This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/gpu/intern/gpu_draw.c
Campbell Barton e305560f13 Cleanup: add trailing commas to structs
Needed for clang formatting to workaround bug/limit, see: T53211
2019-01-07 00:34:48 +11:00

1679 lines
44 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2005 Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Brecht Van Lommel.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/gpu/intern/gpu_draw.c
* \ingroup gpu
*
* Utility functions for dealing with OpenGL texture & material context,
* mipmap generation and light objects.
*
* These are some obscure rendering functions shared between the game engine (not anymore)
* and the blender, in this module to avoid duplication
* and abstract them away from the rest a bit.
*/
#include <string.h>
#include "BLI_blenlib.h"
#include "BLI_hash.h"
#include "BLI_linklist.h"
#include "BLI_math.h"
#include "BLI_threads.h"
#include "BLI_utildefines.h"
#include "DNA_lamp_types.h"
#include "DNA_material_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_modifier_types.h"
#include "DNA_node_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "DNA_smoke_types.h"
#include "DNA_view3d_types.h"
#include "DNA_particle_types.h"
#include "MEM_guardedalloc.h"
#include "IMB_imbuf.h"
#include "IMB_imbuf_types.h"
#include "BKE_colorband.h"
#include "BKE_global.h"
#include "BKE_image.h"
#include "BKE_main.h"
#include "BKE_material.h"
#include "BKE_node.h"
#include "BKE_scene.h"
#include "GPU_draw.h"
#include "GPU_extensions.h"
#include "GPU_glew.h"
#include "GPU_material.h"
#include "GPU_matrix.h"
#include "GPU_shader.h"
#include "GPU_texture.h"
#include "PIL_time.h"
#ifdef WITH_SMOKE
# include "smoke_API.h"
#endif
//* Checking powers of two for images since OpenGL ES requires it */
#ifdef WITH_DDS
static bool is_power_of_2_resolution(int w, int h)
{
return is_power_of_2_i(w) && is_power_of_2_i(h);
}
#endif
static bool is_over_resolution_limit(GLenum textarget, int w, int h)
{
int size = (textarget == GL_TEXTURE_2D) ?
GPU_max_texture_size() : GPU_max_cube_map_size();
int reslimit = (U.glreslimit != 0) ?
min_ii(U.glreslimit, size) : size;
return (w > reslimit || h > reslimit);
}
static int smaller_power_of_2_limit(int num)
{
int reslimit = (U.glreslimit != 0) ?
min_ii(U.glreslimit, GPU_max_texture_size()) :
GPU_max_texture_size();
/* take texture clamping into account */
if (num > reslimit)
return reslimit;
return power_of_2_min_i(num);
}
/* Current OpenGL state caching for GPU_set_tpage */
static struct GPUTextureState {
/* also controls min/mag filtering */
bool domipmap;
/* only use when 'domipmap' is set */
bool linearmipmap;
/* store this so that new images created while texture painting won't be set to mipmapped */
bool texpaint;
float anisotropic;
int gpu_mipmap;
} GTS = {1, 0, 0, 1.0f, 0};
/* Mipmap settings */
void GPU_set_gpu_mipmapping(Main *bmain, int gpu_mipmap)
{
int old_value = GTS.gpu_mipmap;
/* only actually enable if it's supported */
GTS.gpu_mipmap = gpu_mipmap;
if (old_value != GTS.gpu_mipmap) {
GPU_free_images(bmain);
}
}
void GPU_set_mipmap(Main *bmain, bool mipmap)
{
if (GTS.domipmap != mipmap) {
GPU_free_images(bmain);
GTS.domipmap = mipmap;
}
}
void GPU_set_linear_mipmap(bool linear)
{
if (GTS.linearmipmap != linear) {
GTS.linearmipmap = linear;
}
}
bool GPU_get_mipmap(void)
{
return GTS.domipmap && !GTS.texpaint;
}
bool GPU_get_linear_mipmap(void)
{
return GTS.linearmipmap;
}
static GLenum gpu_get_mipmap_filter(bool mag)
{
/* linearmipmap is off by default *when mipmapping is off,
* use unfiltered display */
if (mag) {
if (GTS.domipmap)
return GL_LINEAR;
else
return GL_NEAREST;
}
else {
if (GTS.domipmap) {
if (GTS.linearmipmap) {
return GL_LINEAR_MIPMAP_LINEAR;
}
else {
return GL_LINEAR_MIPMAP_NEAREST;
}
}
else {
return GL_NEAREST;
}
}
}
/* Anisotropic filtering settings */
void GPU_set_anisotropic(Main *bmain, float value)
{
if (GTS.anisotropic != value) {
GPU_free_images(bmain);
/* Clamp value to the maximum value the graphics card supports */
const float max = GPU_max_texture_anisotropy();
if (value > max)
value = max;
GTS.anisotropic = value;
}
}
float GPU_get_anisotropic(void)
{
return GTS.anisotropic;
}
/* Set OpenGL state for an MTFace */
static GPUTexture **gpu_get_image_gputexture(Image *ima, GLenum textarget)
{
if (textarget == GL_TEXTURE_2D)
return &ima->gputexture[TEXTARGET_TEXTURE_2D];
else if (textarget == GL_TEXTURE_CUBE_MAP)
return &ima->gputexture[TEXTARGET_TEXTURE_CUBE_MAP];
return NULL;
}
typedef struct VerifyThreadData {
ImBuf *ibuf;
float *srgb_frect;
} VerifyThreadData;
static void gpu_verify_high_bit_srgb_buffer_slice(
float *srgb_frect,
ImBuf *ibuf,
const int start_line,
const int height)
{
size_t offset = ibuf->channels * start_line * ibuf->x;
float *current_srgb_frect = srgb_frect + offset;
float *current_rect_float = ibuf->rect_float + offset;
IMB_buffer_float_from_float(
current_srgb_frect,
current_rect_float,
ibuf->channels,
IB_PROFILE_SRGB,
IB_PROFILE_LINEAR_RGB, true,
ibuf->x, height,
ibuf->x, ibuf->x);
IMB_buffer_float_unpremultiply(current_srgb_frect, ibuf->x, height);
}
static void verify_thread_do(
void *data_v,
int start_scanline,
int num_scanlines)
{
VerifyThreadData *data = (VerifyThreadData *)data_v;
gpu_verify_high_bit_srgb_buffer_slice(
data->srgb_frect,
data->ibuf,
start_scanline,
num_scanlines);
}
static void gpu_verify_high_bit_srgb_buffer(
float *srgb_frect,
ImBuf *ibuf)
{
if (ibuf->y < 64) {
gpu_verify_high_bit_srgb_buffer_slice(
srgb_frect,
ibuf,
0, ibuf->y);
}
else {
VerifyThreadData data;
data.ibuf = ibuf;
data.srgb_frect = srgb_frect;
IMB_processor_apply_threaded_scanlines(ibuf->y, verify_thread_do, &data);
}
}
GPUTexture *GPU_texture_from_blender(
Image *ima,
ImageUser *iuser,
int textarget,
bool is_data,
double UNUSED(time))
{
if (ima == NULL) {
return NULL;
}
/* Test if we already have a texture. */
GPUTexture **tex = gpu_get_image_gputexture(ima, textarget);
if (*tex) {
return *tex;
}
/* Check if we have a valid image. If not, we return a dummy
* texture with zero bindcode so we don't keep trying. */
uint bindcode = 0;
if (ima->ok == 0) {
*tex = GPU_texture_from_bindcode(textarget, bindcode);
return *tex;
}
/* currently, tpage refresh is used by ima sequences */
if (ima->tpageflag & IMA_TPAGE_REFRESH) {
GPU_free_image(ima);
ima->tpageflag &= ~IMA_TPAGE_REFRESH;
}
/* check if we have a valid image buffer */
ImBuf *ibuf = BKE_image_acquire_ibuf(ima, iuser, NULL);
if (ibuf == NULL) {
*tex = GPU_texture_from_bindcode(textarget, bindcode);
return *tex;
}
/* flag to determine whether deep format is used */
bool use_high_bit_depth = false, do_color_management = false;
if (ibuf->rect_float) {
if (U.use_16bit_textures) {
/* use high precision textures. This is relatively harmless because OpenGL gives us
* a high precision format only if it is available */
use_high_bit_depth = true;
}
else if (ibuf->rect == NULL) {
IMB_rect_from_float(ibuf);
}
/* we may skip this in high precision, but if not, we need to have a valid buffer here */
else if (ibuf->userflags & IB_RECT_INVALID) {
IMB_rect_from_float(ibuf);
}
/* TODO unneeded when float images are correctly treated as linear always */
if (!is_data) {
do_color_management = true;
}
}
const int rectw = ibuf->x;
const int recth = ibuf->y;
uint *rect = ibuf->rect;
float *frect = NULL;
float *srgb_frect = NULL;
if (use_high_bit_depth) {
if (do_color_management) {
frect = srgb_frect = MEM_mallocN(ibuf->x * ibuf->y * sizeof(*srgb_frect) * 4, "floar_buf_col_cor");
gpu_verify_high_bit_srgb_buffer(srgb_frect, ibuf);
}
else {
frect = ibuf->rect_float;
}
}
const bool mipmap = GPU_get_mipmap();
#ifdef WITH_DDS
if (ibuf->ftype == IMB_FTYPE_DDS) {
GPU_create_gl_tex_compressed(&bindcode, rect, rectw, recth, textarget, mipmap, ima, ibuf);
}
else
#endif
{
GPU_create_gl_tex(&bindcode, rect, frect, rectw, recth, textarget, mipmap, use_high_bit_depth, ima);
}
/* mark as non-color data texture */
if (bindcode) {
if (is_data)
ima->tpageflag |= IMA_GLBIND_IS_DATA;
else
ima->tpageflag &= ~IMA_GLBIND_IS_DATA;
}
/* clean up */
if (srgb_frect)
MEM_freeN(srgb_frect);
BKE_image_release_ibuf(ima, ibuf, NULL);
*tex = GPU_texture_from_bindcode(textarget, bindcode);
return *tex;
}
static void **gpu_gen_cube_map(uint *rect, float *frect, int rectw, int recth, bool use_high_bit_depth)
{
size_t block_size = use_high_bit_depth ? sizeof(float[4]) : sizeof(uchar[4]);
void **sides = NULL;
int h = recth / 2;
int w = rectw / 3;
if ((use_high_bit_depth && frect == NULL) || (!use_high_bit_depth && rect == NULL) || w != h)
return sides;
/* PosX, NegX, PosY, NegY, PosZ, NegZ */
sides = MEM_mallocN(sizeof(void *) * 6, "");
for (int i = 0; i < 6; i++)
sides[i] = MEM_mallocN(block_size * w * h, "");
/* divide image into six parts */
/* ______________________
* | | | |
* | NegX | NegY | PosX |
* |______|______|______|
* | | | |
* | NegZ | PosZ | PosY |
* |______|______|______|
*/
if (use_high_bit_depth) {
float (*frectb)[4] = (float(*)[4])frect;
float (**fsides)[4] = (float(**)[4])sides;
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
memcpy(&fsides[0][x * h + y], &frectb[(recth - y - 1) * rectw + 2 * w + x], block_size);
memcpy(&fsides[1][x * h + y], &frectb[(y + h) * rectw + w - 1 - x], block_size);
memcpy(&fsides[3][y * w + x], &frectb[(recth - y - 1) * rectw + 2 * w - 1 - x], block_size);
memcpy(&fsides[5][y * w + x], &frectb[(h - y - 1) * rectw + w - 1 - x], block_size);
}
memcpy(&fsides[2][y * w], frectb[y * rectw + 2 * w], block_size * w);
memcpy(&fsides[4][y * w], frectb[y * rectw + w], block_size * w);
}
}
else {
uint **isides = (uint **)sides;
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
isides[0][x * h + y] = rect[(recth - y - 1) * rectw + 2 * w + x];
isides[1][x * h + y] = rect[(y + h) * rectw + w - 1 - x];
isides[3][y * w + x] = rect[(recth - y - 1) * rectw + 2 * w - 1 - x];
isides[5][y * w + x] = rect[(h - y - 1) * rectw + w - 1 - x];
}
memcpy(&isides[2][y * w], &rect[y * rectw + 2 * w], block_size * w);
memcpy(&isides[4][y * w], &rect[y * rectw + w], block_size * w);
}
}
return sides;
}
static void gpu_del_cube_map(void **cube_map)
{
int i;
if (cube_map == NULL)
return;
for (i = 0; i < 6; i++)
MEM_freeN(cube_map[i]);
MEM_freeN(cube_map);
}
/* Image *ima can be NULL */
void GPU_create_gl_tex(
uint *bind, uint *rect, float *frect, int rectw, int recth,
int textarget, bool mipmap, bool use_high_bit_depth, Image *ima)
{
ImBuf *ibuf = NULL;
int tpx = rectw;
int tpy = recth;
/* create image */
glGenTextures(1, (GLuint *)bind);
glBindTexture(textarget, *bind);
if (textarget == GL_TEXTURE_2D) {
if (use_high_bit_depth) {
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F, rectw, recth, 0, GL_RGBA, GL_FLOAT, frect);
}
else {
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, rectw, recth, 0, GL_RGBA, GL_UNSIGNED_BYTE, rect);
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1));
if (GPU_get_mipmap() && mipmap) {
if (GTS.gpu_mipmap) {
glGenerateMipmap(GL_TEXTURE_2D);
}
else {
int i;
if (!ibuf) {
if (use_high_bit_depth) {
ibuf = IMB_allocFromBuffer(NULL, frect, tpx, tpy);
}
else {
ibuf = IMB_allocFromBuffer(rect, NULL, tpx, tpy);
}
}
IMB_makemipmap(ibuf, true);
for (i = 1; i < ibuf->miptot; i++) {
ImBuf *mip = ibuf->mipmap[i - 1];
if (use_high_bit_depth) {
glTexImage2D(GL_TEXTURE_2D, i, GL_RGBA16F, mip->x, mip->y, 0, GL_RGBA, GL_FLOAT, mip->rect_float);
}
else {
glTexImage2D(GL_TEXTURE_2D, i, GL_RGBA8, mip->x, mip->y, 0, GL_RGBA, GL_UNSIGNED_BYTE, mip->rect);
}
}
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gpu_get_mipmap_filter(0));
if (ima)
ima->tpageflag |= IMA_MIPMAP_COMPLETE;
}
else {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
}
}
else if (textarget == GL_TEXTURE_CUBE_MAP) {
int w = rectw / 3, h = recth / 2;
if (h == w && is_power_of_2_i(h) && !is_over_resolution_limit(textarget, h, w)) {
void **cube_map = gpu_gen_cube_map(rect, frect, rectw, recth, use_high_bit_depth);
GLenum informat = use_high_bit_depth ? GL_RGBA16F : GL_RGBA8;
GLenum type = use_high_bit_depth ? GL_FLOAT : GL_UNSIGNED_BYTE;
if (cube_map)
for (int i = 0; i < 6; i++)
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, informat, w, h, 0, GL_RGBA, type, cube_map[i]);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1));
if (GPU_get_mipmap() && mipmap) {
if (GTS.gpu_mipmap) {
glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
}
else {
if (!ibuf) {
if (use_high_bit_depth) {
ibuf = IMB_allocFromBuffer(NULL, frect, tpx, tpy);
}
else {
ibuf = IMB_allocFromBuffer(rect, NULL, tpx, tpy);
}
}
IMB_makemipmap(ibuf, true);
for (int i = 1; i < ibuf->miptot; i++) {
ImBuf *mip = ibuf->mipmap[i - 1];
void **mip_cube_map = gpu_gen_cube_map(
mip->rect, mip->rect_float,
mip->x, mip->y, use_high_bit_depth);
int mipw = mip->x / 3, miph = mip->y / 2;
if (mip_cube_map) {
for (int j = 0; j < 6; j++) {
glTexImage2D(
GL_TEXTURE_CUBE_MAP_POSITIVE_X + j, i,
informat, mipw, miph, 0, GL_RGBA, type, mip_cube_map[j]);
}
}
gpu_del_cube_map(mip_cube_map);
}
}
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, gpu_get_mipmap_filter(0));
if (ima)
ima->tpageflag |= IMA_MIPMAP_COMPLETE;
}
else {
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
}
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
gpu_del_cube_map(cube_map);
}
else {
printf("Incorrect envmap size\n");
}
}
if (GLEW_EXT_texture_filter_anisotropic)
glTexParameterf(textarget, GL_TEXTURE_MAX_ANISOTROPY_EXT, GPU_get_anisotropic());
glBindTexture(textarget, 0);
if (ibuf)
IMB_freeImBuf(ibuf);
}
/**
* GPU_upload_dxt_texture() assumes that the texture is already bound and ready to go.
* This is so the viewport and the BGE can share some code.
* Returns false if the provided ImBuf doesn't have a supported DXT compression format
*/
bool GPU_upload_dxt_texture(ImBuf *ibuf)
{
#ifdef WITH_DDS
GLint format = 0;
int blocksize, height, width, i, size, offset = 0;
width = ibuf->x;
height = ibuf->y;
if (GLEW_EXT_texture_compression_s3tc) {
if (ibuf->dds_data.fourcc == FOURCC_DXT1)
format = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
else if (ibuf->dds_data.fourcc == FOURCC_DXT3)
format = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT;
else if (ibuf->dds_data.fourcc == FOURCC_DXT5)
format = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
}
if (format == 0) {
fprintf(stderr, "Unable to find a suitable DXT compression, falling back to uncompressed\n");
return false;
}
if (!is_power_of_2_resolution(width, height)) {
fprintf(stderr, "Unable to load non-power-of-two DXT image resolution, falling back to uncompressed\n");
return false;
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gpu_get_mipmap_filter(0));
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1));
if (GLEW_EXT_texture_filter_anisotropic)
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, GPU_get_anisotropic());
blocksize = (ibuf->dds_data.fourcc == FOURCC_DXT1) ? 8 : 16;
for (i = 0; i < ibuf->dds_data.nummipmaps && (width || height); ++i) {
if (width == 0)
width = 1;
if (height == 0)
height = 1;
size = ((width + 3) / 4) * ((height + 3) / 4) * blocksize;
glCompressedTexImage2D(
GL_TEXTURE_2D, i, format, width, height,
0, size, ibuf->dds_data.data + offset);
offset += size;
width >>= 1;
height >>= 1;
}
/* set number of mipmap levels we have, needed in case they don't go down to 1x1 */
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, i - 1);
return true;
#else
(void)ibuf;
return false;
#endif
}
void GPU_create_gl_tex_compressed(
uint *bind, uint *pix, int x, int y,
int textarget, int mipmap, Image *ima, ImBuf *ibuf)
{
#ifndef WITH_DDS
(void)ibuf;
/* Fall back to uncompressed if DDS isn't enabled */
GPU_create_gl_tex(bind, pix, NULL, x, y, textarget, mipmap, 0, ima);
#else
glGenTextures(1, (GLuint *)bind);
glBindTexture(textarget, *bind);
if (textarget == GL_TEXTURE_2D && GPU_upload_dxt_texture(ibuf) == 0) {
glDeleteTextures(1, (GLuint *)bind);
GPU_create_gl_tex(bind, pix, NULL, x, y, textarget, mipmap, 0, ima);
}
glBindTexture(textarget, 0);
#endif
}
/* these two functions are called on entering and exiting texture paint mode,
* temporary disabling/enabling mipmapping on all images for quick texture
* updates with glTexSubImage2D. images that didn't change don't have to be
* re-uploaded to OpenGL */
void GPU_paint_set_mipmap(Main *bmain, bool mipmap)
{
if (!GTS.domipmap)
return;
GTS.texpaint = !mipmap;
if (mipmap) {
for (Image *ima = bmain->image.first; ima; ima = ima->id.next) {
if (BKE_image_has_opengl_texture(ima)) {
if (ima->tpageflag & IMA_MIPMAP_COMPLETE) {
if (ima->gputexture[TEXTARGET_TEXTURE_2D]) {
GPU_texture_bind(ima->gputexture[TEXTARGET_TEXTURE_2D], 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gpu_get_mipmap_filter(0));
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1));
GPU_texture_unbind(ima->gputexture[TEXTARGET_TEXTURE_2D]);
}
}
else
GPU_free_image(ima);
}
else
ima->tpageflag &= ~IMA_MIPMAP_COMPLETE;
}
}
else {
for (Image *ima = bmain->image.first; ima; ima = ima->id.next) {
if (BKE_image_has_opengl_texture(ima)) {
if (ima->gputexture[TEXTARGET_TEXTURE_2D]) {
GPU_texture_bind(ima->gputexture[TEXTARGET_TEXTURE_2D], 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1));
GPU_texture_unbind(ima->gputexture[TEXTARGET_TEXTURE_2D]);
}
}
else
ima->tpageflag &= ~IMA_MIPMAP_COMPLETE;
}
}
}
/* check if image has been downscaled and do scaled partial update */
static bool gpu_check_scaled_image(ImBuf *ibuf, Image *ima, float *frect, int x, int y, int w, int h)
{
if (is_over_resolution_limit(GL_TEXTURE_2D, ibuf->x, ibuf->y)) {
int x_limit = smaller_power_of_2_limit(ibuf->x);
int y_limit = smaller_power_of_2_limit(ibuf->y);
float xratio = x_limit / (float)ibuf->x;
float yratio = y_limit / (float)ibuf->y;
/* find new width, height and x,y gpu texture coordinates */
/* take ceiling because we will be losing 1 pixel due to rounding errors in x,y... */
int rectw = (int)ceil(xratio * w);
int recth = (int)ceil(yratio * h);
x *= xratio;
y *= yratio;
/* ...but take back if we are over the limit! */
if (rectw + x > x_limit) rectw--;
if (recth + y > y_limit) recth--;
GPU_texture_bind(ima->gputexture[TEXTARGET_TEXTURE_2D], 0);
/* float rectangles are already continuous in memory so we can use IMB_scaleImBuf */
if (frect) {
ImBuf *ibuf_scale = IMB_allocFromBuffer(NULL, frect, w, h);
IMB_scaleImBuf(ibuf_scale, rectw, recth);
glTexSubImage2D(
GL_TEXTURE_2D, 0, x, y, rectw, recth, GL_RGBA,
GL_FLOAT, ibuf_scale->rect_float);
IMB_freeImBuf(ibuf_scale);
}
/* byte images are not continuous in memory so do manual interpolation */
else {
uchar *scalerect = MEM_mallocN(rectw * recth * sizeof(*scalerect) * 4, "scalerect");
uint *p = (uint *)scalerect;
int i, j;
float inv_xratio = 1.0f / xratio;
float inv_yratio = 1.0f / yratio;
for (i = 0; i < rectw; i++) {
float u = (x + i) * inv_xratio;
for (j = 0; j < recth; j++) {
float v = (y + j) * inv_yratio;
bilinear_interpolation_color_wrap(ibuf, (uchar *)(p + i + j * (rectw)), NULL, u, v);
}
}
glTexSubImage2D(
GL_TEXTURE_2D, 0, x, y, rectw, recth, GL_RGBA,
GL_UNSIGNED_BYTE, scalerect);
MEM_freeN(scalerect);
}
if (GPU_get_mipmap()) {
glGenerateMipmap(GL_TEXTURE_2D);
}
else {
ima->tpageflag &= ~IMA_MIPMAP_COMPLETE;
}
GPU_texture_unbind(ima->gputexture[TEXTARGET_TEXTURE_2D]);
return true;
}
return false;
}
void GPU_paint_update_image(Image *ima, ImageUser *iuser, int x, int y, int w, int h)
{
ImBuf *ibuf = BKE_image_acquire_ibuf(ima, iuser, NULL);
if ((!GTS.gpu_mipmap && GPU_get_mipmap()) ||
(ima->gputexture[TEXTARGET_TEXTURE_2D] == NULL) ||
(ibuf == NULL) ||
(w == 0) || (h == 0))
{
/* these cases require full reload still */
GPU_free_image(ima);
}
else {
/* for the special case, we can do a partial update
* which is much quicker for painting */
GLint row_length, skip_pixels, skip_rows;
/* if color correction is needed, we must update the part that needs updating. */
if (ibuf->rect_float) {
float *buffer = MEM_mallocN(w * h * sizeof(float) * 4, "temp_texpaint_float_buf");
bool is_data = (ima->tpageflag & IMA_GLBIND_IS_DATA) != 0;
IMB_partial_rect_from_float(ibuf, buffer, x, y, w, h, is_data);
if (gpu_check_scaled_image(ibuf, ima, buffer, x, y, w, h)) {
MEM_freeN(buffer);
BKE_image_release_ibuf(ima, ibuf, NULL);
return;
}
GPU_texture_bind(ima->gputexture[TEXTARGET_TEXTURE_2D], 0);
glTexSubImage2D(GL_TEXTURE_2D, 0, x, y, w, h, GL_RGBA, GL_FLOAT, buffer);
MEM_freeN(buffer);
/* we have already accounted for the case where GTS.gpu_mipmap is false
* so we will be using GPU mipmap generation here */
if (GPU_get_mipmap()) {
glGenerateMipmap(GL_TEXTURE_2D);
}
else {
ima->tpageflag &= ~IMA_MIPMAP_COMPLETE;
}
GPU_texture_unbind(ima->gputexture[TEXTARGET_TEXTURE_2D]);
BKE_image_release_ibuf(ima, ibuf, NULL);
return;
}
if (gpu_check_scaled_image(ibuf, ima, NULL, x, y, w, h)) {
BKE_image_release_ibuf(ima, ibuf, NULL);
return;
}
GPU_texture_bind(ima->gputexture[TEXTARGET_TEXTURE_2D], 0);
glGetIntegerv(GL_UNPACK_ROW_LENGTH, &row_length);
glGetIntegerv(GL_UNPACK_SKIP_PIXELS, &skip_pixels);
glGetIntegerv(GL_UNPACK_SKIP_ROWS, &skip_rows);
glPixelStorei(GL_UNPACK_ROW_LENGTH, ibuf->x);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, x);
glPixelStorei(GL_UNPACK_SKIP_ROWS, y);
glTexSubImage2D(
GL_TEXTURE_2D, 0, x, y, w, h, GL_RGBA,
GL_UNSIGNED_BYTE, ibuf->rect);
glPixelStorei(GL_UNPACK_ROW_LENGTH, row_length);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, skip_pixels);
glPixelStorei(GL_UNPACK_SKIP_ROWS, skip_rows);
/* see comment above as to why we are using gpu mipmap generation here */
if (GPU_get_mipmap()) {
glGenerateMipmap(GL_TEXTURE_2D);
}
else {
ima->tpageflag &= ~IMA_MIPMAP_COMPLETE;
}
GPU_texture_unbind(ima->gputexture[TEXTARGET_TEXTURE_2D]);
}
BKE_image_release_ibuf(ima, ibuf, NULL);
}
/* *************************** Transfer functions *************************** */
enum {
TFUNC_FLAME_SPECTRUM = 0,
TFUNC_COLOR_RAMP = 1,
};
#define TFUNC_WIDTH 256
#ifdef WITH_SMOKE
static void create_flame_spectrum_texture(float *data)
{
#define FIRE_THRESH 7
#define MAX_FIRE_ALPHA 0.06f
#define FULL_ON_FIRE 100
float *spec_pixels = MEM_mallocN(TFUNC_WIDTH * 4 * 16 * 16 * sizeof(float), "spec_pixels");
blackbody_temperature_to_rgb_table(data, TFUNC_WIDTH, 1500, 3000);
for (int i = 0; i < 16; i++) {
for (int j = 0; j < 16; j++) {
for (int k = 0; k < TFUNC_WIDTH; k++) {
int index = (j * TFUNC_WIDTH * 16 + i * TFUNC_WIDTH + k) * 4;
if (k >= FIRE_THRESH) {
spec_pixels[index] = (data[k * 4]);
spec_pixels[index + 1] = (data[k * 4 + 1]);
spec_pixels[index + 2] = (data[k * 4 + 2]);
spec_pixels[index + 3] = MAX_FIRE_ALPHA * (
(k > FULL_ON_FIRE) ? 1.0f : (k - FIRE_THRESH) / ((float)FULL_ON_FIRE - FIRE_THRESH));
}
else {
zero_v4(&spec_pixels[index]);
}
}
}
}
memcpy(data, spec_pixels, sizeof(float) * 4 * TFUNC_WIDTH);
MEM_freeN(spec_pixels);
#undef FIRE_THRESH
#undef MAX_FIRE_ALPHA
#undef FULL_ON_FIRE
}
static void create_color_ramp(const ColorBand *coba, float *data)
{
for (int i = 0; i < TFUNC_WIDTH; i++) {
BKE_colorband_evaluate(coba, (float)i / TFUNC_WIDTH, &data[i * 4]);
}
}
static GPUTexture *create_transfer_function(int type, const ColorBand *coba)
{
float *data = MEM_mallocN(sizeof(float) * 4 * TFUNC_WIDTH, __func__);
switch (type) {
case TFUNC_FLAME_SPECTRUM:
create_flame_spectrum_texture(data);
break;
case TFUNC_COLOR_RAMP:
create_color_ramp(coba, data);
break;
}
GPUTexture *tex = GPU_texture_create_1D(TFUNC_WIDTH, GPU_RGBA8, data, NULL);
MEM_freeN(data);
return tex;
}
static void swizzle_texture_channel_rrrr(GPUTexture *tex)
{
GPU_texture_bind(tex, 0);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_SWIZZLE_R, GL_RED);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_SWIZZLE_G, GL_RED);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_SWIZZLE_B, GL_RED);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_SWIZZLE_A, GL_RED);
GPU_texture_unbind(tex);
}
static GPUTexture *create_field_texture(SmokeDomainSettings *sds)
{
float *field = NULL;
switch (sds->coba_field) {
case FLUID_FIELD_DENSITY: field = smoke_get_density(sds->fluid); break;
case FLUID_FIELD_HEAT: field = smoke_get_heat(sds->fluid); break;
case FLUID_FIELD_FUEL: field = smoke_get_fuel(sds->fluid); break;
case FLUID_FIELD_REACT: field = smoke_get_react(sds->fluid); break;
case FLUID_FIELD_FLAME: field = smoke_get_flame(sds->fluid); break;
case FLUID_FIELD_VELOCITY_X: field = smoke_get_velocity_x(sds->fluid); break;
case FLUID_FIELD_VELOCITY_Y: field = smoke_get_velocity_y(sds->fluid); break;
case FLUID_FIELD_VELOCITY_Z: field = smoke_get_velocity_z(sds->fluid); break;
case FLUID_FIELD_COLOR_R: field = smoke_get_color_r(sds->fluid); break;
case FLUID_FIELD_COLOR_G: field = smoke_get_color_g(sds->fluid); break;
case FLUID_FIELD_COLOR_B: field = smoke_get_color_b(sds->fluid); break;
case FLUID_FIELD_FORCE_X: field = smoke_get_force_x(sds->fluid); break;
case FLUID_FIELD_FORCE_Y: field = smoke_get_force_y(sds->fluid); break;
case FLUID_FIELD_FORCE_Z: field = smoke_get_force_z(sds->fluid); break;
default: return NULL;
}
GPUTexture *tex = GPU_texture_create_nD(
sds->res[0], sds->res[1], sds->res[2], 3,
field, GPU_R8, GPU_DATA_FLOAT, 0, true, NULL);
swizzle_texture_channel_rrrr(tex);
return tex;
}
static GPUTexture *create_density_texture(SmokeDomainSettings *sds, int highres)
{
float *data = NULL, *source;
int cell_count = (highres) ? smoke_turbulence_get_cells(sds->wt) : sds->total_cells;
const bool has_color = (highres) ? smoke_turbulence_has_colors(sds->wt) : smoke_has_colors(sds->fluid);
int *dim = (highres) ? sds->res_wt : sds->res;
GPUTextureFormat format = (has_color) ? GPU_RGBA8 : GPU_R8;
if (has_color) {
data = MEM_callocN(sizeof(float) * cell_count * 4, "smokeColorTexture");
}
if (highres) {
if (has_color) {
smoke_turbulence_get_rgba(sds->wt, data, 0);
}
else {
source = smoke_turbulence_get_density(sds->wt);
}
}
else {
if (has_color) {
smoke_get_rgba(sds->fluid, data, 0);
}
else {
source = smoke_get_density(sds->fluid);
}
}
GPUTexture *tex = GPU_texture_create_nD(
dim[0], dim[1], dim[2], 3,
(has_color) ? data : source,
format, GPU_DATA_FLOAT, 0, true, NULL);
if (data) {
MEM_freeN(data);
}
if (format == GPU_R8) {
/* Swizzle the RGBA components to read the Red channel so
* that the shader stay the same for colored and non color
* density textures. */
swizzle_texture_channel_rrrr(tex);
}
return tex;
}
static GPUTexture *create_flame_texture(SmokeDomainSettings *sds, int highres)
{
float *source = NULL;
const bool has_fuel = (highres) ? smoke_turbulence_has_fuel(sds->wt) : smoke_has_fuel(sds->fluid);
int *dim = (highres) ? sds->res_wt : sds->res;
if (!has_fuel)
return NULL;
if (highres) {
source = smoke_turbulence_get_flame(sds->wt);
}
else {
source = smoke_get_flame(sds->fluid);
}
GPUTexture *tex = GPU_texture_create_nD(
dim[0], dim[1], dim[2], 3,
source, GPU_R8, GPU_DATA_FLOAT, 0, true, NULL);
swizzle_texture_channel_rrrr(tex);
return tex;
}
#endif /* WITH_SMOKE */
void GPU_free_smoke(SmokeModifierData *smd)
{
if (smd->type & MOD_SMOKE_TYPE_DOMAIN && smd->domain) {
if (smd->domain->tex)
GPU_texture_free(smd->domain->tex);
smd->domain->tex = NULL;
if (smd->domain->tex_shadow)
GPU_texture_free(smd->domain->tex_shadow);
smd->domain->tex_shadow = NULL;
if (smd->domain->tex_flame)
GPU_texture_free(smd->domain->tex_flame);
smd->domain->tex_flame = NULL;
if (smd->domain->tex_flame_coba)
GPU_texture_free(smd->domain->tex_flame_coba);
smd->domain->tex_flame_coba = NULL;
if (smd->domain->tex_coba)
GPU_texture_free(smd->domain->tex_coba);
smd->domain->tex_coba = NULL;
if (smd->domain->tex_field)
GPU_texture_free(smd->domain->tex_field);
smd->domain->tex_field = NULL;
}
}
void GPU_create_smoke_coba_field(SmokeModifierData *smd)
{
#ifdef WITH_SMOKE
if (smd->type & MOD_SMOKE_TYPE_DOMAIN) {
SmokeDomainSettings *sds = smd->domain;
if (!sds->tex_field) {
sds->tex_field = create_field_texture(sds);
}
if (!sds->tex_coba) {
sds->tex_coba = create_transfer_function(TFUNC_COLOR_RAMP, sds->coba);
}
}
#else // WITH_SMOKE
smd->domain->tex_field = NULL;
#endif // WITH_SMOKE
}
void GPU_create_smoke(SmokeModifierData *smd, int highres)
{
#ifdef WITH_SMOKE
if (smd->type & MOD_SMOKE_TYPE_DOMAIN) {
SmokeDomainSettings *sds = smd->domain;
if (!sds->tex) {
sds->tex = create_density_texture(sds, highres);
}
if (!sds->tex_flame) {
sds->tex_flame = create_flame_texture(sds, highres);
}
if (!sds->tex_flame_coba && sds->tex_flame) {
sds->tex_flame_coba = create_transfer_function(TFUNC_FLAME_SPECTRUM, NULL);
}
if (!sds->tex_shadow) {
sds->tex_shadow = GPU_texture_create_nD(
sds->res[0], sds->res[1], sds->res[2], 3,
sds->shadow,
GPU_R8, GPU_DATA_FLOAT, 0, true, NULL);
}
}
#else // WITH_SMOKE
(void)highres;
smd->domain->tex = NULL;
smd->domain->tex_flame = NULL;
smd->domain->tex_flame_coba = NULL;
smd->domain->tex_shadow = NULL;
#endif // WITH_SMOKE
}
void GPU_create_smoke_velocity(SmokeModifierData *smd)
{
#ifdef WITH_SMOKE
if (smd->type & MOD_SMOKE_TYPE_DOMAIN) {
SmokeDomainSettings *sds = smd->domain;
const float *vel_x = smoke_get_velocity_x(sds->fluid);
const float *vel_y = smoke_get_velocity_y(sds->fluid);
const float *vel_z = smoke_get_velocity_z(sds->fluid);
if (ELEM(NULL, vel_x, vel_y, vel_z)) {
return;
}
if (!sds->tex_velocity_x) {
sds->tex_velocity_x = GPU_texture_create_3D(sds->res[0], sds->res[1], sds->res[2], GPU_R16F, vel_x, NULL);
sds->tex_velocity_y = GPU_texture_create_3D(sds->res[0], sds->res[1], sds->res[2], GPU_R16F, vel_y, NULL);
sds->tex_velocity_z = GPU_texture_create_3D(sds->res[0], sds->res[1], sds->res[2], GPU_R16F, vel_z, NULL);
}
}
#else // WITH_SMOKE
smd->domain->tex_velocity_x = NULL;
smd->domain->tex_velocity_y = NULL;
smd->domain->tex_velocity_z = NULL;
#endif // WITH_SMOKE
}
/* TODO Unify with the other GPU_free_smoke. */
void GPU_free_smoke_velocity(SmokeModifierData *smd)
{
if (smd->type & MOD_SMOKE_TYPE_DOMAIN && smd->domain) {
if (smd->domain->tex_velocity_x)
GPU_texture_free(smd->domain->tex_velocity_x);
if (smd->domain->tex_velocity_y)
GPU_texture_free(smd->domain->tex_velocity_y);
if (smd->domain->tex_velocity_z)
GPU_texture_free(smd->domain->tex_velocity_z);
smd->domain->tex_velocity_x = NULL;
smd->domain->tex_velocity_y = NULL;
smd->domain->tex_velocity_z = NULL;
}
}
static LinkNode *image_free_queue = NULL;
static void gpu_queue_image_for_free(Image *ima)
{
BLI_thread_lock(LOCK_OPENGL);
BLI_linklist_prepend(&image_free_queue, ima);
BLI_thread_unlock(LOCK_OPENGL);
}
void GPU_free_unused_buffers(Main *bmain)
{
if (!BLI_thread_is_main())
return;
BLI_thread_lock(LOCK_OPENGL);
/* images */
for (LinkNode *node = image_free_queue; node; node = node->next) {
Image *ima = node->link;
/* check in case it was freed in the meantime */
if (bmain && BLI_findindex(&bmain->image, ima) != -1)
GPU_free_image(ima);
}
BLI_linklist_free(image_free_queue, NULL);
image_free_queue = NULL;
BLI_thread_unlock(LOCK_OPENGL);
}
void GPU_free_image(Image *ima)
{
if (!BLI_thread_is_main()) {
gpu_queue_image_for_free(ima);
return;
}
for (int i = 0; i < TEXTARGET_COUNT; i++) {
/* free glsl image binding */
if (ima->gputexture[i]) {
GPU_texture_free(ima->gputexture[i]);
ima->gputexture[i] = NULL;
}
}
ima->tpageflag &= ~(IMA_MIPMAP_COMPLETE | IMA_GLBIND_IS_DATA);
}
void GPU_free_images(Main *bmain)
{
if (bmain) {
for (Image *ima = bmain->image.first; ima; ima = ima->id.next) {
GPU_free_image(ima);
}
}
}
/* same as above but only free animated images */
void GPU_free_images_anim(Main *bmain)
{
if (bmain) {
for (Image *ima = bmain->image.first; ima; ima = ima->id.next) {
if (BKE_image_is_animated(ima)) {
GPU_free_image(ima);
}
}
}
}
void GPU_free_images_old(Main *bmain)
{
static int lasttime = 0;
int ctime = (int)PIL_check_seconds_timer();
/*
* Run garbage collector once for every collecting period of time
* if textimeout is 0, that's the option to NOT run the collector
*/
if (U.textimeout == 0 || ctime % U.texcollectrate || ctime == lasttime)
return;
/* of course not! */
if (G.is_rendering)
return;
lasttime = ctime;
Image *ima = bmain->image.first;
while (ima) {
if ((ima->flag & IMA_NOCOLLECT) == 0 && ctime - ima->lastused > U.textimeout) {
/* If it's in GL memory, deallocate and set time tag to current time
* This gives textures a "second chance" to be used before dying. */
if (BKE_image_has_opengl_texture(ima)) {
GPU_free_image(ima);
ima->lastused = ctime;
}
/* Otherwise, just kill the buffers */
else {
BKE_image_free_buffers(ima);
}
}
ima = ima->id.next;
}
}
static void gpu_disable_multisample(void)
{
#ifdef __linux__
/* changing multisample from the default (enabled) causes problems on some
* systems (NVIDIA/Linux) when the pixel format doesn't have a multisample buffer */
bool toggle_ok = true;
if (GPU_type_matches(GPU_DEVICE_NVIDIA, GPU_OS_UNIX, GPU_DRIVER_ANY)) {
int samples = 0;
glGetIntegerv(GL_SAMPLES, &samples);
if (samples == 0)
toggle_ok = false;
}
if (toggle_ok) {
glDisable(GL_MULTISAMPLE);
}
#else
glDisable(GL_MULTISAMPLE);
#endif
}
/* Default OpenGL State
*
* This is called on startup, for opengl offscreen render.
* Generally we should always return to this state when
* temporarily modifying the state for drawing, though that are (undocumented)
* exceptions that we should try to get rid of. */
void GPU_state_init(void)
{
GPU_disable_program_point_size();
glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS);
glDepthFunc(GL_LEQUAL);
glDisable(GL_BLEND);
glDisable(GL_DEPTH_TEST);
glDisable(GL_COLOR_LOGIC_OP);
glDisable(GL_STENCIL_TEST);
glDepthRange(0.0, 1.0);
glFrontFace(GL_CCW);
glCullFace(GL_BACK);
glDisable(GL_CULL_FACE);
gpu_disable_multisample();
}
void GPU_enable_program_point_size(void)
{
glEnable(GL_PROGRAM_POINT_SIZE);
}
void GPU_disable_program_point_size(void)
{
glDisable(GL_PROGRAM_POINT_SIZE);
}
/** \name Framebuffer color depth, for selection codes
* \{ */
#ifdef __APPLE__
/* apple seems to round colors to below and up on some configs */
static uint index_to_framebuffer(int index)
{
uint i = index;
switch (GPU_color_depth()) {
case 12:
i = ((i & 0xF00) << 12) + ((i & 0xF0) << 8) + ((i & 0xF) << 4);
/* sometimes dithering subtracts! */
i |= 0x070707;
break;
case 15:
case 16:
i = ((i & 0x7C00) << 9) + ((i & 0x3E0) << 6) + ((i & 0x1F) << 3);
i |= 0x030303;
break;
case 24:
break;
default: /* 18 bits... */
i = ((i & 0x3F000) << 6) + ((i & 0xFC0) << 4) + ((i & 0x3F) << 2);
i |= 0x010101;
break;
}
return i;
}
#else
/* this is the old method as being in use for ages.... seems to work? colors are rounded to lower values */
static uint index_to_framebuffer(int index)
{
uint i = index;
switch (GPU_color_depth()) {
case 8:
i = ((i & 48) << 18) + ((i & 12) << 12) + ((i & 3) << 6);
i |= 0x3F3F3F;
break;
case 12:
i = ((i & 0xF00) << 12) + ((i & 0xF0) << 8) + ((i & 0xF) << 4);
/* sometimes dithering subtracts! */
i |= 0x0F0F0F;
break;
case 15:
case 16:
i = ((i & 0x7C00) << 9) + ((i & 0x3E0) << 6) + ((i & 0x1F) << 3);
i |= 0x070707;
break;
case 24:
break;
default: /* 18 bits... */
i = ((i & 0x3F000) << 6) + ((i & 0xFC0) << 4) + ((i & 0x3F) << 2);
i |= 0x030303;
break;
}
return i;
}
#endif
void GPU_select_index_set(int index)
{
const int col = index_to_framebuffer(index);
glColor3ub(( (col) & 0xFF),
(((col) >> 8) & 0xFF),
(((col) >> 16) & 0xFF));
}
void GPU_select_index_get(int index, int *r_col)
{
const int col = index_to_framebuffer(index);
char *c_col = (char *)r_col;
c_col[0] = (col & 0xFF); /* red */
c_col[1] = ((col >> 8) & 0xFF); /* green */
c_col[2] = ((col >> 16) & 0xFF); /* blue */
c_col[3] = 0xFF; /* alpha */
}
#define INDEX_FROM_BUF_8(col) ((((col) & 0xC00000) >> 18) + (((col) & 0xC000) >> 12) + (((col) & 0xC0) >> 6))
#define INDEX_FROM_BUF_12(col) ((((col) & 0xF00000) >> 12) + (((col) & 0xF000) >> 8) + (((col) & 0xF0) >> 4))
#define INDEX_FROM_BUF_15_16(col) ((((col) & 0xF80000) >> 9) + (((col) & 0xF800) >> 6) + (((col) & 0xF8) >> 3))
#define INDEX_FROM_BUF_18(col) ((((col) & 0xFC0000) >> 6) + (((col) & 0xFC00) >> 4) + (((col) & 0xFC) >> 2))
#define INDEX_FROM_BUF_24(col) ((col) & 0xFFFFFF)
int GPU_select_to_index(uint col)
{
if (col == 0) {
return 0;
}
switch (GPU_color_depth()) {
case 8: return INDEX_FROM_BUF_8(col);
case 12: return INDEX_FROM_BUF_12(col);
case 15:
case 16: return INDEX_FROM_BUF_15_16(col);
case 24: return INDEX_FROM_BUF_24(col);
default: return INDEX_FROM_BUF_18(col);
}
}
void GPU_select_to_index_array(uint *col, const uint size)
{
#define INDEX_BUF_ARRAY(INDEX_FROM_BUF_BITS) \
for (i = size; i--; col++) { \
if ((c = *col)) { \
*col = INDEX_FROM_BUF_BITS(c); \
} \
} ((void)0)
if (size > 0) {
uint i, c;
switch (GPU_color_depth()) {
case 8:
INDEX_BUF_ARRAY(INDEX_FROM_BUF_8);
break;
case 12:
INDEX_BUF_ARRAY(INDEX_FROM_BUF_12);
break;
case 15:
case 16:
INDEX_BUF_ARRAY(INDEX_FROM_BUF_15_16);
break;
case 24:
INDEX_BUF_ARRAY(INDEX_FROM_BUF_24);
break;
default:
INDEX_BUF_ARRAY(INDEX_FROM_BUF_18);
break;
}
}
#undef INDEX_BUF_ARRAY
}
#define STATE_STACK_DEPTH 16
typedef struct {
eGPUAttribMask mask;
/* GL_ENABLE_BIT */
uint is_blend : 1;
uint is_cull_face : 1;
uint is_depth_test : 1;
uint is_dither : 1;
uint is_lighting : 1;
uint is_line_smooth : 1;
uint is_color_logic_op : 1;
uint is_multisample : 1;
uint is_polygon_offset_line : 1;
uint is_polygon_offset_fill : 1;
uint is_polygon_smooth : 1;
uint is_sample_alpha_to_coverage : 1;
uint is_scissor_test : 1;
uint is_stencil_test : 1;
bool is_clip_plane[6];
/* GL_DEPTH_BUFFER_BIT */
/* uint is_depth_test : 1; */
int depth_func;
double depth_clear_value;
bool depth_write_mask;
/* GL_SCISSOR_BIT */
int scissor_box[4];
/* uint is_scissor_test : 1; */
/* GL_VIEWPORT_BIT */
int viewport[4];
double near_far[2];
} GPUAttribValues;
typedef struct {
GPUAttribValues attrib_stack[STATE_STACK_DEPTH];
uint top;
} GPUAttribStack;
static GPUAttribStack state = {
.top = 0,
};
#define AttribStack state
#define Attrib state.attrib_stack[state.top]
/**
* Replacement for glPush/PopAttributes
*
* We don't need to cover all the options of legacy OpenGL
* but simply the ones used by Blender.
*/
void gpuPushAttrib(eGPUAttribMask mask)
{
Attrib.mask = mask;
if ((mask & GPU_DEPTH_BUFFER_BIT) != 0) {
Attrib.is_depth_test = glIsEnabled(GL_DEPTH_TEST);
glGetIntegerv(GL_DEPTH_FUNC, &Attrib.depth_func);
glGetDoublev(GL_DEPTH_CLEAR_VALUE, &Attrib.depth_clear_value);
glGetBooleanv(GL_DEPTH_WRITEMASK, (GLboolean *)&Attrib.depth_write_mask);
}
if ((mask & GPU_ENABLE_BIT) != 0) {
Attrib.is_blend = glIsEnabled(GL_BLEND);
for (int i = 0; i < 6; i++) {
Attrib.is_clip_plane[i] = glIsEnabled(GL_CLIP_PLANE0 + i);
}
Attrib.is_cull_face = glIsEnabled(GL_CULL_FACE);
Attrib.is_depth_test = glIsEnabled(GL_DEPTH_TEST);
Attrib.is_dither = glIsEnabled(GL_DITHER);
Attrib.is_line_smooth = glIsEnabled(GL_LINE_SMOOTH);
Attrib.is_color_logic_op = glIsEnabled(GL_COLOR_LOGIC_OP);
Attrib.is_multisample = glIsEnabled(GL_MULTISAMPLE);
Attrib.is_polygon_offset_line = glIsEnabled(GL_POLYGON_OFFSET_LINE);
Attrib.is_polygon_offset_fill = glIsEnabled(GL_POLYGON_OFFSET_FILL);
Attrib.is_polygon_smooth = glIsEnabled(GL_POLYGON_SMOOTH);
Attrib.is_sample_alpha_to_coverage = glIsEnabled(GL_SAMPLE_ALPHA_TO_COVERAGE);
Attrib.is_scissor_test = glIsEnabled(GL_SCISSOR_TEST);
Attrib.is_stencil_test = glIsEnabled(GL_STENCIL_TEST);
}
if ((mask & GPU_SCISSOR_BIT) != 0) {
Attrib.is_scissor_test = glIsEnabled(GL_SCISSOR_TEST);
glGetIntegerv(GL_SCISSOR_BOX, (GLint *)&Attrib.scissor_box);
}
if ((mask & GPU_VIEWPORT_BIT) != 0) {
glGetDoublev(GL_DEPTH_RANGE, (GLdouble *)&Attrib.near_far);
glGetIntegerv(GL_VIEWPORT, (GLint *)&Attrib.viewport);
}
if ((mask & GPU_BLEND_BIT) != 0) {
Attrib.is_blend = glIsEnabled(GL_BLEND);
}
BLI_assert(AttribStack.top < STATE_STACK_DEPTH);
AttribStack.top++;
}
static void restore_mask(GLenum cap, const bool value)
{
if (value) {
glEnable(cap);
}
else {
glDisable(cap);
}
}
void gpuPopAttrib(void)
{
BLI_assert(AttribStack.top > 0);
AttribStack.top--;
GLint mask = Attrib.mask;
if ((mask & GPU_DEPTH_BUFFER_BIT) != 0) {
restore_mask(GL_DEPTH_TEST, Attrib.is_depth_test);
glDepthFunc(Attrib.depth_func);
glClearDepth(Attrib.depth_clear_value);
glDepthMask(Attrib.depth_write_mask);
}
if ((mask & GPU_ENABLE_BIT) != 0) {
restore_mask(GL_BLEND, Attrib.is_blend);
for (int i = 0; i < 6; i++) {
restore_mask(GL_CLIP_PLANE0 + i, Attrib.is_clip_plane[i]);
}
restore_mask(GL_CULL_FACE, Attrib.is_cull_face);
restore_mask(GL_DEPTH_TEST, Attrib.is_depth_test);
restore_mask(GL_DITHER, Attrib.is_dither);
restore_mask(GL_LINE_SMOOTH, Attrib.is_line_smooth);
restore_mask(GL_COLOR_LOGIC_OP, Attrib.is_color_logic_op);
restore_mask(GL_MULTISAMPLE, Attrib.is_multisample);
restore_mask(GL_POLYGON_OFFSET_LINE, Attrib.is_polygon_offset_line);
restore_mask(GL_POLYGON_OFFSET_FILL, Attrib.is_polygon_offset_fill);
restore_mask(GL_POLYGON_SMOOTH, Attrib.is_polygon_smooth);
restore_mask(GL_SAMPLE_ALPHA_TO_COVERAGE, Attrib.is_sample_alpha_to_coverage);
restore_mask(GL_SCISSOR_TEST, Attrib.is_scissor_test);
restore_mask(GL_STENCIL_TEST, Attrib.is_stencil_test);
}
if ((mask & GPU_VIEWPORT_BIT) != 0) {
glViewport(Attrib.viewport[0], Attrib.viewport[1], Attrib.viewport[2], Attrib.viewport[3]);
glDepthRange(Attrib.near_far[0], Attrib.near_far[1]);
}
if ((mask & GPU_SCISSOR_BIT) != 0) {
restore_mask(GL_SCISSOR_TEST, Attrib.is_scissor_test);
glScissor(Attrib.scissor_box[0], Attrib.scissor_box[1], Attrib.scissor_box[2], Attrib.scissor_box[3]);
}
if ((mask & GPU_BLEND_BIT) != 0) {
restore_mask(GL_BLEND, Attrib.is_blend);
}
}
#undef Attrib
#undef AttribStack
/** \} */