502 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			502 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * $Id$
 | |
|  *
 | |
|  * ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version. The Blender
 | |
|  * Foundation also sells licenses for use in proprietary software under
 | |
|  * the Blender License.  See http://www.blender.org/BL/ for information
 | |
|  * about this.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software Foundation,
 | |
|  * Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 | |
|  *
 | |
|  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * 
 | |
|  * Contributor(s): Joseph Gilbert
 | |
|  *
 | |
|  * ***** END GPL/BL DUAL LICENSE BLOCK *****
 | |
|  */
 | |
| 
 | |
| #include "Mathutils.h"
 | |
| 
 | |
| #include "BLI_arithb.h"
 | |
| #include "BKE_utildefines.h"
 | |
| #include "BLI_blenlib.h"
 | |
| #include "gen_utils.h"
 | |
| 
 | |
| 
 | |
| //-------------------------DOC STRINGS ---------------------------
 | |
| char Euler_Zero_doc[] = "() - set all values in the euler to 0";
 | |
| char Euler_Unique_doc[] ="() - sets the euler rotation a unique shortest arc rotation - tests for gimbal lock";
 | |
| char Euler_ToMatrix_doc[] =	"() - returns a rotation matrix representing the euler rotation";
 | |
| char Euler_ToQuat_doc[] = "() - returns a quaternion representing the euler rotation";
 | |
| char Euler_Rotate_doc[] = "() - rotate a euler by certain amount around an axis of rotation";
 | |
| char Euler_copy_doc[] = "() - returns a copy of the euler.";
 | |
| //-----------------------METHOD DEFINITIONS ----------------------
 | |
| struct PyMethodDef Euler_methods[] = {
 | |
| 	{"zero", (PyCFunction) Euler_Zero, METH_NOARGS, Euler_Zero_doc},
 | |
| 	{"unique", (PyCFunction) Euler_Unique, METH_NOARGS, Euler_Unique_doc},
 | |
| 	{"toMatrix", (PyCFunction) Euler_ToMatrix, METH_NOARGS, Euler_ToMatrix_doc},
 | |
| 	{"toQuat", (PyCFunction) Euler_ToQuat, METH_NOARGS, Euler_ToQuat_doc},
 | |
| 	{"rotate", (PyCFunction) Euler_Rotate, METH_VARARGS, Euler_Rotate_doc},
 | |
| 	{"__copy__", (PyCFunction) Euler_copy, METH_VARARGS, Euler_copy_doc},
 | |
| 	{"copy", (PyCFunction) Euler_copy, METH_VARARGS, Euler_copy_doc},
 | |
| 	{NULL, NULL, 0, NULL}
 | |
| };
 | |
| //-----------------------------METHODS----------------------------
 | |
| //----------------------------Euler.toQuat()----------------------
 | |
| //return a quaternion representation of the euler
 | |
| PyObject *Euler_ToQuat(EulerObject * self)
 | |
| {
 | |
| 	float eul[3], quat[4];
 | |
| 	int x;
 | |
| 
 | |
| 	for(x = 0; x < 3; x++) {
 | |
| 		eul[x] = self->eul[x] * ((float)Py_PI / 180);
 | |
| 	}
 | |
| 	EulToQuat(eul, quat);
 | |
| 	return newQuaternionObject(quat, Py_NEW);
 | |
| }
 | |
| //----------------------------Euler.toMatrix()---------------------
 | |
| //return a matrix representation of the euler
 | |
| PyObject *Euler_ToMatrix(EulerObject * self)
 | |
| {
 | |
| 	float eul[3];
 | |
| 	float mat[9] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
 | |
| 	int x;
 | |
| 
 | |
| 	for(x = 0; x < 3; x++) {
 | |
| 		eul[x] = self->eul[x] * ((float)Py_PI / 180);
 | |
| 	}
 | |
| 	EulToMat3(eul, (float (*)[3]) mat);
 | |
| 	return newMatrixObject(mat, 3, 3 , Py_NEW);
 | |
| }
 | |
| //----------------------------Euler.unique()-----------------------
 | |
| //sets the x,y,z values to a unique euler rotation
 | |
| PyObject *Euler_Unique(EulerObject * self)
 | |
| {
 | |
| 	double heading, pitch, bank;
 | |
| 	double pi2 =  Py_PI * 2.0f;
 | |
| 	double piO2 = Py_PI / 2.0f;
 | |
| 	double Opi2 = 1.0f / pi2;
 | |
| 
 | |
| 	//radians
 | |
| 	heading = self->eul[0] * (float)Py_PI / 180;
 | |
| 	pitch = self->eul[1] * (float)Py_PI / 180;
 | |
| 	bank = self->eul[2] * (float)Py_PI / 180;
 | |
| 
 | |
| 	//wrap heading in +180 / -180
 | |
| 	pitch += Py_PI;
 | |
| 	pitch -= floor(pitch * Opi2) * pi2;
 | |
| 	pitch -= Py_PI;
 | |
| 
 | |
| 
 | |
| 	if(pitch < -piO2) {
 | |
| 		pitch = -Py_PI - pitch;
 | |
| 		heading += Py_PI;
 | |
| 		bank += Py_PI;
 | |
| 	} else if(pitch > piO2) {
 | |
| 		pitch = Py_PI - pitch;
 | |
| 		heading += Py_PI;
 | |
| 		bank += Py_PI;
 | |
| 	}
 | |
| 	//gimbal lock test
 | |
| 	if(fabs(pitch) > piO2 - 1e-4) {
 | |
| 		heading += bank;
 | |
| 		bank = 0.0f;
 | |
| 	} else {
 | |
| 		bank += Py_PI;
 | |
| 		bank -= (floor(bank * Opi2)) * pi2;
 | |
| 		bank -= Py_PI;
 | |
| 	}
 | |
| 
 | |
| 	heading += Py_PI;
 | |
| 	heading -= (floor(heading * Opi2)) * pi2;
 | |
| 	heading -= Py_PI;
 | |
| 
 | |
| 	//back to degrees
 | |
| 	self->eul[0] = (float)(heading * 180 / (float)Py_PI);
 | |
| 	self->eul[1] = (float)(pitch * 180 / (float)Py_PI);
 | |
| 	self->eul[2] = (float)(bank * 180 / (float)Py_PI);
 | |
| 
 | |
| 	return EXPP_incr_ret((PyObject*)self);
 | |
| }
 | |
| //----------------------------Euler.zero()-------------------------
 | |
| //sets the euler to 0,0,0
 | |
| PyObject *Euler_Zero(EulerObject * self)
 | |
| {
 | |
| 	self->eul[0] = 0.0;
 | |
| 	self->eul[1] = 0.0;
 | |
| 	self->eul[2] = 0.0;
 | |
| 
 | |
| 	return EXPP_incr_ret((PyObject*)self);
 | |
| }
 | |
| //----------------------------Euler.rotate()-----------------------
 | |
| //rotates a euler a certain amount and returns the result
 | |
| //should return a unique euler rotation (i.e. no 720 degree pitches :)
 | |
| PyObject *Euler_Rotate(EulerObject * self, PyObject *args)
 | |
| {
 | |
| 	float angle = 0.0f;
 | |
| 	char *axis;
 | |
| 	int x;
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "fs", &angle, &axis)){
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError,
 | |
| 			"euler.rotate():expected angle (float) and axis (x,y,z)");
 | |
| 	}
 | |
| 	if(!STREQ3(axis,"x","y","z")){
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError,
 | |
| 			"euler.rotate(): expected axis to be 'x', 'y' or 'z'");
 | |
| 	}
 | |
| 
 | |
| 	//covert to radians
 | |
| 	angle *= ((float)Py_PI / 180);
 | |
| 	for(x = 0; x < 3; x++) {
 | |
| 		self->eul[x] *= ((float)Py_PI / 180);
 | |
| 	}
 | |
| 	euler_rot(self->eul, angle, *axis);
 | |
| 	//convert back from radians
 | |
| 	for(x = 0; x < 3; x++) {
 | |
| 		self->eul[x] *= (180 / (float)Py_PI);
 | |
| 	}
 | |
| 
 | |
| 	return EXPP_incr_ret((PyObject*)self);
 | |
| }
 | |
| //----------------------------Euler.rotate()-----------------------
 | |
| // return a copy of the euler
 | |
| PyObject *Euler_copy(EulerObject * self, PyObject *args)
 | |
| {
 | |
| 	return newEulerObject(self->eul, Py_NEW);
 | |
| }
 | |
| 
 | |
| 
 | |
| //----------------------------dealloc()(internal) ------------------
 | |
| //free the py_object
 | |
| static void Euler_dealloc(EulerObject * self)
 | |
| {
 | |
| 	//only free py_data
 | |
| 	if(self->data.py_data){
 | |
| 		PyMem_Free(self->data.py_data);
 | |
| 	}
 | |
| 	PyObject_DEL(self);
 | |
| }
 | |
| //----------------------------getattr()(internal) ------------------
 | |
| //object.attribute access (get)
 | |
| static PyObject *Euler_getattr(EulerObject * self, char *name)
 | |
| {
 | |
| 	if(STREQ(name,"x")){
 | |
| 		return PyFloat_FromDouble(self->eul[0]);
 | |
| 	}else if(STREQ(name, "y")){
 | |
| 		return PyFloat_FromDouble(self->eul[1]);
 | |
| 	}else if(STREQ(name, "z")){
 | |
| 		return PyFloat_FromDouble(self->eul[2]);
 | |
| 	}
 | |
| 	if(STREQ(name, "wrapped")){
 | |
| 		if(self->wrapped == Py_WRAP)
 | |
| 			return EXPP_incr_ret((PyObject *)Py_True);
 | |
| 		else 
 | |
| 			return EXPP_incr_ret((PyObject *)Py_False);
 | |
| 	}
 | |
| 	return Py_FindMethod(Euler_methods, (PyObject *) self, name);
 | |
| }
 | |
| //----------------------------setattr()(internal) ------------------
 | |
| //object.attribute access (set)
 | |
| static int Euler_setattr(EulerObject * self, char *name, PyObject * e)
 | |
| {
 | |
| 	PyObject *f = NULL;
 | |
| 
 | |
| 	f = PyNumber_Float(e);
 | |
| 	if(f == NULL) { // parsed item not a number
 | |
| 		return EXPP_ReturnIntError(PyExc_TypeError, 
 | |
| 			"euler.attribute = x: argument not a number\n");
 | |
| 	}
 | |
| 
 | |
| 	if(STREQ(name,"x")){
 | |
| 		self->eul[0] = (float)PyFloat_AS_DOUBLE(f);
 | |
| 	}else if(STREQ(name, "y")){
 | |
| 		self->eul[1] = (float)PyFloat_AS_DOUBLE(f);
 | |
| 	}else if(STREQ(name, "z")){
 | |
| 		self->eul[2] = (float)PyFloat_AS_DOUBLE(f);
 | |
| 	}else{
 | |
| 		Py_DECREF(f);
 | |
| 		return EXPP_ReturnIntError(PyExc_AttributeError,
 | |
| 				"euler.attribute = x: unknown attribute\n");
 | |
| 	}
 | |
| 
 | |
| 	Py_DECREF(f);
 | |
| 	return 0;
 | |
| }
 | |
| //----------------------------print object (internal)--------------
 | |
| //print the object to screen
 | |
| static PyObject *Euler_repr(EulerObject * self)
 | |
| {
 | |
| 	int i;
 | |
| 	char buffer[48], str[1024];
 | |
| 
 | |
| 	BLI_strncpy(str,"[",1024);
 | |
| 	for(i = 0; i < 3; i++){
 | |
| 		if(i < (2)){
 | |
| 			sprintf(buffer, "%.6f, ", self->eul[i]);
 | |
| 			strcat(str,buffer);
 | |
| 		}else{
 | |
| 			sprintf(buffer, "%.6f", self->eul[i]);
 | |
| 			strcat(str,buffer);
 | |
| 		}
 | |
| 	}
 | |
| 	strcat(str, "](euler)");
 | |
| 
 | |
| 	return PyString_FromString(str);
 | |
| }
 | |
| //------------------------tp_richcmpr
 | |
| //returns -1 execption, 0 false, 1 true
 | |
| static PyObject* Euler_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
 | |
| {
 | |
| 	EulerObject *eulA = NULL, *eulB = NULL;
 | |
| 	int result = 0;
 | |
| 
 | |
| 	if (!EulerObject_Check(objectA) || !EulerObject_Check(objectB)){
 | |
| 		if (comparison_type == Py_NE){
 | |
| 			return EXPP_incr_ret(Py_True); 
 | |
| 		}else{
 | |
| 			return EXPP_incr_ret(Py_False);
 | |
| 		}
 | |
| 	}
 | |
| 	eulA = (EulerObject*)objectA;
 | |
| 	eulB = (EulerObject*)objectB;
 | |
| 
 | |
| 	switch (comparison_type){
 | |
| 		case Py_EQ:
 | |
| 			result = EXPP_VectorsAreEqual(eulA->eul, eulB->eul, 3, 1);
 | |
| 			break;
 | |
| 		case Py_NE:
 | |
| 			result = EXPP_VectorsAreEqual(eulA->eul, eulB->eul, 3, 1);
 | |
| 			if (result == 0){
 | |
| 				result = 1;
 | |
| 			}else{
 | |
| 				result = 0;
 | |
| 			}
 | |
| 			break;
 | |
| 		default:
 | |
| 			printf("The result of the comparison could not be evaluated");
 | |
| 			break;
 | |
| 	}
 | |
| 	if (result == 1){
 | |
| 		return EXPP_incr_ret(Py_True);
 | |
| 	}else{
 | |
| 		return EXPP_incr_ret(Py_False);
 | |
| 	}
 | |
| }
 | |
| //------------------------tp_doc
 | |
| static char EulerObject_doc[] = "This is a wrapper for euler objects.";
 | |
| //---------------------SEQUENCE PROTOCOLS------------------------
 | |
| //----------------------------len(object)------------------------
 | |
| //sequence length
 | |
| static int Euler_len(EulerObject * self)
 | |
| {
 | |
| 	return 3;
 | |
| }
 | |
| //----------------------------object[]---------------------------
 | |
| //sequence accessor (get)
 | |
| static PyObject *Euler_item(EulerObject * self, int i)
 | |
| {
 | |
| 	if(i < 0 || i >= 3)
 | |
| 		return EXPP_ReturnPyObjError(PyExc_IndexError,
 | |
| 		"euler[attribute]: array index out of range\n");
 | |
| 
 | |
| 	return PyFloat_FromDouble(self->eul[i]);
 | |
| 
 | |
| }
 | |
| //----------------------------object[]-------------------------
 | |
| //sequence accessor (set)
 | |
| static int Euler_ass_item(EulerObject * self, int i, PyObject * ob)
 | |
| {
 | |
| 	PyObject *f = NULL;
 | |
| 
 | |
| 	f = PyNumber_Float(ob);
 | |
| 	if(f == NULL) { // parsed item not a number
 | |
| 		return EXPP_ReturnIntError(PyExc_TypeError, 
 | |
| 			"euler[attribute] = x: argument not a number\n");
 | |
| 	}
 | |
| 
 | |
| 	if(i < 0 || i >= 3){
 | |
| 		Py_DECREF(f);
 | |
| 		return EXPP_ReturnIntError(PyExc_IndexError,
 | |
| 			"euler[attribute] = x: array assignment index out of range\n");
 | |
| 	}
 | |
| 	self->eul[i] = (float)PyFloat_AS_DOUBLE(f);
 | |
| 	Py_DECREF(f);
 | |
| 	return 0;
 | |
| }
 | |
| //----------------------------object[z:y]------------------------
 | |
| //sequence slice (get)
 | |
| static PyObject *Euler_slice(EulerObject * self, int begin, int end)
 | |
| {
 | |
| 	PyObject *list = NULL;
 | |
| 	int count;
 | |
| 
 | |
| 	CLAMP(begin, 0, 3);
 | |
| 	CLAMP(end, 0, 3);
 | |
| 	begin = MIN2(begin,end);
 | |
| 
 | |
| 	list = PyList_New(end - begin);
 | |
| 	for(count = begin; count < end; count++) {
 | |
| 		PyList_SetItem(list, count - begin,
 | |
| 				PyFloat_FromDouble(self->eul[count]));
 | |
| 	}
 | |
| 
 | |
| 	return list;
 | |
| }
 | |
| //----------------------------object[z:y]------------------------
 | |
| //sequence slice (set)
 | |
| static int Euler_ass_slice(EulerObject * self, int begin, int end,
 | |
| 			     PyObject * seq)
 | |
| {
 | |
| 	int i, y, size = 0;
 | |
| 	float eul[3];
 | |
| 	PyObject *e, *f;
 | |
| 
 | |
| 	CLAMP(begin, 0, 3);
 | |
| 	CLAMP(end, 0, 3);
 | |
| 	begin = MIN2(begin,end);
 | |
| 
 | |
| 	size = PySequence_Length(seq);
 | |
| 	if(size != (end - begin)){
 | |
| 		return EXPP_ReturnIntError(PyExc_TypeError,
 | |
| 			"euler[begin:end] = []: size mismatch in slice assignment\n");
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		e = PySequence_GetItem(seq, i);
 | |
| 		if (e == NULL) { // Failed to read sequence
 | |
| 			return EXPP_ReturnIntError(PyExc_RuntimeError, 
 | |
| 				"euler[begin:end] = []: unable to read sequence\n");
 | |
| 		}
 | |
| 
 | |
| 		f = PyNumber_Float(e);
 | |
| 		if(f == NULL) { // parsed item not a number
 | |
| 			Py_DECREF(e);
 | |
| 			return EXPP_ReturnIntError(PyExc_TypeError, 
 | |
| 				"euler[begin:end] = []: sequence argument not a number\n");
 | |
| 		}
 | |
| 
 | |
| 		eul[i] = (float)PyFloat_AS_DOUBLE(f);
 | |
| 		EXPP_decr2(f,e);
 | |
| 	}
 | |
| 	//parsed well - now set in vector
 | |
| 	for(y = 0; y < 3; y++){
 | |
| 		self->eul[begin + y] = eul[y];
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| //-----------------PROTCOL DECLARATIONS--------------------------
 | |
| static PySequenceMethods Euler_SeqMethods = {
 | |
| 	(inquiry) Euler_len,						/* sq_length */
 | |
| 	(binaryfunc) 0,								/* sq_concat */
 | |
| 	(intargfunc) 0,								/* sq_repeat */
 | |
| 	(intargfunc) Euler_item,					/* sq_item */
 | |
| 	(intintargfunc) Euler_slice,				/* sq_slice */
 | |
| 	(intobjargproc) Euler_ass_item,				/* sq_ass_item */
 | |
| 	(intintobjargproc) Euler_ass_slice,			/* sq_ass_slice */
 | |
| };
 | |
| //------------------PY_OBECT DEFINITION--------------------------
 | |
| PyTypeObject euler_Type = {
 | |
| 	PyObject_HEAD_INIT(NULL)		//tp_head
 | |
| 	0,								//tp_internal
 | |
| 	"euler",						//tp_name
 | |
| 	sizeof(EulerObject),			//tp_basicsize
 | |
| 	0,								//tp_itemsize
 | |
| 	(destructor)Euler_dealloc,		//tp_dealloc
 | |
| 	0,								//tp_print
 | |
| 	(getattrfunc)Euler_getattr,	//tp_getattr
 | |
| 	(setattrfunc) Euler_setattr,	//tp_setattr
 | |
| 	0,								//tp_compare
 | |
| 	(reprfunc) Euler_repr,			//tp_repr
 | |
| 	0,				//tp_as_number
 | |
| 	&Euler_SeqMethods,				//tp_as_sequence
 | |
| 	0,								//tp_as_mapping
 | |
| 	0,								//tp_hash
 | |
| 	0,								//tp_call
 | |
| 	0,								//tp_str
 | |
| 	0,								//tp_getattro
 | |
| 	0,								//tp_setattro
 | |
| 	0,								//tp_as_buffer
 | |
| 	Py_TPFLAGS_DEFAULT,				//tp_flags
 | |
| 	EulerObject_doc,				//tp_doc
 | |
| 	0,								//tp_traverse
 | |
| 	0,								//tp_clear
 | |
| 	(richcmpfunc)Euler_richcmpr,	//tp_richcompare
 | |
| 	0,								//tp_weaklistoffset
 | |
| 	0,								//tp_iter
 | |
| 	0,								//tp_iternext
 | |
| 	0,								//tp_methods
 | |
| 	0,								//tp_members
 | |
| 	0,								//tp_getset
 | |
| 	0,								//tp_base
 | |
| 	0,								//tp_dict
 | |
| 	0,								//tp_descr_get
 | |
| 	0,								//tp_descr_set
 | |
| 	0,								//tp_dictoffset
 | |
| 	0,								//tp_init
 | |
| 	0,								//tp_alloc
 | |
| 	0,								//tp_new
 | |
| 	0,								//tp_free
 | |
| 	0,								//tp_is_gc
 | |
| 	0,								//tp_bases
 | |
| 	0,								//tp_mro
 | |
| 	0,								//tp_cache
 | |
| 	0,								//tp_subclasses
 | |
| 	0,								//tp_weaklist
 | |
| 	0								//tp_del
 | |
| };
 | |
| //------------------------newEulerObject (internal)-------------
 | |
| //creates a new euler object
 | |
| /*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
 | |
|  (i.e. it was allocated elsewhere by MEM_mallocN())
 | |
|   pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
 | |
|  (i.e. it must be created here with PyMEM_malloc())*/
 | |
| PyObject *newEulerObject(float *eul, int type)
 | |
| {
 | |
| 	EulerObject *self;
 | |
| 	int x;
 | |
| 
 | |
| 	euler_Type.ob_type = &PyType_Type;
 | |
| 	self = PyObject_NEW(EulerObject, &euler_Type);
 | |
| 	self->data.blend_data = NULL;
 | |
| 	self->data.py_data = NULL;
 | |
| 
 | |
| 	if(type == Py_WRAP){
 | |
| 		self->data.blend_data = eul;
 | |
| 		self->eul = self->data.blend_data;
 | |
| 		self->wrapped = Py_WRAP;
 | |
| 	}else if (type == Py_NEW){
 | |
| 		self->data.py_data = PyMem_Malloc(3 * sizeof(float));
 | |
| 		self->eul = self->data.py_data;
 | |
| 		if(!eul) { //new empty
 | |
| 			for(x = 0; x < 3; x++) {
 | |
| 				self->eul[x] = 0.0f;
 | |
| 			}
 | |
| 		}else{
 | |
| 			for(x = 0; x < 3; x++){
 | |
| 				self->eul[x] = eul[x];
 | |
| 			}
 | |
| 		}
 | |
| 		self->wrapped = Py_NEW;
 | |
| 	}else{ //bad type
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return (PyObject *) self;
 | |
| }
 | |
| 
 |