This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/editors/space_sequencer/sequencer_scopes.c
Campbell Barton e305560f13 Cleanup: add trailing commas to structs
Needed for clang formatting to workaround bug/limit, see: T53211
2019-01-07 00:34:48 +11:00

776 lines
18 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Author: Peter Schlaile < peter [at] schlaile [dot] de >
*
* ***** END GPL LICENSE BLOCK *****
*
*/
/** \file blender/editors/space_sequencer/sequencer_scopes.c
* \ingroup spseq
*/
#include <math.h>
#include <string.h>
#include "BLI_utildefines.h"
#include "BLI_task.h"
#include "IMB_colormanagement.h"
#include "IMB_imbuf_types.h"
#include "IMB_imbuf.h"
#include "atomic_ops.h"
#include "sequencer_intern.h"
/* XXX, why is this function better then BLI_math version?
* only difference is it does some normalize after, need to double check on this - campbell */
static void rgb_to_yuv_normalized(const float rgb[3], float yuv[3])
{
yuv[0] = 0.299f * rgb[0] + 0.587f * rgb[1] + 0.114f * rgb[2];
yuv[1] = 0.492f * (rgb[2] - yuv[0]);
yuv[2] = 0.877f * (rgb[0] - yuv[0]);
/* Normalize */
yuv[1] *= 255.0f / (122 * 2.0f);
yuv[1] += 0.5f;
yuv[2] *= 255.0f / (157 * 2.0f);
yuv[2] += 0.5f;
}
static void scope_put_pixel(unsigned char *table, unsigned char *pos)
{
unsigned char newval = table[*pos];
pos[0] = pos[1] = pos[2] = newval;
pos[3] = 255;
}
static void scope_put_pixel_single(unsigned char *table, unsigned char *pos, int col)
{
char newval = table[pos[col]];
pos[col] = newval;
pos[3] = 255;
}
static void wform_put_line(int w, unsigned char *last_pos, unsigned char *new_pos)
{
if (last_pos > new_pos) {
unsigned char *temp = new_pos;
new_pos = last_pos;
last_pos = temp;
}
while (last_pos < new_pos) {
if (last_pos[0] == 0) {
last_pos[0] = last_pos[1] = last_pos[2] = 32;
last_pos[3] = 255;
}
last_pos += 4 * w;
}
}
static void wform_put_line_single(int w, unsigned char *last_pos, unsigned char *new_pos, int col)
{
if (last_pos > new_pos) {
unsigned char *temp = new_pos;
new_pos = last_pos;
last_pos = temp;
}
while (last_pos < new_pos) {
if (last_pos[col] == 0) {
last_pos[col] = 32;
last_pos[3] = 255;
}
last_pos += 4 * w;
}
}
static void wform_put_border(unsigned char *tgt, int w, int h)
{
int x, y;
for (x = 0; x < w; x++) {
unsigned char *p = tgt + 4 * x;
p[1] = p[3] = 155;
p[4 * w + 1] = p[4 * w + 3] = 155;
p = tgt + 4 * (w * (h - 1) + x);
p[1] = p[3] = 155;
p[-4 * w + 1] = p[-4 * w + 3] = 155;
}
for (y = 0; y < h; y++) {
unsigned char *p = tgt + 4 * w * y;
p[1] = p[3] = 155;
p[4 + 1] = p[4 + 3] = 155;
p = tgt + 4 * (w * y + w - 1);
p[1] = p[3] = 155;
p[-4 + 1] = p[-4 + 3] = 155;
}
}
static void wform_put_gridrow(unsigned char *tgt, float perc, int w, int h)
{
int i;
tgt += (int) (perc / 100.0f * h) * w * 4;
for (i = 0; i < w * 2; i++) {
tgt[0] = 255;
tgt += 4;
}
}
static void wform_put_grid(unsigned char *tgt, int w, int h)
{
wform_put_gridrow(tgt, 90.0, w, h);
wform_put_gridrow(tgt, 70.0, w, h);
wform_put_gridrow(tgt, 10.0, w, h);
}
static ImBuf *make_waveform_view_from_ibuf_byte(ImBuf *ibuf)
{
ImBuf *rval = IMB_allocImBuf(ibuf->x + 3, 515, 32, IB_rect);
int x, y;
const unsigned char *src = (unsigned char *)ibuf->rect;
unsigned char *tgt = (unsigned char *)rval->rect;
int w = ibuf->x + 3;
int h = 515;
float waveform_gamma = 0.2;
unsigned char wtable[256];
wform_put_grid(tgt, w, h);
wform_put_border(tgt, w, h);
for (x = 0; x < 256; x++) {
wtable[x] = (unsigned char) (pow(((float) x + 1) / 256, waveform_gamma) * 255);
}
for (y = 0; y < ibuf->y; y++) {
unsigned char *last_p = NULL;
for (x = 0; x < ibuf->x; x++) {
const unsigned char *rgb = src + 4 * (ibuf->x * y + x);
float v = (float)IMB_colormanagement_get_luminance_byte(rgb) / 255.0f;
unsigned char *p = tgt;
p += 4 * (w * ((int) (v * (h - 3)) + 1) + x + 1);
scope_put_pixel(wtable, p);
p += 4 * w;
scope_put_pixel(wtable, p);
if (last_p != NULL) {
wform_put_line(w, last_p, p);
}
last_p = p;
}
}
return rval;
}
static ImBuf *make_waveform_view_from_ibuf_float(ImBuf *ibuf)
{
ImBuf *rval = IMB_allocImBuf(ibuf->x + 3, 515, 32, IB_rect);
int x, y;
const float *src = ibuf->rect_float;
unsigned char *tgt = (unsigned char *) rval->rect;
int w = ibuf->x + 3;
int h = 515;
float waveform_gamma = 0.2;
unsigned char wtable[256];
wform_put_grid(tgt, w, h);
for (x = 0; x < 256; x++) {
wtable[x] = (unsigned char) (pow(((float) x + 1) / 256, waveform_gamma) * 255);
}
for (y = 0; y < ibuf->y; y++) {
unsigned char *last_p = NULL;
for (x = 0; x < ibuf->x; x++) {
const float *rgb = src + 4 * (ibuf->x * y + x);
float v = IMB_colormanagement_get_luminance(rgb);
unsigned char *p = tgt;
CLAMP(v, 0.0f, 1.0f);
p += 4 * (w * ((int) (v * (h - 3)) + 1) + x + 1);
scope_put_pixel(wtable, p);
p += 4 * w;
scope_put_pixel(wtable, p);
if (last_p != NULL) {
wform_put_line(w, last_p, p);
}
last_p = p;
}
}
wform_put_border(tgt, w, h);
return rval;
}
ImBuf *make_waveform_view_from_ibuf(ImBuf *ibuf)
{
if (ibuf->rect_float) {
return make_waveform_view_from_ibuf_float(ibuf);
}
else {
return make_waveform_view_from_ibuf_byte(ibuf);
}
}
static ImBuf *make_sep_waveform_view_from_ibuf_byte(ImBuf *ibuf)
{
ImBuf *rval = IMB_allocImBuf(ibuf->x + 3, 515, 32, IB_rect);
int x, y;
const unsigned char *src = (const unsigned char *)ibuf->rect;
unsigned char *tgt = (unsigned char *)rval->rect;
int w = ibuf->x + 3;
int sw = ibuf->x / 3;
int h = 515;
float waveform_gamma = 0.2;
unsigned char wtable[256];
wform_put_grid(tgt, w, h);
for (x = 0; x < 256; x++) {
wtable[x] = (unsigned char) (pow(((float) x + 1) / 256, waveform_gamma) * 255);
}
for (y = 0; y < ibuf->y; y++) {
unsigned char *last_p[3] = {NULL, NULL, NULL};
for (x = 0; x < ibuf->x; x++) {
int c;
const unsigned char *rgb = src + 4 * (ibuf->x * y + x);
for (c = 0; c < 3; c++) {
unsigned char *p = tgt;
p += 4 * (w * ((rgb[c] * (h - 3)) / 255 + 1) + c * sw + x / 3 + 1);
scope_put_pixel_single(wtable, p, c);
p += 4 * w;
scope_put_pixel_single(wtable, p, c);
if (last_p[c] != NULL) {
wform_put_line_single(w, last_p[c], p, c);
}
last_p[c] = p;
}
}
}
wform_put_border(tgt, w, h);
return rval;
}
static ImBuf *make_sep_waveform_view_from_ibuf_float(ImBuf *ibuf)
{
ImBuf *rval = IMB_allocImBuf(ibuf->x + 3, 515, 32, IB_rect);
int x, y;
const float *src = ibuf->rect_float;
unsigned char *tgt = (unsigned char *)rval->rect;
int w = ibuf->x + 3;
int sw = ibuf->x / 3;
int h = 515;
float waveform_gamma = 0.2;
unsigned char wtable[256];
wform_put_grid(tgt, w, h);
for (x = 0; x < 256; x++) {
wtable[x] = (unsigned char) (pow(((float) x + 1) / 256, waveform_gamma) * 255);
}
for (y = 0; y < ibuf->y; y++) {
unsigned char *last_p[3] = {NULL, NULL, NULL};
for (x = 0; x < ibuf->x; x++) {
int c;
const float *rgb = src + 4 * (ibuf->x * y + x);
for (c = 0; c < 3; c++) {
unsigned char *p = tgt;
float v = rgb[c];
CLAMP(v, 0.0f, 1.0f);
p += 4 * (w * ((int) (v * (h - 3)) + 1) + c * sw + x / 3 + 1);
scope_put_pixel_single(wtable, p, c);
p += 4 * w;
scope_put_pixel_single(wtable, p, c);
if (last_p[c] != NULL) {
wform_put_line_single(w, last_p[c], p, c);
}
last_p[c] = p;
}
}
}
wform_put_border(tgt, w, h);
return rval;
}
ImBuf *make_sep_waveform_view_from_ibuf(ImBuf *ibuf)
{
if (ibuf->rect_float) {
return make_sep_waveform_view_from_ibuf_float(ibuf);
}
else {
return make_sep_waveform_view_from_ibuf_byte(ibuf);
}
}
static void draw_zebra_byte(ImBuf *src, ImBuf *ibuf, float perc)
{
unsigned int limit = 255.0f * perc / 100.0f;
unsigned char *p = (unsigned char *) src->rect;
unsigned char *o = (unsigned char *) ibuf->rect;
int x;
int y;
for (y = 0; y < ibuf->y; y++) {
for (x = 0; x < ibuf->x; x++) {
unsigned char r = *p++;
unsigned char g = *p++;
unsigned char b = *p++;
unsigned char a = *p++;
if (r >= limit || g >= limit || b >= limit) {
if (((x + y) & 0x08) != 0) {
r = 255 - r;
g = 255 - g;
b = 255 - b;
}
}
*o++ = r;
*o++ = g;
*o++ = b;
*o++ = a;
}
}
}
static void draw_zebra_float(ImBuf *src, ImBuf *ibuf, float perc)
{
float limit = perc / 100.0f;
const float *p = src->rect_float;
unsigned char *o = (unsigned char *) ibuf->rect;
int x;
int y;
for (y = 0; y < ibuf->y; y++) {
for (x = 0; x < ibuf->x; x++) {
float r = *p++;
float g = *p++;
float b = *p++;
float a = *p++;
if (r >= limit || g >= limit || b >= limit) {
if (((x + y) & 0x08) != 0) {
r = -r;
g = -g;
b = -b;
}
}
*o++ = unit_float_to_uchar_clamp(r);
*o++ = unit_float_to_uchar_clamp(g);
*o++ = unit_float_to_uchar_clamp(b);
*o++ = unit_float_to_uchar_clamp(a);
}
}
}
ImBuf *make_zebra_view_from_ibuf(ImBuf *src, float perc)
{
ImBuf *ibuf = IMB_allocImBuf(src->x, src->y, 32, IB_rect);
if (src->rect_float) {
draw_zebra_float(src, ibuf, perc);
}
else {
draw_zebra_byte(src, ibuf, perc);
}
return ibuf;
}
static void draw_histogram_marker(ImBuf *ibuf, int x)
{
unsigned char *p = (unsigned char *) ibuf->rect;
int barh = ibuf->y * 0.1;
int i;
p += 4 * (x + ibuf->x * (ibuf->y - barh + 1));
for (i = 0; i < barh - 1; i++) {
p[0] = p[1] = p[2] = 255;
p += ibuf->x * 4;
}
}
static void draw_histogram_bar(ImBuf *ibuf, int x, float val, int col)
{
unsigned char *p = (unsigned char *) ibuf->rect;
int barh = ibuf->y * val * 0.9f;
int i;
p += 4 * (x + ibuf->x);
for (i = 0; i < barh; i++) {
p[col] = 255;
p += ibuf->x * 4;
}
}
#define HIS_STEPS 512
typedef struct MakeHistogramViewData {
const ImBuf *ibuf;
uint32_t (*bins)[HIS_STEPS];
} MakeHistogramViewData;
static void make_histogram_view_from_ibuf_byte_cb_ex(
void *__restrict userdata,
const int y,
const ParallelRangeTLS *__restrict tls)
{
MakeHistogramViewData *data = userdata;
const ImBuf *ibuf = data->ibuf;
const unsigned char *src = (unsigned char *)ibuf->rect;
uint32_t (*cur_bins)[HIS_STEPS] = tls->userdata_chunk;
for (int x = 0; x < ibuf->x; x++) {
const unsigned char *pixel = src + (y * ibuf->x + x) * 4;
for (int j = 3; j--;) {
cur_bins[j][pixel[j]]++;
}
}
}
static void make_histogram_view_from_ibuf_finalize(void *__restrict userdata,
void *__restrict userdata_chunk)
{
MakeHistogramViewData *data = userdata;
uint32_t (*bins)[HIS_STEPS] = data->bins;
uint32_t (*cur_bins)[HIS_STEPS] = userdata_chunk;
for (int j = 3; j--;) {
for (int i = 0; i < HIS_STEPS; i++) {
bins[j][i] += cur_bins[j][i];
}
}
}
static ImBuf *make_histogram_view_from_ibuf_byte(ImBuf *ibuf)
{
ImBuf *rval = IMB_allocImBuf(515, 128, 32, IB_rect);
int x;
unsigned int nr, ng, nb;
unsigned int bins[3][HIS_STEPS];
memset(bins, 0, sizeof(bins));
MakeHistogramViewData data = { .ibuf = ibuf, .bins = bins, };
ParallelRangeSettings settings;
BLI_parallel_range_settings_defaults(&settings);
settings.use_threading = (ibuf->y >= 256);
settings.userdata_chunk = bins;
settings.userdata_chunk_size = sizeof(bins);
settings.func_finalize = make_histogram_view_from_ibuf_finalize;
BLI_task_parallel_range(
0, ibuf->y,
&data,
make_histogram_view_from_ibuf_byte_cb_ex,
&settings);
nr = nb = ng = 0;
for (x = 0; x < HIS_STEPS; x++) {
if (bins[0][x] > nr)
nr = bins[0][x];
if (bins[1][x] > ng)
ng = bins[1][x];
if (bins[2][x] > nb)
nb = bins[2][x];
}
for (x = 0; x < HIS_STEPS; x++) {
if (nr) {
draw_histogram_bar(rval, x * 2 + 1, ((float) bins[0][x]) / nr, 0);
draw_histogram_bar(rval, x * 2 + 2, ((float) bins[0][x]) / nr, 0);
}
if (ng) {
draw_histogram_bar(rval, x * 2 + 1, ((float) bins[1][x]) / ng, 1);
draw_histogram_bar(rval, x * 2 + 2, ((float) bins[1][x]) / ng, 1);
}
if (nb) {
draw_histogram_bar(rval, x * 2 + 1, ((float) bins[2][x]) / nb, 2);
draw_histogram_bar(rval, x * 2 + 2, ((float) bins[2][x]) / nb, 2);
}
}
wform_put_border((unsigned char *) rval->rect, rval->x, rval->y);
return rval;
}
BLI_INLINE int get_bin_float(float f)
{
if (f < -0.25f) {
return 0;
}
else if (f >= 1.25f) {
return 511;
}
return (int) (((f + 0.25f) / 1.5f) * 512);
}
static void make_histogram_view_from_ibuf_float_cb_ex(
void *__restrict userdata,
const int y,
const ParallelRangeTLS *__restrict tls)
{
const MakeHistogramViewData *data = userdata;
const ImBuf *ibuf = data->ibuf;
const float *src = ibuf->rect_float;
uint32_t (*cur_bins)[HIS_STEPS] = tls->userdata_chunk;
for (int x = 0; x < ibuf->x; x++) {
const float *pixel = src + (y * ibuf->x + x) * 4;
for (int j = 3; j--;) {
cur_bins[j][get_bin_float(pixel[j])]++;
}
}
}
static ImBuf *make_histogram_view_from_ibuf_float(ImBuf *ibuf)
{
ImBuf *rval = IMB_allocImBuf(515, 128, 32, IB_rect);
int nr, ng, nb;
int x;
unsigned int bins[3][HIS_STEPS];
memset(bins, 0, sizeof(bins));
MakeHistogramViewData data = { .ibuf = ibuf, .bins = bins, };
ParallelRangeSettings settings;
BLI_parallel_range_settings_defaults(&settings);
settings.use_threading = (ibuf->y >= 256);
settings.userdata_chunk = bins;
settings.userdata_chunk_size = sizeof(bins);
settings.func_finalize = make_histogram_view_from_ibuf_finalize;
BLI_task_parallel_range(
0, ibuf->y,
&data,
make_histogram_view_from_ibuf_float_cb_ex,
&settings);
nr = nb = ng = 0;
for (x = 0; x < HIS_STEPS; x++) {
if (bins[0][x] > nr)
nr = bins[0][x];
if (bins[1][x] > ng)
ng = bins[1][x];
if (bins[2][x] > nb)
nb = bins[2][x];
}
for (x = 0; x < HIS_STEPS; x++) {
if (nr) {
draw_histogram_bar(rval, x + 1, ((float) bins[0][x]) / nr, 0);
}
if (ng) {
draw_histogram_bar(rval, x + 1, ((float) bins[1][x]) / ng, 1);
}
if (nb) {
draw_histogram_bar(rval, x + 1, ((float) bins[2][x]) / nb, 2);
}
}
draw_histogram_marker(rval, get_bin_float(0.0));
draw_histogram_marker(rval, get_bin_float(1.0));
wform_put_border((unsigned char *) rval->rect, rval->x, rval->y);
return rval;
}
#undef HIS_STEPS
ImBuf *make_histogram_view_from_ibuf(ImBuf *ibuf)
{
if (ibuf->rect_float) {
return make_histogram_view_from_ibuf_float(ibuf);
}
else {
return make_histogram_view_from_ibuf_byte(ibuf);
}
}
static void vectorscope_put_cross(unsigned char r, unsigned char g, unsigned char b, char *tgt, int w, int h, int size)
{
float rgb[3], yuv[3];
char *p;
int x = 0;
int y = 0;
rgb[0] = (float)r / 255.0f;
rgb[1] = (float)g / 255.0f;
rgb[2] = (float)b / 255.0f;
rgb_to_yuv_normalized(rgb, yuv);
p = tgt + 4 * (w * (int) ((yuv[2] * (h - 3) + 1)) +
(int) ((yuv[1] * (w - 3) + 1)));
if (r == 0 && g == 0 && b == 0) {
r = 255;
}
for (y = -size; y <= size; y++) {
for (x = -size; x <= size; x++) {
char *q = p + 4 * (y * w + x);
q[0] = r; q[1] = g; q[2] = b; q[3] = 255;
}
}
}
static ImBuf *make_vectorscope_view_from_ibuf_byte(ImBuf *ibuf)
{
ImBuf *rval = IMB_allocImBuf(515, 515, 32, IB_rect);
int x, y;
const char *src = (const char *) ibuf->rect;
char *tgt = (char *) rval->rect;
float rgb[3], yuv[3];
int w = 515;
int h = 515;
float scope_gamma = 0.2;
unsigned char wtable[256];
for (x = 0; x < 256; x++) {
wtable[x] = (unsigned char) (pow(((float) x + 1) / 256, scope_gamma) * 255);
}
for (x = 0; x < 256; x++) {
vectorscope_put_cross(255, 0, 255 - x, tgt, w, h, 1);
vectorscope_put_cross(255, x, 0, tgt, w, h, 1);
vectorscope_put_cross(255 - x, 255, 0, tgt, w, h, 1);
vectorscope_put_cross(0, 255, x, tgt, w, h, 1);
vectorscope_put_cross(0, 255 - x, 255, tgt, w, h, 1);
vectorscope_put_cross(x, 0, 255, tgt, w, h, 1);
}
for (y = 0; y < ibuf->y; y++) {
for (x = 0; x < ibuf->x; x++) {
const char *src1 = src + 4 * (ibuf->x * y + x);
char *p;
rgb[0] = (float)src1[0] / 255.0f;
rgb[1] = (float)src1[1] / 255.0f;
rgb[2] = (float)src1[2] / 255.0f;
rgb_to_yuv_normalized(rgb, yuv);
p = tgt + 4 * (w * (int) ((yuv[2] * (h - 3) + 1)) +
(int) ((yuv[1] * (w - 3) + 1)));
scope_put_pixel(wtable, (unsigned char *)p);
}
}
vectorscope_put_cross(0, 0, 0, tgt, w, h, 3);
return rval;
}
static ImBuf *make_vectorscope_view_from_ibuf_float(ImBuf *ibuf)
{
ImBuf *rval = IMB_allocImBuf(515, 515, 32, IB_rect);
int x, y;
const float *src = ibuf->rect_float;
char *tgt = (char *) rval->rect;
float rgb[3], yuv[3];
int w = 515;
int h = 515;
float scope_gamma = 0.2;
unsigned char wtable[256];
for (x = 0; x < 256; x++) {
wtable[x] = (unsigned char) (pow(((float) x + 1) / 256, scope_gamma) * 255);
}
for (x = 0; x <= 255; x++) {
vectorscope_put_cross(255, 0, 255 - x, tgt, w, h, 1);
vectorscope_put_cross(255, x, 0, tgt, w, h, 1);
vectorscope_put_cross(255 - x, 255, 0, tgt, w, h, 1);
vectorscope_put_cross(0, 255, x, tgt, w, h, 1);
vectorscope_put_cross(0, 255 - x, 255, tgt, w, h, 1);
vectorscope_put_cross(x, 0, 255, tgt, w, h, 1);
}
for (y = 0; y < ibuf->y; y++) {
for (x = 0; x < ibuf->x; x++) {
const float *src1 = src + 4 * (ibuf->x * y + x);
const char *p;
memcpy(rgb, src1, 3 * sizeof(float));
CLAMP(rgb[0], 0.0f, 1.0f);
CLAMP(rgb[1], 0.0f, 1.0f);
CLAMP(rgb[2], 0.0f, 1.0f);
rgb_to_yuv_normalized(rgb, yuv);
p = tgt + 4 * (w * (int) ((yuv[2] * (h - 3) + 1)) +
(int) ((yuv[1] * (w - 3) + 1)));
scope_put_pixel(wtable, (unsigned char *)p);
}
}
vectorscope_put_cross(0, 0, 0, tgt, w, h, 3);
return rval;
}
ImBuf *make_vectorscope_view_from_ibuf(ImBuf *ibuf)
{
if (ibuf->rect_float) {
return make_vectorscope_view_from_ibuf_float(ibuf);
}
else {
return make_vectorscope_view_from_ibuf_byte(ibuf);
}
}