar_cmp_fl(delta_fl, thresh, compare)) {
BMO_elem_flag_enable(bm, e, EDGE_MARK);
cont = FALSE;
}
break;
case SIMEDGE_DIR:
/* compute the angle between the two edges */
angle = angle_normalized_v3v3(e_ext[i].dir, e_ext[indices[idx]].dir);
if (angle > (float)(M_PI / 2.0)) /* use the smallest angle between the edges */
angle = fabsf(angle - (float)M_PI);
if (angle / (float)(M_PI / 2.0) <= thresh) {
BMO_elem_flag_enable(bm, e, EDGE_MARK);
cont = FALSE;
}
break;
case SIMEDGE_FACE:
delta_i = e_ext[i].faces - e_ext[indices[idx]].faces;
if (bm_sel_similar_cmp_i(delta_i, compare)) {
BMO_elem_flag_enable(bm, e, EDGE_MARK);
cont = FALSE;
}
break;
case SIMEDGE_FACE_ANGLE:
if (e_ext[i].faces == 2) {
if (e_ext[indices[idx]].faces == 2) {
if (fabsf(e_ext[i].angle - e_ext[indices[idx]].angle) <= thresh) {
BMO_elem_flag_enable(bm, e, EDGE_MARK);
cont = FALSE;
}
}
}
else {
cont = FALSE;
}
break;
case SIMEDGE_CREASE:
{
float *c1, *c2;
c1 = CustomData_bmesh_get(&bm->edata, e->head.data, CD_CREASE);
c2 = CustomData_bmesh_get(&bm->edata, es->head.data, CD_CREASE);
delta_fl = *c1 - *c2;
if (bm_sel_similar_cmp_fl(delta_fl, thresh, compare)) {
BMO_elem_flag_enable(bm, e, EDGE_MARK);
cont = FALSE;
}
}
break;
case SIMEDGE_BEVEL:
{
float *c1, *c2;
c1 = CustomData_bmesh_get(&bm->edata, e->head.data, CD_BWEIGHT);
c2 = CustomData_bmesh_get(&bm->edata, es->head.data, CD_BWEIGHT);
delta_fl = *c1 - *c2;
if (bm_sel_similar_cmp_fl(delta_fl, thresh, compare)) {
BMO_elem_flag_enable(bm, e, EDGE_MARK);
cont = FALSE;
}
}
break;
case SIMEDGE_SEAM:
if (BM_elem_flag_test(e, BM_ELEM_SEAM) == BM_elem_flag_test(es, BM_ELEM_SEAM)) {
BMO_elem_flag_enable(bm, e, EDGE_MARK);
cont = FALSE;
}
break;
case SIMEDGE_SHARP:
if (BM_elem_flag_test(e, BM_ELEM_SMOOTH) == BM_elem_flag_test(es, BM_ELEM_SMOOTH)) {
BMO_elem_flag_enable(bm, e, EDGE_MARK);
cont = FALSE;
}
break;
default:
BLI_assert(0);
}
}
}
}
MEM_freeN(e_ext);
MEM_freeN(indices);
/* transfer all marked edges to the output slot */
BMO_slot_buffer_from_enabled_flag(bm, op, "edgeout", BM_EDGE, EDGE_MARK);
#undef EDGE_MARK
}
/**************************************************************************** *
* Similar Vertices
**************************************************************************** */
typedef struct SimSel_VertExt {
BMVert *v;
union {
int num_faces; /* adjacent faces */
int num_edges; /* adjacent edges */
MDeformVert *dvert; /* deform vertex */
};
} SimSel_VertExt;
/*
* select similar vertices: the choices are in the enum in source/blender/bmesh/bmesh_operators.h
* choices are normal, face, vertex group...
*/
void bmo_similar_verts_exec(BMesh *bm, BMOperator *op)
{
#define VERT_MARK 1
BMOIter vs_iter; /* selected verts iterator */
BMIter v_iter; /* mesh verts iterator */
BMVert *vs; /* selected vertex */
BMVert *v; /* mesh vertex */
SimSel_VertExt *v_ext = NULL;
int *indices = NULL;
int num_total = 0, num_sels = 0, i = 0, idx = 0;
const int type = BMO_slot_int_get(op, "type");
const float thresh = BMO_slot_float_get(op, "thresh");
const float thresh_radians = thresh * (float)M_PI;
const int compare = BMO_slot_int_get(op, "compare");
/* initial_elem - other_elem */
// float delta_fl;
int delta_i;
num_total = BM_mesh_elem_count(bm, BM_VERT);
/* iterate through all selected edges and mark them */
BMO_ITER (vs, &vs_iter, bm, op, "verts", BM_VERT) {
BMO_elem_flag_enable(bm, vs, VERT_MARK);
num_sels++;
}
/* allocate memory for the selected vertices indices and for all temporary vertices */
indices = (int *)MEM_mallocN(sizeof(int) * num_sels, "vertex indices");
v_ext = (SimSel_VertExt *)MEM_mallocN(sizeof(SimSel_VertExt) * num_total, "vertex extra");
/* loop through all the vertices and fill the vertices/indices structure */
BM_ITER_MESH (v, &v_iter, bm, BM_VERTS_OF_MESH) {
v_ext[i].v = v;
if (BMO_elem_flag_test(bm, v, VERT_MARK)) {
indices[idx] = i;
idx++;
}
switch (type) {
case SIMVERT_FACE:
/* calling BM_vert_face_count every time is time consumming, so call it only once per vertex */
v_ext[i].num_faces = BM_vert_face_count(v);
break;
case SIMVERT_VGROUP:
if (CustomData_has_layer(&(bm->vdata), CD_MDEFORMVERT)) {
v_ext[i].dvert = CustomData_bmesh_get(&bm->vdata, v_ext[i].v->head.data, CD_MDEFORMVERT);
}
else {
v_ext[i].dvert = NULL;
}
break;
case SIMVERT_EDGE:
v_ext[i].num_edges = BM_vert_edge_count(v);
break;
}
i++;
}
/* select the vertices if any */
for (i = 0; i < num_total; i++) {
v = v_ext[i].v;
if (!BMO_elem_flag_test(bm, v, VERT_MARK) && !BM_elem_flag_test(v, BM_ELEM_HIDDEN)) {
int cont = TRUE;
for (idx = 0; idx < num_sels && cont == TRUE; idx++) {
vs = v_ext[indices[idx]].v;
switch (type) {
case SIMVERT_NORMAL:
/* compare the angle between the normals */
if (angle_normalized_v3v3(v->no, vs->no) <= thresh_radians) {
BMO_elem_flag_enable(bm, v, VERT_MARK);
cont = FALSE;
}
break;
case SIMVERT_FACE:
/* number of adjacent faces */
delta_i = v_ext[i].num_faces - v_ext[indices[idx]].num_faces;
if (bm_sel_similar_cmp_i(delta_i, compare)) {
BMO_elem_flag_enable(bm, v, VERT_MARK);
cont = FALSE;
}
break;
case SIMVERT_VGROUP:
if (v_ext[i].dvert != NULL && v_ext[indices[idx]].dvert != NULL) {
if (defvert_find_shared(v_ext[i].dvert, v_ext[indices[idx]].dvert) != -1) {
BMO_elem_flag_enable(bm, v, VERT_MARK);
cont = FALSE;
}
}
break;
case SIMVERT_EDGE:
/* number of adjacent edges */
delta_i = v_ext[i].num_edges - v_ext[indices[idx]].num_edges;
if (bm_sel_similar_cmp_i(delta_i, compare)) {
BMO_elem_flag_enable(bm, v, VERT_MARK);
cont = FALSE;
}
break;
default:
BLI_assert(0);
}
}
}
}
MEM_freeN(indices);
MEM_freeN(v_ext);
BMO_slot_buffer_from_enabled_flag(bm, op, "vertout", BM_VERT, VERT_MARK);
#undef VERT_MARK
}